Next Issue
Volume 7, June
Previous Issue
Volume 6, December
 
 

Bioengineering, Volume 7, Issue 1 (March 2020) – 29 articles

Cover Story (view full-size image): Mechanical environments surrounding cancer cells, which include stiffness of the extracellular matrix, are altered during tumor progression and influence cell behaviors. In this study, we show that stiff matrices, through activation of the mechanotransducer YAP, increase the expression of MMP24, which encodes the membrane-type matrix metaroprotease-24. In addition, based on the human protein atlas database, high MMP24 expression is correlated with the prolonged overall survival rate of patients for several cancers, including breast cancer. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 2633 KiB  
Article
PHA Production and PHA Synthases of the Halophilic Bacterium Halomonas sp. SF2003
by Tatiana Thomas, Kumar Sudesh, Alexis Bazire, Anne Elain, Hua Tiang Tan, Hui Lim and Stéphane Bruzaud
Bioengineering 2020, 7(1), 29; https://doi.org/10.3390/bioengineering7010029 - 20 Mar 2020
Cited by 22 | Viewed by 6817
Abstract
Among the different tools which can be studied and managed to tailor-make polyhydroxyalkanoates (PHAs) and enhance their production, bacterial strain and carbon substrates are essential. The assimilation of carbon sources is dependent on bacterial strain’s metabolism and consequently cannot be dissociated. Both must [...] Read more.
Among the different tools which can be studied and managed to tailor-make polyhydroxyalkanoates (PHAs) and enhance their production, bacterial strain and carbon substrates are essential. The assimilation of carbon sources is dependent on bacterial strain’s metabolism and consequently cannot be dissociated. Both must wisely be studied and well selected to ensure the highest production yield of PHAs. Halomonas sp. SF2003 is a marine bacterium already identified as a PHA-producing strain and especially of poly-3-hydroxybutyrate (P-3HB) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P-3HB-co-3HV). Previous studies have identified different genes potentially involved in PHA production by Halomonas sp. SF2003, including two phaC genes with atypical characteristics, phaC1 and phaC2. At the same time, an interesting adaptability of the strain in front of various growth conditions was highlighted, making it a good candidate for biotechnological applications. To continue the characterization of Halomonas sp. SF2003, the screening of carbon substrates exploitable for PHA production was performed as well as production tests. Additionally, the functionality of both PHA synthases PhaC1 and PhaC2 was investigated, with an in silico study and the production of transformant strains, in order to confirm and to understand the role of each one on PHA production. The results of this study confirm the adaptability of the strain and its ability to exploit various carbon substrates, in pure or mixed form, for PHA production. Individual expression of PhaC1 and PhaC2 synthases in a non-PHA-producing strain, Cupriavidus necator H16 PHB¯4 (DSM 541), allows obtaining PHA production, demonstrating at the same time, functionality and differences between both PHA synthases. All the results of this study confirm the biotechnological interest in Halomonas sp. SF2003. Full article
Show Figures

Graphical abstract

13 pages, 1937 KiB  
Article
Low Temperature Dissolution of Yeast Chitin-Glucan Complex and Characterization of the Regenerated Polymer
by Diana Araújo, Vítor D. Alves, Ana C. Marques, Elvira Fortunato, Maria A. M. Reis and Filomena Freitas
Bioengineering 2020, 7(1), 28; https://doi.org/10.3390/bioengineering7010028 - 14 Mar 2020
Cited by 5 | Viewed by 4649
Abstract
Chitin-glucan complex (CGC) is a copolymer composed of chitin and glucan moieties extracted from the cell-walls of several yeasts and fungi. Despite its proven valuable properties, that include antibacterial, antioxidant and anticancer activity, the utilization of CGC in many applications is hindered by [...] Read more.
Chitin-glucan complex (CGC) is a copolymer composed of chitin and glucan moieties extracted from the cell-walls of several yeasts and fungi. Despite its proven valuable properties, that include antibacterial, antioxidant and anticancer activity, the utilization of CGC in many applications is hindered by its insolubility in water and most solvents. In this study, NaOH/urea solvent systems were used for the first time for solubilization of CGC extracted from the yeast Komagataella pastoris. Different NaOH/urea ratios (6:8, 8:4 and 11:4 (w/w), respectively) were used to obtain aqueous solutions using a freeze/thaw procedure. There was an overall solubilization of 63–68%, with the highest solubilization rate obtained for the highest tested urea concentration (8 wt%). The regenerated polymer, obtained by dialysis of the alkali solutions followed by lyophilization, formed porous macrostructures characterized by a chemical composition similar to that of the starting co-polymer, although the acetylation degree decreased from 61.3% to 33.9–50.6%, indicating that chitin was converted into chitosan, yielding chitosan-glucan complex (ChGC). Consistent with this, there was a reduction of the crystallinity index and thermal degradation temperature. Given these results, this study reports a simple and green procedure to solubilize CGC and obtain aqueous ChGC solutions that can be processed as novel biomaterials. Full article
Show Figures

Graphical abstract

29 pages, 19183 KiB  
Article
Biomechanical Behavior of a Variable Angle Locked Tibiotalocalcaneal Construct
by Farah Hamandi, Gerard Simon, Richard Laughlin and Tarun Goswami
Bioengineering 2020, 7(1), 27; https://doi.org/10.3390/bioengineering7010027 - 14 Mar 2020
Cited by 3 | Viewed by 5974
Abstract
This paper examines the mechanics of the tibiotalocalcaneal construct made with a PHILOS plating system. A failed device consisting of the LCP plate and cortical, locking, and cannulated screws was used to perform the analysis. Visual, microstructure, and fractographic examinations were carried out [...] Read more.
This paper examines the mechanics of the tibiotalocalcaneal construct made with a PHILOS plating system. A failed device consisting of the LCP plate and cortical, locking, and cannulated screws was used to perform the analysis. Visual, microstructure, and fractographic examinations were carried out to characterize the fracture surface topology. These examinations revealed the presence of surface scratching, inclusions, discoloration, corrosion pits, beach marks, and cleavage and striations on the fracture surface. Further examination of the material crystallography and texture revealed an interaction of S, Ni, and Mo-based inclusions that may have raised pitting susceptibility of the device made with Stainless Steel 316L. These features suggest that the device underwent damage by pitting the corrosion-fatigue mechanism and overloading towards the end to fail the plate and screws in two or more components. The screws failed via conjoint bending and torsion fatigue mechanisms. Computer simulations of variable angle locking screws were performed in this paper. The material of construction of the device was governed by ASTM F138-8 or its ISO equivalent 5832 and exhibited inconsistencies in chemistry and hardness requirements. The failure conditions were matched in finite element modeling and those boundary conditions discussed in this paper. Full article
(This article belongs to the Special Issue Assessments and Advances in Bone Regeneration, Therapies and Healing)
Show Figures

Figure 1

12 pages, 4202 KiB  
Article
Biogenic Ceria Nanoparticles (CeO2 NPs) for Effective Photocatalytic and Cytotoxic Activity
by Siripireddy Balaji, Badal Kumar Mandal, L. Vinod Kumar Reddy and Dwaipayan Sen
Bioengineering 2020, 7(1), 26; https://doi.org/10.3390/bioengineering7010026 - 13 Mar 2020
Cited by 32 | Viewed by 4976
Abstract
Ceria nanoparticles (CeO2 NPs) are generally considered in various functional applications, such as catalysts in fuel cells, sensors, and antioxidant and oxidase-like enzymes in the biological environment. The CeO2 NPs were synthesized using the E. globulus leaf extract-mediated hydrothermal technique. The [...] Read more.
Ceria nanoparticles (CeO2 NPs) are generally considered in various functional applications, such as catalysts in fuel cells, sensors, and antioxidant and oxidase-like enzymes in the biological environment. The CeO2 NPs were synthesized using the E. globulus leaf extract-mediated hydrothermal technique. The synthesized NPs were characterized by various analytical instruments including powder X-ray diffractometer (PXRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and dynamic light scattering (DLS) analysis. The XRD results showed an average NPs sizes of 13.7 nm. Cytotoxic study results showed an IC50 value of 45.5 µg/L for A549 and 58.2 µg/L for HCT 116, indicating that CeO2 NPs are more toxic to A549 compared to HCT116 cell lines. The generation of ROS was responsible for its cytotoxic activity against cancer cell lines. Specific surface area (40.96 m2/g) and pore diameter (7.8 nm) were measured using Brunauer–Emmett–Teller (BET) nitrogen adsorption–desorption isotherms. CeO2 NPs with a high surface area were used as photocatalyst in degrading sunset yellow (SY) dye under UV-irradiation and 97.3% of the dye was degraded within 90 min. These results suggest that the synthesized CeO2 NPs could be used as a good photocatalyst as well as a cytotoxic agent against human cancer cell lines. Full article
Show Figures

Graphical abstract

15 pages, 1679 KiB  
Review
Mechanics and Microstructure of the Atrioventricular Heart Valve Chordae Tendineae: A Review
by Colton J. Ross, Junnan Zheng, Liang Ma, Yi Wu and Chung-Hao Lee
Bioengineering 2020, 7(1), 25; https://doi.org/10.3390/bioengineering7010025 - 12 Mar 2020
Cited by 14 | Viewed by 6910
Abstract
The atrioventricular heart valves (AHVs) are responsible for directing unidirectional blood flow through the heart by properly opening and closing the valve leaflets, which are supported in their function by the chordae tendineae and the papillary muscles. Specifically, the chordae tendineae are critical [...] Read more.
The atrioventricular heart valves (AHVs) are responsible for directing unidirectional blood flow through the heart by properly opening and closing the valve leaflets, which are supported in their function by the chordae tendineae and the papillary muscles. Specifically, the chordae tendineae are critical to distributing forces during systolic closure from the leaflets to the papillary muscles, preventing leaflet prolapse and consequent regurgitation. Current therapies for chordae failure have issues of disease recurrence or suboptimal treatment outcomes. To improve those therapies, researchers have sought to better understand the mechanics and microstructure of the chordae tendineae of the AHVs. The intricate structures of the chordae tendineae have become of increasing interest in recent literature, and there are several key findings that have not been comprehensively summarized in one review. Therefore, in this review paper, we will provide a summary of the current state of biomechanical and microstructural characterizations of the chordae tendineae, and also discuss perspectives for future studies that will aid in a better understanding of the tissue mechanics–microstructure linking of the AHVs’ chordae tendineae, and thereby improve the therapeutics for heart valve diseases caused by chordae failures. Full article
(This article belongs to the Special Issue Advances in Biological Tissue Biomechanics)
Show Figures

Figure 1

6 pages, 197 KiB  
Editorial
Advances in Polyhydroxyalkanoate (PHA) Production, Volume 2
by Martin Koller
Bioengineering 2020, 7(1), 24; https://doi.org/10.3390/bioengineering7010024 - 04 Mar 2020
Cited by 15 | Viewed by 5565
Abstract
During the two years that have passed since the first volume of “Advances in Polyhydroxyalkanoate (PHA) production” was published, the progress in PHA-related research was indeed tremendous, calling for the next, highly bioprocess- and bioengineering-oriented volume. This editorial paper summarizes and puts into [...] Read more.
During the two years that have passed since the first volume of “Advances in Polyhydroxyalkanoate (PHA) production” was published, the progress in PHA-related research was indeed tremendous, calling for the next, highly bioprocess- and bioengineering-oriented volume. This editorial paper summarizes and puts into context the contributions to this second volume of the Bioengineering Special Issue; it covers highly topical fields of PHA-related R&D activities, covering, beside the pronounced bioengineering-related articles, the fields of the microbiology of underexplored, but probably emerging, PHA production strains from the groups of Pseudomonas, cyanobacteria, methanotrophs, and from the extremophilic domain of haloarchaea. Moreover, novel second-generation lignocellulose feedstocks for PHA production from agriculture to be used in biorefinery concepts, new approaches for fine-tuning the composition of PHA co- and terpolyesters, process simulation for PHA production from methane-rich natural gas, the challenges associated with rheology-governed oxygen transfer in high cell density cultivations, rapid spectroscopic in-line analytics for process monitoring, and the biomedical application of PHA biopolyesters after appropriate advanced processing are the subjects of the presented studies. Full article
(This article belongs to the Special Issue Advances in Polyhydroxyalkanoate (PHA) Production, Volume 2)
16 pages, 7731 KiB  
Article
Neural Modulation of the Primary Auditory Cortex by Intracortical Microstimulation with a Bio-Inspired Electronic System
by Maria Giovanna Bianco, Salvatore Andrea Pullano, Rita Citraro, Emilio Russo, Giovambattista De Sarro, Etienne de Villers Sidani and Antonino S. Fiorillo
Bioengineering 2020, 7(1), 23; https://doi.org/10.3390/bioengineering7010023 - 02 Mar 2020
Cited by 6 | Viewed by 5025
Abstract
Nowadays, the majority of the progress in the development of implantable neuroprostheses has been achieved by improving the knowledge of brain functions so as to restore sensorial impairments. Intracortical microstimulation (ICMS) is a widely used technique to investigate site-specific cortical responses to electrical [...] Read more.
Nowadays, the majority of the progress in the development of implantable neuroprostheses has been achieved by improving the knowledge of brain functions so as to restore sensorial impairments. Intracortical microstimulation (ICMS) is a widely used technique to investigate site-specific cortical responses to electrical stimuli. Herein, we investigated the neural modulation induced in the primary auditory cortex (A1) by an acousto-electric transduction of ultrasonic signals using a bio-inspired intracortical microstimulator. The developed electronic system emulates the transduction of ultrasound signals in the cochlea, providing bio-inspired electrical stimuli. Firstly, we identified the receptive fields in the primary auditory cortex devoted to encoding ultrasonic waves at different frequencies, mapping each area with neurophysiological patterns. Subsequently, the activity elicited by bio-inspired ICMS in the previously identified areas, bypassing the sense organ, was investigated. The observed evoked response by microstimulation resulted as highly specific to the stimuli, and the spatiotemporal dynamics of neural oscillatory activity in the alpha, beta, and gamma waves were related to the stimuli preferred by the neurons at the stimulated site. The alpha waves modulated cortical excitability only during the activation of the specific tonotopic neuronal populations, inhibiting neural responses in unrelated areas. Greater neuronal activity in the posterior area of A1 was observed in the beta band, whereas a gamma rhythm was induced in the anterior A1. The results evidence that the proposed bio-inspired acousto-electric ICMS triggers high-frequency oscillations, encoding information about the stimulation sites and involving a large-scale integration in the brain. Full article
Show Figures

Figure 1

16 pages, 592 KiB  
Review
The Treatment of Acute Diaphyseal Long-bones Fractures with Orthobiologics and Pharmacological Interventions for Bone Healing Enhancement: A Systematic Review of Clinical Evidence
by Giuseppe Marongiu, Andrea Contini, Andrea Cozzi Lepri, Matthew Donadu, Marco Verona and Antonio Capone
Bioengineering 2020, 7(1), 22; https://doi.org/10.3390/bioengineering7010022 - 24 Feb 2020
Cited by 12 | Viewed by 5499
Abstract
Background: The healing of long bones diaphyseal fractures can be often impaired and eventually end into delayed union and non-union. A number of therapeutic strategies have been proposed in combination with surgical treatment in order to enhance the healing process, such as scaffolds, [...] Read more.
Background: The healing of long bones diaphyseal fractures can be often impaired and eventually end into delayed union and non-union. A number of therapeutic strategies have been proposed in combination with surgical treatment in order to enhance the healing process, such as scaffolds, growth factors, cell therapies and systemic pharmacological treatments. Our aim was to investigate the current evidence of bone healing enhancement of acute long bone diaphyseal fractures. Methods: A systematic review was conducted by using Pubmed/MEDLINE; Embase and Ovid databases. The combination of the search terms “long-bones; diaphyseal fracture; bone healing; growth factors; cell therapies; scaffolds; graft; bone substitutes; orthobiologics; teriparatide”. Results: The initial search resulted in 4156 articles of which 37 papers fulfilled the inclusion criteria and were the subject of this review. The studies included 1350 patients (837 males and 513 females) with a mean age of 65.3 years old. Conclusions: General lack of high-quality studies exists on the use of adjuvant strategies for bone healing enhancement in acute shaft fractures. Strong evidence supports the use of bone grafts, while only moderate evidence demineralized bone matrix and synthetic ceramics. Conflicting results partially supported the use of growth factors and cell therapies in acute fractures. Teriparatide showed promising results, particularly for atypical femoral fractures and periprosthetic femoral fractures. Full article
(This article belongs to the Special Issue Assessments and Advances in Bone Regeneration, Therapies and Healing)
Show Figures

Figure 1

11 pages, 9514 KiB  
Article
Electrospinning Live Cells Using Gelatin and Pullulan
by Nasim Nosoudi, Anson Jacob Oommen, Savannah Stultz, Micah Jordan, Seba Aldabel, Chandra Hohne, James Mosser, Bailey Archacki, Alliah Turner and Paul Turner
Bioengineering 2020, 7(1), 21; https://doi.org/10.3390/bioengineering7010021 - 22 Feb 2020
Cited by 23 | Viewed by 5842
Abstract
Electrospinning is a scaffold production method that utilizes electric force to draw a polymer solution into nanometer-sized fibers. By optimizing the polymer and electrospinning parameters, a scaffold is created with the desired thickness, alignment, and pore size. Traditionally, cells and biological constitutes are [...] Read more.
Electrospinning is a scaffold production method that utilizes electric force to draw a polymer solution into nanometer-sized fibers. By optimizing the polymer and electrospinning parameters, a scaffold is created with the desired thickness, alignment, and pore size. Traditionally, cells and biological constitutes are implanted into the matrix of the three-dimensional scaffold following electrospinning. Our design simultaneously introduces cells into the scaffold during the electrospinning process at 8 kV. In this study, we achieved 90% viability of adipose tissue-derived stem cells through electrospinning. Full article
(This article belongs to the Special Issue Stem Cell Bioprocessing and Manufacturing)
Show Figures

Figure 1

14 pages, 4153 KiB  
Article
Preparation, Cytotoxicity, and In Vitro Bioimaging of Water Soluble and Highly Fluorescent Palladium Nanoclusters
by Suresh Thangudu, Poliraju Kalluru and Raviraj Vankayala
Bioengineering 2020, 7(1), 20; https://doi.org/10.3390/bioengineering7010020 - 21 Feb 2020
Cited by 16 | Viewed by 5598
Abstract
Fluorescent probes offer great potential to identify and treat surgical tumors by clinicians. To this end, several molecular probes were examined as in vitro and in vivo bioimaging probes. However, due to their ultra-low extinction coefficients as well as photobleaching problems, conventional molecular [...] Read more.
Fluorescent probes offer great potential to identify and treat surgical tumors by clinicians. To this end, several molecular probes were examined as in vitro and in vivo bioimaging probes. However, due to their ultra-low extinction coefficients as well as photobleaching problems, conventional molecular probes limit its practical utility. To address the above mentioned challenges, metal nanoclusters (MNCs) can serve as an excellent alternative with many unique features such as higher molar extinction coefficients/light absorbing capabilities, good photostability and appreciable fluorescence quantum yields. Herein, we reported a green synthesis of water soluble palladium nanoclusters (Pd NCs) and characterized them by using various spectroscopic and microscopic characterization techniques. These nanoclusters showed excellent photophysical properties with the characteristic emission peak centered at 500 nm under 420 nm photoexcitation wavelength. In vitro cytotoxicity studies in human cervical cancer cells (HeLa) cells reveal that Pd NCs exhibited good biocompatibility with an IC50 value of >100 µg/mL and also showed excellent co-localization and distribution throughout the cytoplasm region with a significant fraction translocating into cell nucleus. We foresee that Pd NCs will carry huge potential to serve as a new generation bioimaging nanoprobe owing to its smaller size, minimal cytotoxicity, nucleus translocation capability and good cell labelling properties. Full article
Show Figures

Figure 1

14 pages, 2288 KiB  
Article
Thauera aminoaromatica MZ1T Identified as a Polyhydroxyalkanoate-Producing Bacterium within a Mixed Microbial Consortium
by Dana I. Colpa, Wen Zhou, Jan Pier Wempe, Jelmer Tamis, Marc C. A. Stuart, Janneke Krooneman and Gert-Jan W. Euverink
Bioengineering 2020, 7(1), 19; https://doi.org/10.3390/bioengineering7010019 - 21 Feb 2020
Cited by 16 | Viewed by 5624
Abstract
Polyhydroxyalkanoates (PHAs) form a highly promising class of bioplastics for the transition from fossil fuel-based plastics to bio-renewable and biodegradable plastics. Mixed microbial consortia (MMC) are known to be able to produce PHAs from organic waste streams. Knowledge of key-microbes and their characteristics [...] Read more.
Polyhydroxyalkanoates (PHAs) form a highly promising class of bioplastics for the transition from fossil fuel-based plastics to bio-renewable and biodegradable plastics. Mixed microbial consortia (MMC) are known to be able to produce PHAs from organic waste streams. Knowledge of key-microbes and their characteristics in PHA-producing consortia is necessary for further process optimization and direction towards synthesis of specific types of PHAs. In this study, a PHA-producing mixed microbial consortium (MMC) from an industrial pilot plant was characterized and further enriched on acetate in a laboratory-scale selector with a working volume of 5 L. 16S-rDNA microbiological population analysis of both the industrial pilot plant and the 5 L selector revealed that the most dominant species within the population is Thauera aminoaromatica MZ1T, a Gram-negative beta-proteobacterium belonging to the order of the Rhodocyclales. The relative abundance of this Thauera species increased from 24 to 40% after two months of enrichment in the selector-system, indicating a competitive advantage, possibly due to the storage of a reserve material such as PHA. First experiments with T. aminoaromatica MZ1T showed multiple intracellular granules when grown in pure culture on a growth medium with a C:N ratio of 10:1 and acetate as a carbon source. Nuclear magnetic resonance (NMR) analyses upon extraction of PHA from the pure culture confirmed polyhydroxybutyrate production by T. aminoaromatica MZ1T. Full article
Show Figures

Graphical abstract

12 pages, 3050 KiB  
Article
MMP24 as a Target of YAP Is a Potential Prognostic Factor in Cancer Patients
by Wataru Sugimoto, Katsuhiko Itoh, Hiroaki Hirata, Yoshinori Abe, Takeru Torii, Yasumasa Mitsui, Yemima Budirahardja, Nobuyuki Tanaka and Keiko Kawauchi
Bioengineering 2020, 7(1), 18; https://doi.org/10.3390/bioengineering7010018 - 20 Feb 2020
Cited by 8 | Viewed by 5353
Abstract
The extracellular matrix (ECM) surrounding cancer cells becomes stiffer during tumor progression, which influences cancer cell behaviors such as invasion and proliferation through modulation of gene expression as well as remodeling of the actin cytoskeleton. In this study, we show that MMP24 encoding [...] Read more.
The extracellular matrix (ECM) surrounding cancer cells becomes stiffer during tumor progression, which influences cancer cell behaviors such as invasion and proliferation through modulation of gene expression as well as remodeling of the actin cytoskeleton. In this study, we show that MMP24 encoding matrix metalloproteinase (MMP)-24 is a novel target gene of Yes-associated protein (YAP), a transcription coactivator known as a mechanotransducer. We first examined the effect of substrate stiffness on MMP24 expression in MCF-7 human breast cancer cells and showed that the expression of MMP24 was significantly higher in cells grown on stiff substrates than that on soft substrates. The MMP24 expression was significantly reduced by knockdown of YAP. In contrast, the expression of constitutively active YAP increased MMP24 promoter activity. In addition, binding of YAP to the MMP24 promoter was confirmed by the chromatin immunoprecipitation (ChIP) assay. These results show that ECM stiffening promotes YAP activation, thereby inducing MMP24 expression. Based on the Human Protein Atlas database, breast cancer patients with lower MMP24 expression exhibit the worse survival rates overall. Thus, MMP24 may negatively regulate the aggressiveness of cancer cells under the stiff ECM environment during tumor progression. Full article
(This article belongs to the Special Issue Cell–Biomaterial Interactions)
Show Figures

Figure 1

18 pages, 5053 KiB  
Review
Recapitulating the Vasculature Using Organ-On-Chip Technology
by Andreas M.A.O. Pollet and Jaap M.J. den Toonder
Bioengineering 2020, 7(1), 17; https://doi.org/10.3390/bioengineering7010017 - 18 Feb 2020
Cited by 39 | Viewed by 8495
Abstract
The development of Vasculature-on-Chip has progressed rapidly over the last decade and recently, a wealth of fabrication possibilities has emerged that can be used for engineering vessels on a chip. All these fabrication methods have their own advantages and disadvantages but, more importantly, [...] Read more.
The development of Vasculature-on-Chip has progressed rapidly over the last decade and recently, a wealth of fabrication possibilities has emerged that can be used for engineering vessels on a chip. All these fabrication methods have their own advantages and disadvantages but, more importantly, the capability of recapitulating the in vivo vasculature differs greatly between them. The first part of this review discusses the biological background of the in vivo vasculature and all the associated processes. We then evaluate the biological relevance of different fabrication methods proposed for Vasculature-on-Chip, we indicate their possibilities and limitations, and we assess which fabrication methods are capable of recapitulating the intrinsic complexity of the vasculature. This review illustrates the complexity involved in developing in vitro vasculature and provides an overview of fabrication methods for Vasculature-on-Chip in relation to the biological relevance of such methods. Full article
(This article belongs to the Special Issue Organs-on-Chips)
Show Figures

Figure 1

17 pages, 6523 KiB  
Article
Early Detection of Atrial Fibrillation Based on ECG Signals
by Nuzhat Ahmed and Yong Zhu
Bioengineering 2020, 7(1), 16; https://doi.org/10.3390/bioengineering7010016 - 13 Feb 2020
Cited by 27 | Viewed by 7726
Abstract
Atrial fibrillation, often called AF is considered to be the most common type of cardiac arrhythmia, which is a major healthcare challenge. Early detection of AF and the appropriate treatment is crucial if the symptoms seem to be consistent and persistent. This research [...] Read more.
Atrial fibrillation, often called AF is considered to be the most common type of cardiac arrhythmia, which is a major healthcare challenge. Early detection of AF and the appropriate treatment is crucial if the symptoms seem to be consistent and persistent. This research work focused on the development of a heart monitoring system which could be considered as a feasible solution in early detection of potential AF in real time. The objective was to bridge the gap in the market for a low-cost, at home use, noninvasive heart health monitoring system specifically designed to periodically monitor heart health in subjects with AF disorder concerns. The main characteristic of AF disorder is the considerably higher heartbeat and the varying period between observed R waves in electrocardiogram (ECG) signals. This proposed research was conducted to develop a low cost and easy to use device that measures and analyzes the heartbeat variations, varying time period between successive R peaks of the ECG signal and compares the result with the normal heart rate and RR intervals. Upon exceeding the threshold values, this device creates an alert to notify about the possible AF detection. The prototype for this research consisted of a Bitalino ECG sensor and electrodes, an Arduino microcontroller, and a simple circuit. The data was acquired and analyzed using the Arduino software in real time. The prototype was used to analyze healthy ECG data and using the MIT-BIH database the real AF patient data was analyzed, and reasonable threshold values were found, which yielded a reasonable success rate of AF detection. Full article
Show Figures

Figure 1

10 pages, 1687 KiB  
Article
Economic Assessment of Bioethanol Recovery Using Membrane Distillation for Food Waste Fermentation
by Noor Intan Shafinas Muhammad and Kurt A. Rosentrater
Bioengineering 2020, 7(1), 15; https://doi.org/10.3390/bioengineering7010015 - 11 Feb 2020
Cited by 14 | Viewed by 4677
Abstract
Ethanol is a material that has a high demand from different industries such as fuel, beverages, and other industrial applications. Commonly, ethanol has been produced from yeast fermentation using sugar crops as a feedstock. However, food waste (FW) was found to be one [...] Read more.
Ethanol is a material that has a high demand from different industries such as fuel, beverages, and other industrial applications. Commonly, ethanol has been produced from yeast fermentation using sugar crops as a feedstock. However, food waste (FW) was found to be one of the promising resources to produce ethanol because it contained a higher amount of glucose. Generally, column distillation has been used to separate ethanol from the fermentation broth, but this operation is considered an energy-intensive process. On the contrary, membrane distillation is expected to be more practical and cost-effective because of its lower energy requirement. Therefore, this study aims to make a comparison of economic performance on FW fermentation with membrane distillation and a conventional distillation system using techno-economy analysis (TEA) method. A commercial-scale FW fermentation plant was modeled using SuperPro Designer V9.0 Modeling. Discounted cash flow analysis was employed to determine ethanol minimum selling price (MSP) for both distillation systems at 10% of the internal rate of return. Results from this analysis showed that membrane distillation has a higher MSP than a conventional process, $6.24 and $2.41 per gallon ($1.65 and $0.64 per liter) respectively. Hence, this study found that membrane distillation is not economical to be implemented in commercial-scale ethanol production. Full article
(This article belongs to the Special Issue Biomass Conversion)
Show Figures

Figure 1

11 pages, 4560 KiB  
Article
Changes in Epithelial and Stromal Corneal Stiffness Occur with Age and Obesity
by Peiluo Xu, Anne Londregan, Celeste Rich and Vickery Trinkaus-Randall
Bioengineering 2020, 7(1), 14; https://doi.org/10.3390/bioengineering7010014 - 07 Feb 2020
Cited by 10 | Viewed by 5242
Abstract
The cornea is avascular, which makes it an excellent model to study matrix protein expression and tissue stiffness. The corneal epithelium adheres to the basement zone and the underlying stroma is composed of keratocytes and an extensive matrix of collagen and proteoglycans. Our [...] Read more.
The cornea is avascular, which makes it an excellent model to study matrix protein expression and tissue stiffness. The corneal epithelium adheres to the basement zone and the underlying stroma is composed of keratocytes and an extensive matrix of collagen and proteoglycans. Our goal was to examine changes in corneas of 8- and 15-week mice and compare them to 15-week pre-Type 2 diabetic obese mouse. Nanoindentation was performed on corneal epithelium in situ and then the epithelium was abraded, and the procedure repeated on the basement membrane and stroma. Confocal imaging was performed to examine the localization of proteins. Stiffness was found to be age and obesity dependent. Young’s modulus was greater in the epithelium from 15-week mice compared to 8-week mice. At 15 weeks, the epithelium of the control was significantly greater than that of the obese mice. There was a difference in the localization of Crb3 and PKCζ in the apical epithelium and a lack of lamellipodial extensions in the obese mouse. In the pre-Type 2 diabetic obese mouse there was a difference in the stiffness slope and after injury localization of fibronectin was negligible. These indicate that age and environmental changes incurred by diet alter the integrity of the tissue with age rendering it stiffer. The corneas from the pre-Type 2 diabetic obese mice were significantly softer and this may be a result of changes both in proteins on the apical surface indicating a lack of integrity and a decrease in fibronectin. Full article
(This article belongs to the Special Issue Bioengineering and the Eye)
Show Figures

Figure 1

13 pages, 1776 KiB  
Article
Co-Networks Poly(hydroxyalkanoates)-Terpenes to Enhance Antibacterial Properties
by Tina Modjinou, Davy Louis Versace, Samir Abbad Andaloussi, Valérie Langlois and Estelle Renard
Bioengineering 2020, 7(1), 13; https://doi.org/10.3390/bioengineering7010013 - 21 Jan 2020
Cited by 8 | Viewed by 4481
Abstract
Biocompatible and biodegradable bacterial polyesters, poly(hydroxyalkanoates) (PHAs), were combined with linalool, a well-known monoterpene, extracted from spice plants to design novel antibacterial materials. Their chemical association by a photo-induced thiol-ene reaction provided materials having both high mechanical resistance and flexibility. The influence of [...] Read more.
Biocompatible and biodegradable bacterial polyesters, poly(hydroxyalkanoates) (PHAs), were combined with linalool, a well-known monoterpene, extracted from spice plants to design novel antibacterial materials. Their chemical association by a photo-induced thiol-ene reaction provided materials having both high mechanical resistance and flexibility. The influence of the nature of the crosslinking agent and the weight ratio of linalool on the thermo-mechanical performances were carefully evaluated. The elongation at break increases from 7% for the native PHA to 40% for PHA–linalool co-networks using a tetrafunctional cross-linking agent. The materials highlighted tremendous anti-adherence properties against Escherichia coli and Staphylococcus aureus by increasing linalool ratios. A significant decrease in antibacterial adhesion of 63% and 82% was observed for E. coli and S. aureus, respectively. Full article
Show Figures

Figure 1

19 pages, 5833 KiB  
Article
Comparison of the Anabolic Effects of Reported Osteogenic Compounds on Human Mesenchymal Progenitor-Derived Osteoblasts
by Robert Owen, Hossein Bahmaee, Frederik Claeyssens and Gwendolen C. Reilly
Bioengineering 2020, 7(1), 12; https://doi.org/10.3390/bioengineering7010012 - 21 Jan 2020
Cited by 10 | Viewed by 5497
Abstract
There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound’s action outside its original study and compare efficacy between compounds. Here, we investigated [...] Read more.
There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound’s action outside its original study and compare efficacy between compounds. Here, we investigated five compounds frequently reported as anabolic for osteoblasts (17β-estradiol (oestrogen), icariin, lactoferrin, lithium chloride, and menaquinone-4 (MK-4)) on human mesenchymal progenitors to assess their potential for bone tissue engineering with the aim of identifying a potential alternative to expensive recombinant growth factors such as bone morphogenetic protein 2 (BMP-2). Experiments were performed using the same culture conditions to allow direct comparison. The concentrations of compounds spanned two orders of magnitude to encompass the reported efficacious range and were applied continuously for 22 days. The effects on the proliferation (resazurin reduction and DNA quantification), osteogenic differentiation (alkaline phosphatase (ALP) activity), and mineralised matrix deposition (calcium and collagen quantification) were assessed. Of these compounds, only 10 µM MK-4 stimulated a significant anabolic response with 50% greater calcium deposition. Oestrogen and icariin had no significant effects, with the exception of 1 µM icariin, which increased the metabolic activity on days 8 and 22. 1000 µg/mL of lactoferrin and 10 mM lithium chloride both significantly reduced the mineralised matrix deposition in comparison to the vehicle control, despite the ALP activity being higher in lithium chloride-treated cells at day 15. This demonstrates that MK-4 is the most powerful stimulant of bone formation in hES-MPs of the compounds investigated, highlighting its potential in bone tissue engineering as a method of promoting bone formation, as well as its prospective use as an osteoporosis treatment. Full article
(This article belongs to the Special Issue Assessments and Advances in Bone Regeneration, Therapies and Healing)
Show Figures

Figure 1

4 pages, 221 KiB  
Editorial
Acknowledgment to Reviewers of Bioengineering in 2019
by Bioengineering Editorial Office
Bioengineering 2020, 7(1), 11; https://doi.org/10.3390/bioengineering7010011 - 16 Jan 2020
Viewed by 4223
17 pages, 6080 KiB  
Article
Strontium- and Zinc-Containing Bioactive Glass and Alginates Scaffolds
by Asfia Haider, Ahmad Waseem, Natalia Karpukhina and Sahar Mohsin
Bioengineering 2020, 7(1), 10; https://doi.org/10.3390/bioengineering7010010 - 13 Jan 2020
Cited by 23 | Viewed by 6423
Abstract
With an increasingly elderly population, there is a proportionate increase in bone injuries requiring hospitalization. Clinicians are increasingly adopting tissue-engineering methods for treatment due to limitations in the use of autogenous and autologous grafts. The aim of this study was to synthesize a [...] Read more.
With an increasingly elderly population, there is a proportionate increase in bone injuries requiring hospitalization. Clinicians are increasingly adopting tissue-engineering methods for treatment due to limitations in the use of autogenous and autologous grafts. The aim of this study was to synthesize a novel, bioactive, porous, mechanically stable bone graft substitute/scaffold. Strontium- and zinc-containing bioactive glasses were synthesized and used with varying amounts of alginate to form scaffolds. Differential scanning calorimetric analysis (DSC), FTIR, XRD, and NMR techniques were used for the characterization of scaffolds. SEM confirmed the adequate porous structure of the scaffolds required for osteoconductivity. The incorporation of the bioactive glass with alginate has improved the compressive strength of the scaffolds. The bioactivity of the scaffolds was demonstrated by an increase in the pH of the medium after the immersion of the scaffolds in a Tris/HCl buffer and by the formation of orthophosphate precipitate on scaffolds. The scaffolds were able to release calcium, strontium and zinc ions in the Tris/HCl buffer, which would have a positive impact on osteogenesis if tested in vivo. Full article
(This article belongs to the Special Issue Biomaterials for Bone Tissue Engineering)
Show Figures

Figure 1

13 pages, 2615 KiB  
Article
S-Nitroso-N-Acetyl-D-Penicillamine Modified Hyperbranched Polyamidoamine for High-Capacity Nitric Oxide Storage and Release
by Sean P. Hopkins and Megan C. Frost
Bioengineering 2020, 7(1), 9; https://doi.org/10.3390/bioengineering7010009 - 10 Jan 2020
Cited by 7 | Viewed by 4909
Abstract
Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects when incorporated into biomedical materials. When released in the correct dosage, NO has been shown to increase the biocompatibility of blood and tissue contacting materials, but materials are often limited [...] Read more.
Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects when incorporated into biomedical materials. When released in the correct dosage, NO has been shown to increase the biocompatibility of blood and tissue contacting materials, but materials are often limited in the amount of NO that can be administered over a period of time. To address this, hyperbranched polyamidoamine (HPAMAM) was modified with the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine, and nitrosated to form a controlled, high-capacity NO-donating compound (SNAP-HPAMAM). This compound has the potential of modifying polymers to release NO over long periods of time by being blended into a variety of base polymers. Nitric oxide release was triggered by photoinitiation and through passive ion-mediated release seen under physiological conditions. A material that delivers the beneficial dose of NO over a long period of time would be able to greatly increase the biocompatibility of long-term implantable devices. Structural analysis of a generation 2 HPAMAM molecule was done through Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance spectroscopy (NMR), and matrix assisted laser desorption ionization, time of flight (MALDI-TOF) mass spectrometry. The NO capacity of the finalized generation 2 SNAP-HPAMAM compound was approximately 1.90 ± 0.116 µmol NO/mg. Quantification of the functional groups in the compound proved that an average of 6.40 ± 0.309 reactive primary amine sites were present compared to the 8 reactive sites on a perfectly synthesized generation 2 dendrimer. There is a substantial advantage of using the hyper-branched HPAMAM over purified dendrimers in terms of reduced labor and expense while still providing a high-capacity NO donor that can be blended into different polymer matrices. Full article
Show Figures

Figure 1

12 pages, 1122 KiB  
Article
The Effects of Lactose Induction on a Plasmid-Free E. coli T7 Expression System
by Johanna Hausjell, Regina Kutscha, Jeannine D. Gesson, Daniela Reinisch and Oliver Spadiut
Bioengineering 2020, 7(1), 8; https://doi.org/10.3390/bioengineering7010008 - 06 Jan 2020
Cited by 13 | Viewed by 6258
Abstract
Recombinant production of pharmaceutical proteins like antigen binding fragments (Fabs) in the commonly-used production host Escherichia coli presents several challenges. The predominantly-used plasmid-based expression systems exhibit the drawback of either excessive plasmid amplification or plasmid loss over prolonged cultivations. To improve production, efforts [...] Read more.
Recombinant production of pharmaceutical proteins like antigen binding fragments (Fabs) in the commonly-used production host Escherichia coli presents several challenges. The predominantly-used plasmid-based expression systems exhibit the drawback of either excessive plasmid amplification or plasmid loss over prolonged cultivations. To improve production, efforts are made to establish plasmid-free expression, ensuring more stable process conditions. Another strategy to stabilize production processes is lactose induction, leading to increased soluble product formation and cell fitness, as shown in several studies performed with plasmid-based expression systems. Within this study we wanted to investigate lactose induction for a strain with a genome-integrated gene of interest for the first time. We found unusually high specific lactose uptake rates, which we could attribute to the low levels of lac-repressor protein that is usually encoded not only on the genome but additionally on pET plasmids. We further show that these unusually high lactose uptake rates are toxic to the cells, leading to increased cell leakiness and lysis. Finally, we demonstrate that in contrast to plasmid-based T7 expression systems, IPTG induction is beneficial for genome-integrated T7 expression systems concerning cell fitness and productivity. Full article
Show Figures

Figure 1

14 pages, 3989 KiB  
Article
Current Practice in Preoperative Virtual and Physical Simulation in Neurosurgery
by Elisa Mussi, Federico Mussa, Chiara Santarelli, Mirko Scagnet, Francesca Uccheddu, Rocco Furferi, Yary Volpe and Lorenzo Genitori
Bioengineering 2020, 7(1), 7; https://doi.org/10.3390/bioengineering7010007 - 03 Jan 2020
Cited by 19 | Viewed by 7363
Abstract
In brain tumor surgery, an appropriate and careful surgical planning process is crucial for surgeons and can determine the success or failure of the surgery. A deep comprehension of spatial relationships between tumor borders and surrounding healthy tissues enables accurate surgical planning that [...] Read more.
In brain tumor surgery, an appropriate and careful surgical planning process is crucial for surgeons and can determine the success or failure of the surgery. A deep comprehension of spatial relationships between tumor borders and surrounding healthy tissues enables accurate surgical planning that leads to the identification of the optimal and patient-specific surgical strategy. A physical replica of the region of interest is a valuable aid for preoperative planning and simulation, allowing the physician to directly handle the patient’s anatomy and easily study the volumes involved in the surgery. In the literature, different anatomical models, produced with 3D technologies, are reported and several methodologies were proposed. Many of them share the idea that the employment of 3D printing technologies to produce anatomical models can be introduced into standard clinical practice since 3D printing is now considered to be a mature technology. Therefore, the main aim of the paper is to take into account the literature best practices and to describe the current workflow and methodology used to standardize the pre-operative virtual and physical simulation in neurosurgery. The main aim is also to introduce these practices and standards to neurosurgeons and clinical engineers interested in learning and implementing cost-effective in-house preoperative surgical planning processes. To assess the validity of the proposed scheme, four clinical cases of preoperative planning of brain cancer surgery are reported and discussed. Our preliminary results showed that the proposed methodology can be applied effectively in the neurosurgical clinical practice both in terms of affordability and in terms of simulation realism and efficacy. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence and Machine Learning for BCI/BMI)
Show Figures

Figure 1

13 pages, 1323 KiB  
Article
The Influence of Pressure-Swing Conditioning Pre-Treatment of Cattle Manure on Methane Production
by Britt Schumacher, Timo Zerback, Harald Wedwitschka, Sören Weinrich, Josephine Hofmann and Michael Nelles
Bioengineering 2020, 7(1), 6; https://doi.org/10.3390/bioengineering7010006 - 30 Dec 2019
Cited by 2 | Viewed by 5198
Abstract
Cattle manure is an agricultural residue, which could be used as source to produce methane in order to substitute fossil fuels. Nevertheless, in practice the handling of this slowly degradable substrate during anaerobic digestion is challenging. In this study, the influence of the [...] Read more.
Cattle manure is an agricultural residue, which could be used as source to produce methane in order to substitute fossil fuels. Nevertheless, in practice the handling of this slowly degradable substrate during anaerobic digestion is challenging. In this study, the influence of the pre-treatment of cattle manure with pressure-swing conditioning (PSC) on the methane production was investigated. Six variants of PSC (combinations of duration 5 min, 30 min, 60 min and temperature 160 °C, 190 °C) were examined with regards to methane yield in batch tests. PSC of cattle manure showed a significant increase up to 109% in the methane yield compared to the untreated sample. Kinetic calculations proved also an enhancement of the degradation speed. One PSC-variant (190 °C/30 min) and untreated cattle manure were chosen for comparative fermentation tests in continuously stirred tank reactors (CSTR) in lab-scale with duplicates. In the continuous test a biogas production of 428 mL/g volatile solids (VS) (54.2% methane) for untreated manure was observed and of 456 mL/g VS (53.7% methane) for PSC-cattle-manure (190 °C/30 min). Significant tests were conducted for methane yields of all fermentation tests. Furthermore, other parameters such as furfural were investigated and discussed. Full article
(This article belongs to the Special Issue Current Advances in Anaerobic Digestion Technology)
Show Figures

Figure 1

18 pages, 3176 KiB  
Article
Antioxidant and Antibacterial Peptides from Soybean Milk through Enzymatic- and Membrane-Based Technologies
by Arijit Nath, Geremew Geidare Kailo, Zsuzsanna Mednyánszky, Gabriella Kiskó, Barbara Csehi, Klára Pásztorné-Huszár, Renáta Gerencsér-Berta, Ildikó Galambos, Emília Pozsgai, Szilvia Bánvölgyi and Gyula Vatai
Bioengineering 2020, 7(1), 5; https://doi.org/10.3390/bioengineering7010005 - 28 Dec 2019
Cited by 19 | Viewed by 7518
Abstract
Enzymatic hydrolysis of soybean milk proteins with cysteine protease papain was performed in an advanced bioreactor, operated with batch mode. In soybean milk protein hydrolysis reaction, enzyme and substrate ratio and reaction temperature were varied, ranging from 0.029:100–0.457:100 and 30–60 °C, respectively. The [...] Read more.
Enzymatic hydrolysis of soybean milk proteins with cysteine protease papain was performed in an advanced bioreactor, operated with batch mode. In soybean milk protein hydrolysis reaction, enzyme and substrate ratio and reaction temperature were varied, ranging from 0.029:100–0.457:100 and 30–60 °C, respectively. The degree of hydrolysis of soybean milk proteins was increased with increase of enzyme and substrate (soybean milk protein) ratio. However, the degree of hydrolysis was increased due to change of reaction temperature from 30 °C to 60 °C with enzyme and substrate ratio 0.229:100 and was reduced when hydrolysis reaction was performed with enzyme and substrate ratio 0.11:100 at hydrolysis temperature 60 °C. Antioxidant capacity of enzyme-treated milk had a similar trend with degree of hydrolysis. In a later exercise, a membrane bioreactor was adopted for continuous production of antioxidant and antibacterial peptides from soybean milk. The membrane bioreactor was operated for 12 h with constant feeding. Ceramic-made tubular membrane with a pore size 20 nm was used. Application of static turbulence promoter in a membrane separation process was investigated and its positive effects, with respect to higher permeate flux and lower energy consumption in filtration process, were proven. Antioxidant capacity and antibacterial activity against Bacillus cereus of enzyme-hydrolyzed milk and permeate from membrane were confirmed. Full article
Show Figures

Figure 1

8 pages, 831 KiB  
Article
Stromal Collagen Arrangement Correlates with Stiffness of the Canine Cornea
by Brian C. Leonard, Krista Cosert, Moritz Winkler, Ariana Marangakis, Sara M. Thomasy, Christopher J. Murphy, James V. Jester and Vijay Krishna Raghunathan
Bioengineering 2020, 7(1), 4; https://doi.org/10.3390/bioengineering7010004 - 25 Dec 2019
Cited by 11 | Viewed by 6394
Abstract
The cornea is the most external layer of the eye and serves two important roles in (1) the refraction of light and (2) protection from the outside environment, both of which are highly dependent on the collagen assembly of the corneal stroma. This [...] Read more.
The cornea is the most external layer of the eye and serves two important roles in (1) the refraction of light and (2) protection from the outside environment, both of which are highly dependent on the collagen assembly of the corneal stroma. This study sought to determine the collagen fiber arrangement of the canine corneal stroma and correlate the stromal organization with tissue stiffness in the anterior and posterior cornea. Collagen organization of the canine cornea was visualized through second-harmonic generation (SHG) imaging, and tissue stiffness of the anterior and posterior corneal stroma was determined by atomic force microscopy. Analysis of the canine anterior corneal stroma using SHG imaging documented intertwining of the collagen fibers with a high degree of fiber branching, with a more lamellar and non-branching posterior stroma. The anterior stroma had significantly higher tissue stiffness in both dogs and humans, when compared with the posterior corneal stroma (canine median: 1.3 kPa vs. 0.3 kPa; human median: 14.6 kPa vs. 2.1 kPa, respectively). There was a direct correlation between corneal collagen stromal organization and tissue stiffness in the dog, which was consistent with other mammalian species previously examined and likely reflects the need for maintenance of rigidity and corneal curvature. Full article
(This article belongs to the Special Issue Bioengineering and the Eye)
Show Figures

Figure 1

19 pages, 1616 KiB  
Article
Inoculum Source Determines Acetate and Lactate Production during Anaerobic Digestion of Sewage Sludge and Food Waste
by Jan Moestedt, Maria Westerholm, Simon Isaksson and Anna Schnürer
Bioengineering 2020, 7(1), 3; https://doi.org/10.3390/bioengineering7010003 - 23 Dec 2019
Cited by 33 | Viewed by 7339
Abstract
Acetate production from food waste or sewage sludge was evaluated in four semi-continuous anaerobic digestion processes. To examine the importance of inoculum and substrate for acid production, two different inoculum sources (a wastewater treatment plant (WWTP) and a co-digestion plant treating food and [...] Read more.
Acetate production from food waste or sewage sludge was evaluated in four semi-continuous anaerobic digestion processes. To examine the importance of inoculum and substrate for acid production, two different inoculum sources (a wastewater treatment plant (WWTP) and a co-digestion plant treating food and industry waste) and two common substrates (sewage sludge and food waste) were used in process operations. The processes were evaluated with regard to the efficiency of hydrolysis, acidogenesis, acetogenesis, and methanogenesis and the microbial community structure was determined. Feeding sewage sludge led to mixed acid fermentation and low total acid yield, whereas feeding food waste resulted in the production of high acetate and lactate yields. Inoculum from WWTP with sewage sludge substrate resulted in maintained methane production, despite a low hydraulic retention time. For food waste, the process using inoculum from WWTP produced high levels of lactate (30 g/L) and acetate (10 g/L), while the process initiated with inoculum from the co-digestion plant had higher acetate (25 g/L) and lower lactate (15 g/L) levels. The microbial communities developed during acid production consisted of the major genera Lactobacillus (92–100%) with food waste substrate, and Roseburia (44–45%) and Fastidiosipila (16–36%) with sewage sludge substrate. Use of the outgoing material (hydrolysates) in a biogas production system resulted in a non-significant increase in bio-methane production (+5–20%) compared with direct biogas production from food waste and sewage sludge. Full article
(This article belongs to the Special Issue Current Advances in Anaerobic Digestion Technology)
Show Figures

Graphical abstract

19 pages, 1912 KiB  
Review
Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure
by Wenqiang Liu and Zhijie Wang
Bioengineering 2020, 7(1), 2; https://doi.org/10.3390/bioengineering7010002 - 20 Dec 2019
Cited by 20 | Viewed by 8154
Abstract
Heart failure is the leading cause of death worldwide, and the most common cause of heart failure is ventricular dysfunction. It is well known that the ventricles are anisotropic and viscoelastic tissues and their mechanical properties change in diseased states. The tissue mechanical [...] Read more.
Heart failure is the leading cause of death worldwide, and the most common cause of heart failure is ventricular dysfunction. It is well known that the ventricles are anisotropic and viscoelastic tissues and their mechanical properties change in diseased states. The tissue mechanical behavior is an important determinant of the function of ventricles. The aim of this paper is to review the current understanding of the biomechanics of ventricular tissues as well as the clinical significance. We present the common methods of the mechanical measurement of ventricles, the known ventricular mechanical properties including the viscoelasticity of the tissue, the existing computational models, and the clinical relevance of the ventricular mechanical properties. Lastly, we suggest some future research directions to elucidate the roles of the ventricular biomechanics in the ventricular dysfunction to inspire new therapies for heart failure patients. Full article
(This article belongs to the Special Issue Advances in Biological Tissue Biomechanics)
Show Figures

Figure 1

16 pages, 3880 KiB  
Article
Synergistic Model of Cardiac Function with a Heart Assist Device
by Eun-jin Kim and Massimo Capoccia
Bioengineering 2020, 7(1), 1; https://doi.org/10.3390/bioengineering7010001 - 19 Dec 2019
Cited by 9 | Viewed by 5016
Abstract
The breakdown of cardiac self-organization leads to heart diseases and failure, the number one cause of death worldwide. The left ventricular pressure–volume relation plays a key role in the diagnosis and treatment of heart diseases. Lumped-parameter models combined with pressure–volume loop analysis are [...] Read more.
The breakdown of cardiac self-organization leads to heart diseases and failure, the number one cause of death worldwide. The left ventricular pressure–volume relation plays a key role in the diagnosis and treatment of heart diseases. Lumped-parameter models combined with pressure–volume loop analysis are very effective in simulating clinical scenarios with a view to treatment optimization and outcome prediction. Unfortunately, often invoked in this analysis is the traditional, time-varying elastance concept, in which the ratio of the ventricular pressure to its volume is prescribed by a periodic function of time, instead of being calculated consistently according to the change in feedback mechanisms (e.g., the lack or breakdown of self-organization) in heart diseases. Therefore, the application of the time-varying elastance for the analysis of left ventricular assist device (LVAD)–heart interactions has been questioned. We propose a paradigm shift from the time-varying elastance concept to a synergistic model of cardiac function by integrating the mechanical, electric, and chemical activity on microscale sarcomere and macroscale heart levels and investigating the effect of an axial rotary pump on a failing heart. We show that our synergistic model works better than the time-varying elastance model in reproducing LVAD–heart interactions with sufficient accuracy to describe the left ventricular pressure–volume relation. Full article
(This article belongs to the Special Issue Implantable Medical Devices)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop