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Abstract: The rupture potential of intracranial aneurysms is an important medical question for
physicians. While most intracranial (brain) aneurysms are asymptomatic, the quantification of
rupture potential of both symptomatic and asymptomatic lesions is an active area of research.
Furthermore, an intracranial aneurysm constrained by an optic nerve tissue might be a scenario for a
physician to deal with during the treatment process. In this work, we developed a computational
model of an idealized intracranial saccular aneurysm constrained by a rigid nerve tissue to investigate
the impact of constrained nerve tissues on the dynamics of aneurysms. A comparative parametric
study for constraints of varying length on aneurysm surface was considered. Our computational
results demonstrated the impact of contact constraints on the level of stress near the fundus and
provided insight on when these constraints can be protective and when they can be destructive. The
results show that lesions with long contact constraints generated higher stress (0.116 MPa), whereas
lesions without constraints generated less stress (0.1 MPa) at the fundus, which indicated that lesions
with nerve constraints can be protective and less likely to rupture than the lesions without constraints.
Moreover, lesions with point load on the fundus generated the highest stress (18.15 MPa) and, hence,
they can be destructive.

Keywords: intracranial aneurysms; rupture potential; nerve tissues; contact constraints; finite
element analysis

1. Introduction

Intracranial aneurysms are common phenomena in cerebral vasculature and defined as the
localized dilatations of the arterial wall that mostly happen at or near bifurcations in the circle of
Willis [1–6]. One of the most serious complications of intracranial aneurysms is a rupture, which results
in subarachnoid hemorrhage, a disastrous occurrence in the brain with a high mortality rate of 25% to
50%. Among different types of intracranial aneurysms (such as saccular, fusiform, dissecting, mycotic),
the most common type is saccular intracranial aneurysm [7]. The rupture risk of aneurysms depends
on factors such as the size of the aneurysm [8], hemodynamic characteristics on the development of the
aneurysm [9] and the fluid-structure interaction on the initiation, and progression of the aneurysm [10].
Although most intracranial saccular aneurysms are asymptomatic before rupture, some unruptured
lesions do present symptoms when pressed against adjacent structures, such as nerve tissues [11]. An
important question to be investigated is whether the rupture potential of symptomatic lesions (lesions
constrained with nerve tissues) is different than that of the asymptomatic lesions (lesions without
constraint) [12]. An appropriate interaction modeling is required to predict the protective or destructive
role of the nerve tissue on the aneurysm. One way to model the interaction is by considering the nerve
tissues as rigid contact constraints on the deformation of the aneurysm. The main purpose of this study
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was to build on earlier work [13,14] and test the hypothesis that a subclass of stiff contact constraints on
an idealized axisymmetric intracranial saccular aneurysm can have a protective role on the aneurysm.

2. Materials and Methods

The modeling of biological soft tissues, especially the mechanics of arterial walls, can be performed
by the knowledge of continuum mechanics [15]. The idea of a constitutive model is important in
wall mechanics to understand the mechanical responses on the arteries since those arteries are
hyperelastic [16,17]. In this work, a simple idealized axisymmetric intracranial saccular aneurysm
was modeled mechanically as a nonlinear hyperelastic membrane. As the most important property of
hyperelastic materials is their highly nonlinear stress-strain behavior under loads, their elastic properties
were different in different directions on the microstructure. Different types of constitutive modeling
exist in literature to understand the mechanical response and behavior of the arterial wall [18–20].
Those modelings were adopted based on phenomenological relations, structure-motivated constitutive
relations, and purely structural relations. The phenomenological models provided specific mathematical
formulations to fit mechanical stress-strain response data. They represented the average properties of
the wall tissue constituents, whereas structural models contributed the tissue microstructure elements.
Exponential relations were the most prevalent among all the formulations to describe tissue response
with the experimental stress-strain response. Since the modeling performed in this work was based on
the phenomenological response parameters (uniaxial experimental data) of the arterial wall, a most
widely used exponential Fung stress-strain relation was considered. Although the arterial wall in this
work is modeled as membrane, the contribution of the tissue microstructure (elastin, collagen, and
smooth muscle cell) elements due to the phenomenological nature of the Fung exponential model was
considered as average properties of the wall tissue constituents [21]. The parameters used in this model
were not directly related to the wall tissue microstructure and cannot be interpreted physically. Since
the arterial membrane wall was responsive to the phenomenological nature of blood pressure load, the
structural behavior of the tissue microstructure due to the blood cells was neglected in this work.

The constitutive models present in two distinct formulations (strain-based and invariant-based)
illustrated the mechanical responses of an anisotropic hyperelastic material [22]. The elastic response
of an anisotropic hyperelastic material can be described by the governing equations of strain energy
function W. In strain-based anisotropic hyperelastic modeling, the strain energy function was expressed
as the components of Green strain tensors. A generalized Fung pseudostrain energy function w was
used to describe the stress-strain relation of the aneurysm [23].

In this work, we considered the following computational model for studying the dynamics of
an intracranial aneurysm that was constrained by a contact. Figure 1 shows a section of an idealized
axisymmetric intracranial saccular aneurysm model along with a long rigid contact constraint.
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Figure 1. (a) An idealized axisymmetric intracranial saccular aneurysm model; (b) long rigid
contact constraint.
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Governing equations are as follows:
Conservation of mass:

J =
ρ0

ρ
, (1)

where J = detF is the local volume ratio in the deformed state, F is the deformation gradient and ρ, ρ0

are the mass densities of current and referential configurations respectively.
Conservation of momentum (pointwise):

∂ti j

∂xi
+ ρb j = ρa j, (2)

where b j are the components of body force, a j are the components of acceleration field and ti j is the
Cauchy stress tensor.

Cauchy stress:

t = −pI +
2
J

F·
∂W
∂C
·FT, (3)

where p is a Lagrange multiplier and ∂W
∂C is the second Piola-Kirchoff stress tensor.

Fung strain energy function can be written as:

W =
1
2

c
(
eQ
− 1
)
+

1
D

(1
2

(
J2
− 1
)
− lnJ

)
, (4)

where c and D are the material parameters with units of force per length.

Q = c1111E11
2 + c2222E22

2 + c3333E33
2 + 2c1122E11E22 + 2c1133E11E33 + 2c2233E22E33+

c1212
(
E12

2 + E21
2
)
+ c1313

(
E13

2 + E31
2
)
+ c2323

(
E23

2 + E32
2
)

,
(5)

where Ei j. are the components of Green Lagrange strain tensors and ci jkl. are the material parameters.
The components of Green Lagrange strain tensors Ei j can be written as

Ei j =
1
2

(
FT
·F− I

)
, (6)

where I is the second order identity tensor.
A linear multipoint constraint requires

A1uP
i + A2uQ

j + . . .ANuR
k = 0, (7)

where uP
i is a nodal variable at node P, degree of freedom i, AN are the coefficients that define the

relative motion of the nodes.
In our work, the computational domain is partitioned into the subdomains 1–6, as shown in

Figure 2. Then the boundary conditions are applied on the subdomains as shown below.

Bioengineering 2019, 6, x FOR PEER REVIEW 3 of 11 

Governing equations are as follows: 
Conservation of mass: 𝐽 𝜌𝜌 , (1) 

where � ���� is the local volume ratio in the deformed state, F is the deformation gradient and 
�, �0 are the mass densities of current and referential configurations respectively. 

Conservation of momentum (pointwise):  𝜌𝑏 𝜌𝑎 , (2) 

where 𝑏  are the components of body force, 𝑎  are the components of acceleration field and 𝑡  is 
the Cauchy stress tensor. 

Cauchy stress: 𝑡 𝑝𝐼 2𝐽 𝐹 𝜕𝑊𝜕𝐶 𝐹 , (3) 

where p is a Lagrange multiplier and  is the second Piola-Kirchoff stress tensor. 
Fung strain energy function can be written as: 𝑊 𝑐 𝑒 1 𝐽 1 𝑙𝑛𝐽   , (4) 

where c and D are the material parameters with units of force per length. 𝑄 𝑐 𝐸 𝑐 𝐸  𝑐 𝐸 2𝑐 𝐸 𝐸  2𝑐 𝐸 𝐸  2𝑐 𝐸 𝐸𝑐 𝐸  𝐸  𝑐 𝐸  𝐸  𝑐 𝐸  𝐸   , (5) 

where 𝐸  are the components of Green Lagrange strain tensors and 𝑐  are the material 
parameters. 

The components of Green Lagrange strain tensors 𝐸  can be written as 𝐸 12 𝐹 𝐹 𝐼  , (6) 

where I is the second order identity tensor. 
A linear multipoint constraint requires 𝐴 𝑢 𝐴 𝑢 ⋯ 𝐴 𝑢 0, (7) 

where 𝑢  is a nodal variable at node P, degree of freedom i, 𝐴  are the coefficients that define the 
relative motion of the nodes. 

In our work, the computational domain is partitioned into the subdomains 1–6, as shown in 
Figure 2. Then the boundary conditions are applied on the subdomains as shown below.  

 
Figure 2. The computational geometric domain is partitioned into 6 subdomains to apply boundary 
conditions in each of the subdomains. 

Figure 2. The computational geometric domain is partitioned into 6 subdomains to apply boundary
conditions in each of the subdomains.



Bioengineering 2019, 6, 77 4 of 11

Sub-domain 1 : uxx = 0, uxz = 0, uzz = 0,
∂u
∂n

= 0, (8)

Sub-domain 2 : uyy = 0, uzz = 0, uyz = 0,
∂u
∂n

= 0, (9)

Sub-domain 3 : uyy = 0, uzz = 0, uyz = 0,
∂u
∂n

= 0, (10)

Sub-domain 4 : uxx = 0, uxz = 0, uzz = 0,
∂u
∂n

= 0, (11)

Sub-domain 5 : uxx = 0, uxz = 0, uzz = 0,
∂u
∂n

= 0, (12)

Sub-domain 6 : uxx = 0, uyy = 0, uzz = 0 uxy = 0, uyz = 0, uxz = 0,
∂u
∂n

= 0, (13)

In this work, a 3D hyperelastic anisotropic mechanical modeling of an axisymmetric intracranial
saccular aneurysm was performed by using Abaqus FEA simulation software. The finite deformation
modeling between the aneurysm and nerve tissue as rigid contact constraint could be performed in
several ways. One way to perform interaction between a membrane and a rigid constraint was by
including a weak form of contact condition via a penalty method [24]. Another useful approach was
to use the idea of losing a degree of freedom when finite element node comes into contact and stays
within the rigid obstacle. In this approach, as the finite element node was in contact with the constraint,
it satisfied only one of the equilibrium equations along with a constraint equation for the node and
then modifying the boundary conditions to solve the boundary value problem [25].

An idealized axisymmetric intracranial saccular aneurysm (ISA) was created using finite element
software ABAQUS CAE, as shown in Figure 1. The created ISA had an outer radius of 18.75 mm
and inner radius of 15.94 mm. The size of the aneurysm neck was 15 mm. The uniform arterial wall
thickness was assumed as 2.5 mm. The lengths of the aneurysm were 60 mm and 33.75 mm in the
horizontal and perpendicular directions, respectively. Once the geometry was created in ABAQUS
CAE, a mesh was generated on the ISA model. The ISA wall meshed with a hexahedral element type
of an 8-node, linear-brick, hybrid, constant-pressure, reduced-integration, hourglass-control (C3D8RH)
material. The elements chosen for the aneurysm model were shell elements. Mesh creation of the model
was performed and optimized by partitioning the model into different sections. A mesh-independent
study was performed to determine the optimum number of elements. The number of elements was
increased incrementally to compute the peak wall stress, and once the peak wall stress did not increase
by more than 3%, then the optimum mesh size was determined. The element numbers used for the
shell-type aneurysm model were 15,000.

The length of the long contact constraint used in this work was 40 mm, whereas the length of the
short contact constraint was 20 mm. The thickness of both constraints was 0.25 mm. The constraint
or obstacle used in the work was considered as an isotropic elastic material with Young Modulus of
1000 MPa and Poisson’s ratio of 0.3. The element numbers used for the solid obstacle were 10,000.

Table 1 shows material constants (KPa) used in the simulation for the constitutive relation of a
Fung-anisotropic model to calculate strain energy function. The values given below were determined
from the pressure-diameter test, assuming the zero-stress state as the reference. To determine the
material constants, experimental data were used from a previous study on the passive mechanical
properties of common carotid arteries [26]. Then a series of inflation tests were performed on the blood
vessels under different axial stretch ratios. Calculation of material constants was then performed from
the equations that express the external force as functions of strains and material constants. Then a
nonlinear least-squares method was performed to determine the material constants by optimizing the
theoretical and experimental values of external force.
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Table 1. Material constants (KPa) for the constitutive relation of Fung-anisotropic model to calculate
strain energy function.

c1111 c2222 c3333 c1122 c1133 c2233 c1212 c1313 c2323 c D

0.0499 1.0672 0.4775 0.0042 0.0903 0.0585 0 0 0 11.2 0.001

3. Results

It was shown in the simulation results of Figure 3 that the multiaxial Cauchy stresses were
decreased in all the lesions due to the application of short and long constraints at the lesions fundus.
In this work, the neck-to-height ratio was considered greater than 1 for all lesions. The stresses at
a lesion’s fundus or pole with no constraints were comparatively higher than the circumferential
direction since this idealistic lesion geometry had the large radius of curvature. With the application
of a large obstacle on the lesion fundus, the Cauchy stresses were decreased as the obstacle carried
some of the loads from the lesion’s pole during deformation. On the other hand, lesions under short
contact constraints generated slightly less stress in the fundus than the cases where lesions had no
constraints. The deformed stress results shown below were under the uniform distensile pressure
load (P = 120 mmHg) with their corresponding boundary conditions. It was also observed from all
the results that the meridional stresses were higher than the circumferential stresses regardless of
constraints in the analysis. When the lesions were under the application of point load acting on the
fundus, they generated higher stresses in all directions of the lesions and could eventually lead to
rupture of the lesions. Moreover, when the lesions were under the application of long constraints with
an angle of 10◦ from the horizontal axis, they generated slightly higher stresses and were more likely to
rupture than the cases where lesions were under long constraints parallel to the horizontal axis. From
all the simulation results, it was observed that the stresses near the neck of the lesions were maximum.
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Figure 3. Finite element simulations of stresses (Pa) on axisymmetric intracranial saccular aneurysm
for the cases where (a) lesions without constraints; (b) lesions with short contact constraints (20 mm);
(c) lesions with long contact constraints (40 mm); (d) lesions with point load on the fundus; and (e)
lesions with long contact constraints at an angle of 10 degrees from the horizontal axis. The associated
stress results for all lesions were performed under the applied uniform pressure of P = 120 mmHg.

In Figure 4, the displacements from the finite element simulations are shown for lesions with and
without constraints. It was seen that the displacements in all lesions were greater in the circumferential
direction than the meridional direction. With the application of short constraints, the displacements
in lesions in the circumferential direction were increased more than the lesions with no constraints.
There was a decrease in displacement seen at the lesion neck when the long constraint was applied in
the aneurysm pole than in the case where the aneurysm had no constraint. When the lesions were
under the application of point load, they produced higher displacements than other cases and could
eventually have a higher potential to rupture.
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Figure 4. Finite element simulations of displacement (mm) on axisymmetric intracranial saccular
aneurysm for the cases where (a) lesions without constraints; (b) lesions with short contact constraints
(20 mm); (c) lesions with long contact constraints (40 mm); (d) lesions with point load on the fundus; and
(e) lesions with long contact constraints at an angle of 10 degrees from the horizontal axis. The associated
stress results for all lesions were performed under the applied uniform pressure of P = 120 mmHg.

An effect of Cauchy stresses on the dimensionless undeformed arc length is shown in Figure 5.
The ratio of the arc length was introduced with X and R as X ∈ [0, R], where X = 0 corresponds to the
fundus or pole of the lesion and X = R corresponds to the neck of the lesion. From the graph, it was
seen that the stresses on the lesions with short and long constraints were less at the pole and near the
neck than the lesion without constraints. It was also seen that the stresses in the meridional direction
were less than the stresses in the circumferential direction under the contact constraints. Due to the
application of large contact constraints on the lesions, the stresses at the pole and near the neck were
significantly decreased than the cases where the lesions had no constraints. When the lesions with
long contact constraints at an angle of 10◦ with the horizontal axis were applied at the fundus, it was
seen to generate higher stresses in both meridional and circumferential directions than the cases where
long contact constraints were applied in parallel to the horizontal axis on the lesions’ fundus. This
is because the lesions were in slightly imbalanced condition due to the application of long contact
constraints at an angle from the horizontal axis.
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Figure 5. Effect of Cauchy stresses (MPa) with the undeformed arc length (X / R) on the axisymmetric
intracranial saccular aneurysm for the cases where lesions without constraints, lesions with short
constraints, lesions with long constraints, and lesions with long constraints at an angle of 10 degrees
from the horizontal axis. Associated results were shown in both meridional and circumferential
directions as a function of nondimensional undeformed arc length (X / R), where X = 0 corresponds to
the fundus and X = R corresponds to the neck.

With the application of short constraints, the stresses in the lesion pole and neck were higher
compared to the stresses generated in the circumferential direction, whereas long constraints produced
higher stresses in the circumferential direction than the meridional directional of the lesion.

The effect of displacement with the undeformed arc length was shown in Figure 6. As seen in
the figure, the lesions under long constraints had lower displacement near the pole and the neck than
the circumferential direction compared to the cases where lesions were under no constraints. The
lesions under short constraints did not have significant changes in displacement compared to the cases
where lesions had no constraints. On the other hand, lesions with short constraints generated higher
displacements than the lesions with long constraints, except at the lesions’ neck where long constraints
generated higher displacements than the short constraints. It was also seen that the lesions under
long constraints at an angle of 10◦ from the horizontal axis produced higher displacements in both
meridional and circumferential directions than the cases where lesions were under long constraints
parallel to the horizontal axis at the fundus.
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Figure 6. Effect of displacement (mm) with the undeformed arc length (X / R) on the axisymmetric
intracranial saccular aneurysm for the cases where lesions without constraints, lesions with short
constraints, lesions with long constraints, and lesions with long constraints at an angle of 10 degrees
from the horizontal axis. Associated results were shown in both meridional and circumferential
directions as a function of nondimensional undeformed arc length (X / R), where X = 0 corresponds to
the fundus and X = R corresponds to the neck.

4. Discussion

This work presents the quantification of the rupture potential of a subclass of an intracranial
saccular aneurysm (ISA) under contact constraints. The hypothesis of the work: A simple, generalized
axisymmetric subclass of intracranial saccular aneurysm under simple planar rigid contact constraints
might be protective and might prevent the lesions from rupturing. This might be because the simple
axisymmetric lesions under contact constraints generate less stress at the fundus compared to the
lesions with no constraints. This hypothesis only works if we consider wall stress is the main parameter
of aneurysm to be ruptured, neglecting hemodynamic force applied to the aneurysm wall, the condition
of the aneurysm (i.e., size of the aneurysm, shape of the aneurysm), and types of constraints applied to
the aneurysm. The simulation work was performed by a comparative parametric study varying the
length of the constraints on the aneurysm pole. The results suggest that lesions under short and long
contact constraints generate less meridional and circumferential stress compared to the cases where
lesions had no constraints and, hence, the rupture potential of these lesions were lower compared to the
ones that did not have constraints. It should be mentioned here that in our work we considered a special
case of contact constraint on aneurysm fundus which works as a protective wall on the aneurysm. In
this case, the contact constraint works as a balanced constraint which provides a protective effect on
the aneurysm wall. This might not be the case for unbalanced constraint where the contact constraint
is placed on the aneurysm laterally leading to nonuniform stress distributed throughout the aneurysm
wall and eventually could work as a destructive shield for the aneurysm [27].

In addition to vascular mechanical wall stress, hemodynamics force or kinetic energy produced by
the blood through the arteries also plays a key role in aneurysm growth and rupture. Hemodynamics
force inside the arteries can be placed into three different components: (1) Hydrostatic pressure acting
perpendicular to the arterial wall, (2) wall shear stress, the tangential force acting parallel to the axis of
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the flow direction, and (3) tensile hoop stress, the stress in the arterial wall acting in the circumferential
direction due to the resulting pressure inside the arteries [28]. Since the entire fluid or blood flow
characteristics inside the aneurysm were modeled here as uniform constant systolic pressure flow, wall
shear stress is neglected in this work. The forces mostly acting on the aneurysm wall were hydrostatic
pressure force and force due to tensile stress. We hope to address this in a forthcoming paper. The
basic idea would be to include a model for the blood flow that will be described via Navier-Stokes
equations, which will then be coupled to the structural Equation (2). The solution methodology that
we plan to use will include solving for the velocity and pressure using open-source software such as
OpenFOAM and then use that to develop the boundary conditions for the structure equations. These
will solve for the new displacement for each time-step using ABAQUS and the solution will be coupled
back to the Navier-Stokes and we will continue to do this iterative process until convergence. This
iterative approach is an alternative to a monolithic approach where one can solve both the fluid and
structure equations as a whole system [29–31].

It is true that a simple, axisymmetric aneurysm model cannot provide reasonable insights, but
it can provide some answers about the problem overall. Moreover, it would be a good idea to do
further work in this project and include more parameters (i.e., size of the aneurysm, the shape of the
aneurysm, the orientation of constraints to the aneurysm, shape and size of the constraints, flow field
inside the aneurysm, and extravascular fluid domain outside the aneurysm) in the simulation to get
reasonable insights to this problem. Besides this, since every intracranial saccular aneurysm (ISA) is
biomechanically distinct and unique, it is unrealistic to address this hypothesis for the lesion-specific
model. Although this work provides some ideas about a simple, axisymmetric lesion under contact
constraints, it is necessary to go further on this analysis by doing a lesion-specific model. In the analysis,
the interaction between lesions and constraints was assumed frictionless contact since the aneurysms
had extravascular fluid outside, which could serve as a mild lubricant.
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