## **Supplementary Information**

## Dias et al. 2019

| Gene       | <b>Primers (5' &gt; 3')</b>   | bp                                | Tm (ºC) | Amplicon Size |  |
|------------|-------------------------------|-----------------------------------|---------|---------------|--|
| OCT4       | Fwd: GAGAACCGAGTGAGAGGCAACC   | 22                                | 62.9    | 166           |  |
| 0014       | Rev: CATAGTCGCTGCTTGATCGCTTG  | 23                                | 62.4    | 100           |  |
| NANOG      | Fwd: AATACCTCAGCCTCCAGCAGATG  | 23                                | 62.1    | 140           |  |
|            | Rev: TGCGTCACACCATTGCTATTCTTC | 24                                | 61.9    | 149           |  |
| TCT5       | Fwd: CACTGATAGGAACCCTAGAGGC   | 22                                | 61.0    | 106           |  |
| FGF5       | Rev: CAGATGGAAACCGATGCCC      | 19                                | 60.5    | 190           |  |
| DAVC       | Fwd: AGTGCCCGTCCATCTTTGC      | 19                                | 62.6    | 01            |  |
| PAAO       | Rev: CGCTTGGTATGTTATCGTTGGT   | 22                                | 60.7    | 01            |  |
| P75        | Fwd: ATCCTGGCTGCTGTGGTTGT     | 20                                | 62.1    | 158           |  |
|            | Rev: TCCACGGAGATGCCACTGTC     | 20                                | 61.9    |               |  |
| т          | Fwd: CTATTCTGACAACTCACCTGCAT  | 23                                | 60.0    | 140           |  |
| 1          | Rev: ACAGGCTGGGGTACTGACT      | 19                                | 61.9    | 140           |  |
| N 11 X/I 4 | Fwd: TACCCCGACATCCACTTGCG     | 20                                | 62.2    | 110           |  |
| MIALI      | Rev: CCACTCTGACGCCGAGACTT     | 20                                | 61.9    | 110           |  |
| MECD4      | Fwd: CTGAAGGGCAGGCGATGGA      | 19                                | 62.0    | 07            |  |
| MESPI      | Rev: GGGCATCCAGGTCTCCAACA     | 20                                | 61.9    | 03            |  |
|            | Fwd: CCAAGGACCCTAGAGCCGAA     | 20                                | 61.0    | 77            |  |
| INKA2.3    | Rev: GTCCGCCTCTGTCTTCTCCA     | 20                                | 61.3    | 11            |  |
|            | Fwd: CACCTTCACCACCACCTCCC     | 20                                | 62.4    | 207           |  |
| Ρυλι       | Rev: CGTCCGCTTGTTCTCCTCCG     | Rev: CGTCCGCTTGTTCTCCTCCG 20 63.1 |         | 207           |  |
| SOV17      | Fwd: CTCCGGTGTGAATCTCCCC      | 19                                | 59.5    | 04            |  |
| SUX17      | Rev: CACGTCAGGATAGTTGCAGTAAT  | 23                                | 58.6    | 74            |  |
|            | Fwd: ACAACTTTGGTATCGTGGAAGG   |                                   | 60.2    | 101           |  |
| GAPDH      | Rev: GCCATCACGCCACAGTTTC      | 19                                | 61.7    | 101           |  |

Melting temperatures (Tm), amplicon sizes and primer specificity were estimated using Primer Blast.



Figure S1. Cell morphology changes during cocktail exposure.

Condition with CHIR only shows a gradual change in cell morphology over exposure time, typically associated with a more differentiated-like phenotype, different of the morphology observed for controls and cocktails with TGF and/or FGF without CHIR, with more well-defined compact colonies, typically associated with the pluripotent state. Cell death was not increased when compared to controls, FGF only and TGF $\beta$  only at any time point.



Figure S2. Full panel of the quadratic model for the pluripotency scores highlighting a dominant negative contribution of Wnt signaling.

7

Top, TGF $\beta$  and FGF2 contributions to the pluripotency model with CHIR set to zero (A) and to  $6 \mu M$  (B). Middle, FGF2 and CHIR contributions to the pluripotency model with TGF $\beta$  set at zero (C) and at 2 ng/mL (D). Bottom, TGF\beta and CHIR contributions to the pluripotency model with FGF2 set at zero (E) and at 100 ng/mL (F). Overall, model shows a negative contribution of Wnt activation to pluripotency score. An FGF and CHIR synergy is also contributing to lower pluripotency scores.

|              | SS    | df | MS    | F       | p-value                 |
|--------------|-------|----|-------|---------|-------------------------|
| (1) FGF (L)  | 0.005 | 1  | 0.005 | 0.194   | 0.664                   |
| FGF (Q)      | 0.006 | 1  | 0.006 | 0.228   | 0.639                   |
| (2) TGF (L)  | 0.000 | 1  | 0.000 | 0.017   | 0.897                   |
| TGF (Q)      | 0.024 | 1  | 0.024 | 0.890   | 0.357                   |
| (3) CHIR (L) | 6.010 | 1  | 6.010 | 219.264 | 6.9 x 10 <sup>-12</sup> |
| CHIR (Q)     | 2.262 | 1  | 2.262 | 82.545  | 2.4 x 10 <sup>-08</sup> |
| 1L by 2L     | 0.018 | 1  | 0.018 | 0.656   | 0.428                   |
| 1L by 3L     | 0.148 | 1  | 0.148 | 5.402   | 0.031                   |
| 2L by 3L     | 0.017 | 1  | 0.017 | 0.632   | 0.436                   |
| Error        | 0.521 | 19 | 0.027 |         |                         |
| Total SS     | 8.013 | 28 |       |         |                         |

 Table S2. ANOVA Pluripotency score model.

SS (Sum of Squares); df (Degree of Freedom); MS (Mean of Squares); F (Fisher's Statistical test). In bold, statistically significant factors with p-values lower than 0.05.

|              | SS    | df | MS    | F       | p-value                 |
|--------------|-------|----|-------|---------|-------------------------|
| (1) FGF (L)  | 0.174 | 1  | 0.174 | 11.066  | 0.004                   |
| FGF (Q)      | 0.044 | 1  | 0.044 | 2.823   | 0.109                   |
| (2) TGF (L)  | 0.007 | 1  | 0.007 | 0.433   | 0.518                   |
| TGF (Q)      | 0.108 | 1  | 0.108 | 6.880   | 0.017                   |
| (3) CHIR (L) | 3.466 | 1  | 3.466 | 219.985 | 6.7 x 10 <sup>-12</sup> |
| CHIR (Q)     | 1.355 | 1  | 1.355 | 86.031  | 1.7 x 10 <sup>-08</sup> |
| 1L by 2L     | 0.036 | 1  | 0.036 | 2.291   | 0.147                   |
| 1L by 3L     | 0.070 | 1  | 0.070 | 4.425   | 0.049                   |
| 2L by 3L     | 0.001 | 1  | 0.001 | 0.061   | 0.808                   |
| Error        | 0.299 | 19 | 0.016 |         |                         |
| Total SS     | 6.242 | 28 |       |         |                         |

Table S3. ANOVA Ectoderm score model.

SS (Sum of Squares); df (Degree of Freedom); MS (Mean of Squares); F (Fisher's Statistical test). In bold, statistically significant factors with p-values lower than 0.05.



**Figure S3.** Full panel of the quadratic model for the ectoderm scores highlighting a dominant negative contribution of Wnt signaling with FGF signaling also contributing to lower ectoderm scores.

Top, TGF $\beta$  and FGF2 contributions to the ectoderm model with CHIR set to zero (A) and to 6  $\mu$ M (B). Middle, FGF2 and CHIR contributions to the ectoderm model with TGF $\beta$  set at zero (C) and at 2 ng/mL (D). Bottom, TGF $\beta$  and CHIR contributions to the ectoderm model with FGF2 set at zero (E) and at 100 ng/mL (F). Overall, model shows a negative contribution of Wnt activation to ectoderm score. TGF and FGF signaling contributed negatively, while a synergy of CHIR and FGF contributed positively for ectoderm scores.



**Figure S4.** Full panel of the quadratic model for the mesendoderm scores highlighting a strong and dominant contribution of Wnt signaling.

Top, TGF $\beta$  and FGF2 contributions to the mesendoderm model with CHIR set to zero (A) and to 6  $\mu$ M (B). Middle, FGF2 and CHIR contributions to the mesendoderm model with TGF $\beta$  set at zero (C) and at 2 ng/mL (D). Bottom, TGF $\beta$  and CHIR contributions to the mesendoderm model with FGF2 set at zero (E) and at 100 ng/mL (F). Overall, model shows a positive contribution of Wnt activation to mesendoderm score. Model predicts that CHIR 1  $\mu$ M contributes for negative mesendoderm scores.

|              | SS     | df | MS     | F       | p-value                 |
|--------------|--------|----|--------|---------|-------------------------|
| (1) FGF (L)  | 0.025  | 1  | 0.025  | 1.089   | 0.310                   |
| FGF (Q)      | 0.033  | 1  | 0.033  | 1.445   | 0.244                   |
| (2) TGF (L)  | 0.003  | 1  | 0.003  | 0.150   | 0.703                   |
| TGF (Q)      | 0.001  | 1  | 0.001  | 0.023   | 0.881                   |
| (3) CHIR (L) | 11.565 | 1  | 11.565 | 500.279 | 4.1 x 10 <sup>-15</sup> |
| CHIR (Q)     | 2.099  | 1  | 2.099  | 90.812  | 1.1 x 10 <sup>-08</sup> |
| 1L by 2L     | 0.001  | 1  | 0.001  | 0.061   | 0.807                   |
| 1L by 3L     | 0.063  | 1  | 0.063  | 2.711   | 0.116                   |
| 2L by 3L     | 0.032  | 1  | 0.032  | 1.389   | 0.253                   |
| Error        | 0.439  | 19 | 0.023  |         |                         |
| Total SS     | 13.627 | 28 |        |         |                         |

Table S4. ANOVA Mesendoderm score model.

SS (Sum of Squares); df (Degree of Freedom); MS (Mean of Squares); F (Fisher's Statistical test). In bold, statistically significant factors with p-values lower than 0.05

|              | SS     | df | MS     | F       | p-value                 |  |
|--------------|--------|----|--------|---------|-------------------------|--|
| (1) FGF (L)  | 0.025  | 1  | 0.025  | 0.311   | 0.584                   |  |
| FGF (Q)      | 0.034  | 1  | 0.034  | 0.418   | 0.526                   |  |
| (2) TGF (L)  | 0.144  | 1  | 0.144  | 1.787   | 0.197                   |  |
| TGF (Q)      | 0.094  | 1  | 0.094  | 1.166   | 0.294                   |  |
| (3) CHIR (L) | 11.764 | 1  | 11.764 | 145.963 | 2.3 x 10 <sup>-10</sup> |  |
| CHIR (Q)     | 10.879 | 1  | 10.879 | 134.987 | 4.5 x 10 <sup>-10</sup> |  |
| 1L by 2L     | 0.001  | 1  | 0.001  | 0.013   | 0.911                   |  |
| 1L by 3L     | 0.320  | 1  | 0.320  | 3.971   | 0.061                   |  |
| 2L by 3L     | 0.060  | 1  | 0.060  | 0.744   | 0.399                   |  |
| Error        | 1.531  | 19 | 0.081  |         |                         |  |
| Total SS     | 22.548 | 28 |        |         |                         |  |

 Table S5. ANOVA Mesoderm score model.

SS (Sum of Squares); df (Degree of Freedom); MS (Mean of Squares); F (Fisher's Statistical test). In bold, statistically significant factors with p-values lower than 0.05.



**Figure S5.** Full panel of the quadratic model for the mesoderm scores highlighting the contribution of Wnt signaling with higher scores for intermediate CHIR concentrations.

Top, TGF $\beta$  and FGF2 contributions to the Mesoderm model with CHIR set to zero (A) and to 6  $\mu$ M (B). Middle, FGF2 and CHIR contributions to the Mesoderm model with TGF $\beta$  set at zero (C) and at 2 ng/mL (D). Bottom, TGF $\beta$  and CHIR contributions to the endoderm model with FGF2 set at zero (E) and at 100 ng/mL (F). Overall, model shows a positive contribution of Wnt activation to mesoderm scores, with scores reaching their highest value at intermediate levels of activation. When FGF2 and

TGF $\beta$  are full activated, higher concentrations of CHIR were needed to achieve the higher mesoderm score values (B).



**Figure S6.** Full panel of the quadratic model for the endoderm scores highlighted the contribution of Wnt signaling with FGF signaling also positively contributing to higher endoderm scores.

Top, TGF $\beta$  and FGF2 contributions to the endoderm model with CHIR set to zero (A) and to 6  $\mu$ M (B). Middle, FGF2 and CHIR contributions to the endoderm model with TGF $\beta$  set at zero (C) and

at 2 ng/mL (D). Bottom, TGF $\beta$  and CHIR contributions to the endoderm model with FGF2 set at zero (E) and at 100 ng/mL (F). Overall, model shows a positive contribution of Wnt activation to endoderm score, with scores continuously increasing with CHIR concentration. FGF also provided a major contribution to higher endoderm scores.



**Figure S7.** Endoderm Model Score profiles and Standardized Effect Estimate. (A) CHIR endoderm profile shows an increase for all CHIR supplemented conditions in endoderm scores with CHIR concentration. The higher level of CHIR input alone contributed less to the endoderm score when compared to CHIR in combination with FGF or TGF. (B) CHIR quadratic and linear terms positively contributed to the endoderm score, with FGF2 linear term also contributing to higher endoderm scores. Model showed a good fit with a R<sup>2</sup> of 0.93 and a R<sup>2</sup>-Adjusted of 0.90.

|              | SS     | df | MS    | F       | p-value                 |
|--------------|--------|----|-------|---------|-------------------------|
| (1) FGF (L)  | 0.284  | 1  | 0.284 | 7.698   | 0.012                   |
| FGF (Q)      | 0.000  | 1  | 0.000 | 0.001   | 0.977                   |
| (2) TGF (L)  | 0.055  | 1  | 0.055 | 1.487   | 0.238                   |
| TGF (Q)      | 0.009  | 1  | 0.009 | 0.251   | 0.622                   |
| (3) CHIR (L) | 8.044  | 1  | 8.044 | 218.185 | 7.2 x 10 <sup>-12</sup> |
| CHIR (Q)     | 0.425  | 1  | 0.425 | 11.540  | 0.003                   |
| 1L by 2L     | 0.006  | 1  | 0.006 | 0.154   | 0.700                   |
| 1L by 3L     | 0.112  | 1  | 0.112 | 3.030   | 0.098                   |
| 2L by 3L     | 0.000  | 1  | 0.000 | 0.001   | 0.977                   |
| Error        | 0.700  | 19 | 0.037 |         |                         |
| Total SS     | 10.745 | 28 |       |         |                         |
|              |        |    |       |         |                         |

Table S6. ANOVA Endoderm score model.

SS (Sum of Squares); df (Degree of Freedom); MS (Mean of Squares); F (Fisher's Statistical test). In bold, statistically significant factors with p-values lower than 0.05.