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Abstract: Brain cancer is a life-threatening disease requiring close attention. Early and accurate
diagnosis using non-invasive medical imaging is critical for successful treatment and patient survival.
However, manual diagnosis by radiologist experts is time-consuming and has limitations in process-
ing large datasets efficiently. Therefore, efficient systems capable of analyzing vast amounts of medical
data for early tumor detection are urgently needed. Deep learning (DL) with deep convolutional
neural networks (DCNNs) emerges as a promising tool for understanding diseases like brain cancer
through medical imaging modalities, especially MRI, which provides detailed soft tissue contrast
for visualizing tumors and organs. DL techniques have become more and more popular in current
research on brain tumor detection. Unlike traditional machine learning methods requiring manual
feature extraction, DL models are adept at handling complex data like MRIs and excel in classification
tasks, making them well-suited for medical image analysis applications. This study presents a novel
Dual DCNN model that can accurately classify cancerous and non-cancerous MRI samples. Our Dual
DCNN model uses two well-performed DL models, i.e., inceptionV3 and denseNet121. Features are
extracted from these models by appending a global max pooling layer. The extracted features are
then utilized to train the model with the addition of five fully connected layers and finally accurately
classify MRI samples as cancerous or non-cancerous. The fully connected layers are retrained to learn
the extracted features for better accuracy. The technique achieves 99%, 99%, 98%, and 99% of accuracy,
precision, recall, and f1-scores, respectively. Furthermore, this study compares the Dual DCNN’s
performance against various well-known DL models, including DenseNet121, InceptionV3, ResNet
architectures, EfficientNetB2, SqueezeNet, VGG16, AlexNet, and LeNet-5, with different learning
rates. This study indicates that our proposed approach outperforms these established models in
terms of performance.

Keywords: deep learning; magnetic resonance imaging; classification; machine learning; deep
convolutional neural networks; dual DCNN model; inceptionV3; denseNet121; resNet50; resNet34;
resNet18; efficientNetB2; squeezeNet; VGG16; alexNet; leNet-5; learning rates

1. Introduction

Cancer is a serious illness that can spread to other areas of the human body and is
known by uncontrolled cell development. According to statistics from the World Health
Organization (WHO), an estimated 10 million deaths worldwide were reported due to
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cancer by the year 2020 [1]. However, these are estimates and may not fully reflect the actual
incidence due to incomplete reporting systems, especially in underdeveloped countries.
The tumors can be malignant (cancerous), with varying levels of aggressiveness, or benign
(non-cancerous). The brain is the most important organ in humans, overall responsible
for managing the body, and therefore, brain tumors need urgent attention. The incidence
and survival of brain tumors are affected by their type, size, grade, and location, as well as
the age of a patient and overall health condition [2]. To improve patient outcomes, early
diagnosis, and adequate treatment are critical.

Medical imaging is an important tool for visualizing the internal structure of tumors.
It includes magnetic resonance imaging (MRI), positron emission tomography (PET), and
computed tomography (CT). Here, MRI is considered more appropriate than other medical
imaging modalities, as it provides detailed images of soft tissues, organs, and internal
structures without using harmful radiation. It also provides excellent contrast resolution,
allowing for better differentiation between healthy and abnormal tissue. When MRI
examination is required, professionals often use software to manually mark regions of
interest (ROI) which is time-consuming and error-prone and might compromise diagnosis.
It is critical to identify warning signals and seek medical attention as soon as possible
because early treatment can save lives [3]. That is why automatic systems that extract MRI
data have various benefits, including faster diagnosis and effective treatment, improved
accuracy, consistency, cost-effectiveness, and time savings [4]. Automatic systems require
less time and deliver superior performance compared to manual methods because they are
accurate and adept at handling large amounts of medical data.

The emergence of artificial intelligence (AI) presents promising solutions in various
applications [5–8] and especially for automating medical image analysis, thereby achieving
faster and more accurate diagnoses [9]. Similarly, its sub-field, i.e., the DL techniques,
has been widely used in radiology to extract robust features from MRI, PET, and CT
scans. In the past, medical ML techniques have mostly concentrated on high-level or
low-level features that are manually extracted during feature engineering. The low-level
features capture the essential aspects of an image, whereas high-level features provide
semantic information. However, methods that can combine both kinds of features are
automatically becoming useful [10]. In the meanwhile, deep learning techniques like deep
convolutional neural networks (DCNN) are helpful for automatically learning high-level
features including tumor size, location, and surrounding tissue. These low-level and high-
level features must be taken into account for reliable and accurate brain tumor classification.
This study proposes a novel Dual DCNN for accurate brain tumor classification using MRIs.
Our model addresses the challenge of comprehensive feature extraction by learning both
low-level (i.e., texture, intensity) and high-level (i.e., tumor location, size) features directly
from the MRI scans. This combined feature extraction capability allows the Dual DCNN to
achieve high accuracy in classifying cancerous and non-cancerous brain tumors.

Our contributions are discussed in detail in upcoming sections. A brief summary is
as below:

1. Our proposed Dual DCNN model with denseNet121 and inceptionV3 has shown
promising results. We observed significant improvements in various performance
metrics especially the accuracy demonstrating the capability to accurately classify
cancerous and non-cancerous MRI samples.

2. We have implemented SOTA DL models, i.e., denseNet121, inceptionV3, resNet50,
resNet34, resNet18, efficientNetB2, squeezeNet, VGG16, alexNet, leNet-5, and com-
pared results with our methodology. We have highlighted the best performance of
our approach.

3. We have compared the performance of each SOTA DL model with different learning
rates and identified the best learning rate for each model.

4. We compared our approach with the latest research in cancer detection and classifi-
cation and through benchmarking we found our proposed approach outperformed
existing methods.
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2. Related Work

In recent years, researchers have been utilizing DL techniques for the classification of
brain tumors using MRI data. These studies utilize the power of DL algorithms, particu-
larly DCNNs to extract relevant features from MRI scans and classify them into different
tumor types. Scafuto et al. [11] used CNN for the classification and segmentation of MRI
scans to examine glioma diagnosis studies. The authors collected 77 academic articles
and emphasized the requirement of early and accurate detection of tumors for glioma
patients’ survival. Their study aimed to implement a grading system for glioma brain
tumors using DL and MRI. The authors used a dataset of 259 patients with glioma brain
tumors. The researchers used a ConvNet model to divide the tumors into different lev-
els. With an overall accuracy of 91.5%, the results showed that their proposed method
achieved better accuracy for brain tumors caused by gliomas. Additionally, this study
highlighted that their approach performed better as compared to the other methods. They
suggested the integration of multi-modal data for more comprehensive analysis. Similarly,
Fathima et al. [12] provide an overview of the evolution of data science disciplines and
compare pre-processing, ML, and DL methods for brain tumor classification. Their method-
ology involved a review of existing techniques by highlighting the importance of early
detection of brain tumors and early treatment. The authors discussed the advantages
and limitations of different ML and DL techniques for brain tumor classification. They
also compared the performance of different models and algorithms used in the literature.
This study concluded that DL methods, particularly CNNs, have shown better results in
classifying brain tumors. The authors also discussed the limitations of using deep learning
methods, i.e., the need for large datasets for fine-tuning and the interpretability of the
approach. The future direction of their study involves the development DL model with the
integration of multi-modal data for more comprehensive analysis.

Several recent studies have also explored the use of fine-tuned approaches with com-
plex datasets for the detection of brain tumors. Ghosal et al. [13] implemented a CNN-based
SE-ResNet-101 that was fine-tuned for classifying brain tumors into malignant, gliomas, and
pituitary tumors. They applied different pre-processing procedures, such as normalization,
zero-centering, ROI segmentation, and augmentation of data like rotation, scaling, zoom-
ing, etc. Utilizing T1-weighted contrast-enhanced (T1W-CE) MRI data, their SE-ResNet-
101 model obtained an accuracy of 93.83% with data augmentation and 89.93% without
an augmentation approach. A three-step method was suggested by Nawaz et al. [14] which
involved annotating interest regions, utilizing a customized CornerNet to extract deep
features, and using a one-stage detector for tumor classification. Their accuracy on the
T1W-CE MRI dataset was 98.8%. This approach provides an affordable solution because of
the one-stage object identification framework provided by CornerNet.

The potential of hybrid approaches combining ML and DL has also been investigated.
Mohammed et al. [15] offered four suggested systems for the early detection of brain
cancers, each of which combines hybrid learning techniques. The first system uses hybrid
features obtained from grey-level co-occurrence matrix (GLCM), discrete wavelet transform
(DWT), and local binary pattern (LBP) methods to integrate artificial neural network and
feedforward neural network techniques. The second method, a DL approach, achieved
better results in differentiating between different types of brain cancers by using ResNet-
50 and GoogLeNet models for classification. The third system shows the best results in
tumor classification by utilizing a hybrid approach that combines support vector machines
(SVMs) with CNN. The fourth system suggested uses a hybrid technique that combines
DWT, GLCM, and LBP with ResNet-50 and GoogLeNet algorithms to obtain a more
comprehensive analysis of brain tumor images. Similarly, Nassar et al. [16] used a hybrid
deep learning strategy to build an effective automated method for classifying brain cancers.
To take advantage of the combined abilities of numerous models and provide promising
outcomes, the suggested method is based on the output of five distinct models. With an
overall accuracy of 99.31%, their study’s T1-weighted brain MR images achieved superior
results. However, Saha et al. [17] proposed an improved method that uses DL and a
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collection of ML algorithms to categorize types of brain tumors from MRI. The BCM-VEMT
method, which may be classified into four separate classes, i.e., glioma, meningioma,
pituitary, and non-cancerous (normal), is presented in their work. To extract features from
the MRI, a CNN is developed and then input into multi-class machine learning classifiers.
By combining each machine learning classifier, a weighted average ensemble of classifiers is
utilized to improve performance. A total of 3787 MRI images from each of the four classes
composed the dataset used in their study. With an overall accuracy of 98.42%, their system
obtained high precision for each class: 97.90% for glioma, 98.94% for meningioma, 98.00%
for normal, and 98.92% for pituitary. The need to have an image-processing computer-
aided diagnosis system that can accurately classify different forms of brain tumors was
highlighted by this study.

Researchers also used the transfer-learning approach to overcome the data limitation.
Mahmud Badhon et al. [18] work on enhancing the DL transfer-learning technique to in-
crease the accuracy of brain cancer diagnosis. Using a DL pre-trained network, VGG16, this
study assesses individual performance in classifications with various evaluation metrics.
The authors extracted characteristics from the image dataset using the convolutional block
and dense layers of the VGG16 architecture. These features were then sent to machine
learning classifiers, which calculated the final classification result. The research achieved
significant accuracy using the DL-embedded ML technique. Al Rub et al. [19] use the DL
model for the classification of hydrocephalus in brain computed tomography (CT) medical
images. They created a precise and non-invasive method for brain hydrocephalus diagnosis.
A dataset of 500 brain CT scans, split into training and testing sets during experimentation.
The images were divided into groups for hydrocephalus and normal and achieved an
overall accuracy of 96.8%, the results showed that their approach achieved better accuracy
in detecting hydrocephalus in brain CT images. Additionally, this study demonstrated
that the suggested approach performed well as compared to other techniques. A study
by Mehnatkesh et al. [20] focuses on classifying brain cancers in MRI scans using deep
learning algorithms. To save radiologists time by eliminating the need to examine several
images to make an accurate diagnosis, the aim of their work was to create an effective
automated method for classifying brain tumors. A total of 3064 T1w-CE brain MRI scans
were used from 233 patients. To achieve promising results, they proposed a deep residual
learning framework that combines the capabilities of multiple models. With an overall
accuracy of 99.31%, the results demonstrated that their proposed approach showed better
performance in classifying brain cancers in MRI scans.

The remaining part of the article is divided into three sections. Section 3 describes the
details of the methodology used in this study, Section 4 provides a detailed explanation of
results, and Section 5 includes a conclusion with possible future direction.

3. Methodology

DL models with DCNNs are particularly well suited for the extraction of robust
and important features from images which are essential to understanding the complex
structure of MRIs. Our research uses this advantage by employing two well-performed DL
models, i.e., InceptionV3 and DenseNet121. The individual performance of both networks
is explained in the results section of the paper. By merging the feature representations from
both DL models, the fusion technique used in our dual Dual DCNN model combines the
strengths of both models. It captures more varied and informative features by integrating
the feature maps from both networks and training extra fully connected layers, potentially
leading to improved performance when compared to using each network alone. The
overview of our approach is shown in Figure 1, whereas details are provided later in
the subsection.



Bioengineering 2024, 11, 410 5 of 18

Br35H Dataset

Split

Training Validation

Dual DCNN
Model

Accuracy

Recall

F1 - Score

Precision

Confusion
Matrix

R
es

iz
e 

Im
ag

es
 to

 2
29

*2
29

N
or

m
al

iz
at

io
n

In
pu

t

Pr
et

ra
in

ed
In

ce
pt

io
nV

3 
D

L
M

od
el

Pr
et

ra
in

ed
D

en
se

N
et

12
1 

D
L

M
od

el

G
lo

ba
lM

ax
Po

ol
in

g2
D

G
lo

ba
lM

ax
Po

ol
in

g2
D

20
48

 L
og

its
10

24
 L

og
its C
on

ca
tin

at
io

n

FC
1 

(3
07

2)

FC
2 

(5
12

)

FC
3 

(2
56

)

FC
4 

(1
28

)

FC
5 

(6
4)

So
ftm

ax
 L

ay
er C

an
ce

r
N

on
-C

an
ce

r

Ev
al

ua
tio

n 
Pa

ra
m

et
er

s

Preprocessing Features Extraction Fully Connected Layers Classification Layer

Figure 1. A block diagram for the comprehensive overview of our proposed approach to understand
the dual DCNN architecture and workflow.

3.1. Dataset Description

Our experiments utilized a Kaggle dataset, i.e., Br35H [21] comprising a total of
3000 MRI images where 1500 are tumors and 1500 without tumors samples. Each image in
the dataset was 256 × 256 pixels in dimension. The images were labeled as either “yes” for
cancerous and “no” for non-cancerous samples. The training and validation details of both
classes are shown in Table 1. The dataset was split between cancerous and non-cancerous
images. We combined these images and randomly divided them into 80% and 20% for
training and validation, respectively, using splitfolder library which divides the dataset
randomly. We assigned labels as “0” for normal cases and “1” for brain tumors in the
proposed approach and SOTA DL models. Figure 2 shows MRI samples taken from the
dataset, i.e., cancerous and non-cancerous images.

(a) (b)

Figure 2. MRI samples: (a) cancerous, (b) non-cancerous.

Table 1. Dataset split into training and validation and respective class label.

Class Images Train Validation Label

Cancerous 1500 1200 300 1 “Yes”
Non-Cancerous 1500 1200 300 0 “No”

Total 3000 2400 600

3.2. Dual DCNN Model

Our dual DCNN (DDCNN) model integrates features obtained from DenseNet121
and InceptionV3, i.e., two pre-trained DL model architectures. Combining their respec-
tive strengths in feature extraction, the fusion method combines the learned representa-
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tions from both networks. We used the torchvision library to load the InceptionV3 and
DenseNet121 models that have already been trained and perform well in feature extraction,
they are often used for image classification tasks [22–24] for various applications. To benefit
from their pre-trained weights for feature extraction, we froze the parameters of both
InceptionV3 and DenseNet121 during training. This ensures that the pre-trained weights
are not retained by scratch and only the fully connected layers are trained. Next, we add
identity layers to each model in place of the classifier layers. By removing the models’ last
classification layers of each network, we extract features immediately from the convolu-
tional layers. We concatenate the feature maps from the DenseNet121 and InceptionV3
models along the channel dimension in the fusion model. As a result, a combined feature
tensor which includes data from both networks is created. In order to process the resulting
feature tensor, we add fully connected layers to the fusion model after the concatenation
phase. The retrieved features from both networks are combined and refined in these layers.
Lastly, we use an optimization approach (such as the Adam optimizer) and a specified loss
function, i.e., binary-entropy loss to train the fusion model. During training, the system
effectively combines the features from InceptionV3 and DenseNet121 to classify the cancer
and non-cancer MRI samples.

3.2.1. Preprocessing

The image input layer pre-processes the dataset before passing it into the DDCNN
model. It typically involves resizing the images to a uniform size, i.e., 229 × 229 and
normalizing the pixel values to ensure consistency and convergence during training. The
normalization process is described as:

xnorm =
x − µ

σ
(1)

where x represents the pixel value, µ is the mean pixel value across the dataset, and σ is the
standard deviation of the pixel values. It ensures that the pixel values have a zero mean
and unit variance.

3.2.2. Features Extraction

This study uses denseNet121 and inceptionV3 DL models to extract the features.
DenseNet core innovation is its dense connection pattern where all layers are feed-forwardly
coupled to all other layers. A dense connection lowers the number of parameters, promotes
gradient flow throughout the network, and makes feature reuse easier. This extensive con-
nection mitigates the vanishing gradient issue that deep neural networks often encounter
and allows optimal parameter reuse. Additionally, DenseNet architectures can be improved
for feature extractors for a variety of image recognition tasks [25–27] because they have
already been pre-trained on large datasets, i.e., ImageNet. By removing the fully connected
layers and substituting identity functions, the DenseNet121 model is used in the given
study as a feature extractor which turns it into a feature extraction module. Concatenating
the feature maps from all preceding layers serves as the input for each layer, resulting in
the following input tensor size:

(Cl + Cl−1 + . . . + C0, H, W) (2)

where Cl is the number of the current layer’s channel output. H and W are the height and
width of the feature maps.

The second model employed in this approach is InceptionV3, a deep learning architec-
ture renowned for its exceptional capability in various image recognition tasks. It consists
of many layers with different convolutional filters, such as max and average pooling layers,
and convolutions of sizes 1 × 1, 3 × 3, and 5 × 5. To improve the model performance
and adaptability, the architecture also includes batch normalization, dropout, and other
methods. To minimize computational complexity and maintain representational ability,
it utilizes a factorized convolution approach. Similar to DenseNet121, InceptionV3 is a
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feature extractor that has been pre-trained on large datasets like ImageNet. The InceptionV3
model is utilized in this study in a similar way as DenseNet121, i.e., the convolutional
base remains for feature extraction but the fully connected layers are removed. The col-
lected features from DenseNet121 and InceptionV3 are concatenated and sent through
additional fully connected layers for final classification. A more thorough representation of
the input data is made possible by combining features from these two DL models which
enhances the performance on tasks including robust high and low features’ extraction and
accurate classification.

This study also uses GlobalMaxPooling2D. This operation is typically used as a means
of spatial downsampling to reduce the dimensionality while preserving the most salient
(or low-level but important) information. In the DDCNN model, GlobalMaxPooling2D
is set up after the convolutional layers in each DL model, i.e., DenseNet121 and Incep-
tionV3. By choosing the largest activation value from each feature map, this pooling
method successfully highlights the most important characteristics in the input data. The
GlobalMaxPooling2D operation is applied along the spatial dimensions of the feature maps.
Considering an input tensor X with dimensions (C, H, W), where H and W stand for the
feature maps’ height and width, C indicates the number of channels. GlobalMaxPooling2D
operation can be expressed as follows:

GlobalMaxPooling 2D(X) = max(Xc,h,w) for h = 1, . . . , H and w = 1, . . . , W (3)

Here, Xc,h,w is the activation value at channel C and spatial position (h, w). This
operation results in a tensor with dimensions (C, 1, 1).

The utilization of GlobalMaxPooling2D in the DDCNN model contributes to model
efficiency and robustness by reducing the number of parameters and preventing overfitting.
Moreover, this helps achieve translational invariance that strengthens the model’s resistance
to shifts or translations in space in the input data. The difference between the max pooling
and global max pooling is shown in Figure 3 where the maximum value from the whole
region of interest is selected for global pooling in 6 × 6 matrix.

Figure 3. The basic difference between the GlobalMaxPooling and MaxPooling.

3.2.3. Fully Connected Layers

The features extracted by DenseNet121 and InceptionV3 are concatenated along the
channel dimension before being fed into the fully connected layers. Let xdense be the features
that DenseNet121 collected and (N, Cdense, Hdense, Wdense) are dimensions of these features,
similarly, xinception be the features of incpetionV3 and (N, Cinception, Hinception, Winception) are
dimension of it. The resultant concatenation feature vector would be as:

xconcat =
(

N, Cdense + Cinception , Hdense , Wdense
)

(4)

In this study, the denseNet121 has 1024 logits 1D feature vectors and inceptionV3
has 2048 logits 1D feature vectors. The resultant concatenated 1D feature vector was 3072.
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These are important features obtained from both pre-trained DL models. These features’
tensorsare then passed through a series of fully connected layers to perform classification.
These fully connected layers consist of linear transformations followed by the Rectified
Linear Unit (ReLU). Let Wi be the weight matrix of the i-th fully connected layer and bi the
bias vector. The following formula is used to get the i-th fully connected layer output:

xi = ReLU
(

Wixreshaped + bi

)
(5)

There are in total five fully connected layers with 3072, 512, 256, 128, and 64 neurons
belonging to FC1, FC2, FC3, FC4, andFC5, respectively. These layers learn the features and
are fine-tuned with the Br35H dataset and hence provide better performance.

3.2.4. Output Layer

The last layer of the Dual DCNN model applies a softmax activation function to
transform the raw output scores into probability distributions over the output classes. Let
xfinal denote the final output vector before softmax, and ŷ denote the predicted probability
of cancer and non-cancer class. The softmax function will be defined as:

ŷ = softmax(xfinal ) (6)

where

softmax(xfinal )i =
exfinal ,i

∑classes exfinal ,j
(7)

Through fully connected layers, the DDCNN model integrates the features of denseNet121
and inceptionV3 by utilizing the matching knowledge of both models, potentially increas-
ing overall performance.

3.3. SOTA DL Models

This study includes a comparative analysis of DDCNN models with ten well-known
DL models, i.e., LeNet-5, AlexNet, VGG-16, SqueezeNet, EfficientNetB2, ResNet18, ResNet34,
ResNet50, InceptionV3, and DenseNet121. By evaluating the performance of the DDCNN
alongside these widely recognized DL architectures, this study aims to provide insights into
the effectiveness of the proposed model compared to existing state-of-the-art approaches.
This study uses these DL models with transfer learning capitalizing on their knowledge
gained from extensive training on large datasets (e.g., ImageNet) significantly reducing
training time and computational resources. Additionally, this allows faster convergence
and enhanced generalization which is valuable when dealing with limited medical image
datasets such as those encountered in brain tumor classification tasks using MRI.

3.4. Training Parameters

This study used the same training parameters for SOTA DL models and the DDCNN
model for the classification of cancerous and non-cancerous MRIs. We compared evaluation
parameters with five different learning rates and used 128 images as a batch size that
shuffled at every epoch with a total of fifty epochs as shown in Table 2. We used the same
hyperparameter settings for all SOTA DL models and the DDCNN approach for a fair
comparison of performance against each model. The binary cross entropy (BCE) is used
with an Adam optimizer that calculates the difference between the actual binary labels and
the expected probability distribution as:

BCELoss = − 1
N

N

∑
i=1

(yi · log(pi) + (1 − yi) · log(1 − pi)) (8)

where N is the total number of samples, yi is the true label (0 or 1) of the ith sample, and pi
is the predicted probability that the ith sample belongs to class 1.



Bioengineering 2024, 11, 410 9 of 18

Table 2. Training parameters used in SOTA DL and DDCNN model.

Sr. No Parameters Value
1 Learning Rates 0.1, 0.01, 0.001, 0.0001, and 0.00001
2 Batch Size 128
3 Number of Epochs 50
4 Loss Function Adam Optimizer With Binary Cross-Entropy
5 Shuffle Every Epoch

4. Experimentation and Results Discussion
4.1. Experimental Setup

This study utilized a 15-inch Mackbook Proequipped with a dedicated GPU, 16 cores,
19 high-performance CPU cores, and an M2 chip with a processing speed of up to 4.0 GHz
for efficient performance. To facilitate the development and comparison of different deep
learning models, a separate virtual environment was created. We installed all the required
libraries and packages in it. The Keras library within the tenserflow framework was used
for VGG-16, LeNet-5, and AlexNet, whereas the PyTorch framework was used for building
SqueezeNet, EfficientNetB2, ResNet18, ResNet34, ResNet50, InceptionV3, DenseNet121,
and the proposed DDCCN model.

4.2. Evaluation Protocol

The f1-score, recall, accuracy, and precision were considered for the evaluation of
the binary classification of DL models. The confusion matrix was also computed. True
positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs) are its
four coefficients. Accuracy is defined as the proportion of correctly expected cases among
all instances. Precision is defined as the proportion of true positives among all positive
predictions. The percentage of true positives predicted among all actual positive outcomes
is called recall. It is also sometimes referred to as sensitivity or true positive rate. The
harmonic mean of recall and precision provides the F1-score.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1_score = 2 × Precision × Recall
Precision + Recall

(12)

4.3. Results Discussion

This section analyzes the results acquired using the DDCNN model with the impact
of different learning rates. It provides a detailed breakdown of the actual versus predicted
classifications for each class of samples.

Figure 4 shows the classwise actual and predicted samples obtained using five different
learning rates. Figure 4e shows that the highest learning rate, i.e., 0.1, only predicted actual
positive samples correctly and did not classify the actual negative samples. In other words,
this learning rate classified all 600 samples as cancerous. It was observed that the best
results were obtained using a 0.0001 learning rate (i.e., Figure 4b) whereas only 12 actual
negative samples were misclassified out of a total of 600 samples. Other learning rates with
respective confusion matrices were also shown with actual and predicted samples where a
0.00001 learning rate performed well but misclassified 15 (i.e., Figure 4a) cancerous and
non-cancerous MRI samples.
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Figure 5 shows the training and validation accuracy and loss of the Dual DCNN
model using the best 0.0001 learning rate. Both the validation accuracy and training
accuracy increase as the number of epochs (training iterations) progresses. However,
around epoch 30, both curves seem to plateau. This suggests that the model’s performance
has reached its optimal point. It is essential to balance high accuracy on the training data
and generalization to unseen validation data. The loss initially decreases sharply. After
approximately 10 epochs, the loss stabilizes. This indicates that the model effectively learns
during the initial epochs but may not improve significantly beyond that point. Monitoring
loss helps prevent overfitting and ensures the model generalizes well.

Figure 4. Confusion matrix of DDCNN model with different learning rates (a) 0.00001, (b) 0.0001,
(c) 0.001, (d) 0.01, and (e) 0.1.

Figure 5. Training and validation (a) accuracy (b) loss of DDCNN model using 0.0001 learning rate.

The evaluation parameters against different models trained at best learning rates are
shown in Table 3. With 99% accuracy and precision, the DDCNN model performed best,
demonstrating its ability to correctly classify nearly all cases with extremely few false
positives. Additionally, it obtained a high recall of 98%, which indicates that the majority
of positive samples were successfully identified. As a result, its F1-score, a measurement
for both recall and precision, was 99%, also outstanding. DenseNet121 achieved good
performance with an accuracy of 97% and properly recognized a high majority of instances.
Additionally, its precision and recall were both 97%, indicating that it performed fairly in
detecting positive occurrences with few false positives.

With accuracy ranging from 95% to 96%, the InceptionV3, ResNet50, ResNet34,
ResNet18, and EfficientNetB2 models performed similarly. Although their recall and
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precision scores were likewise quite satisfactory, there were slight variations across the
models. For example, InceptionV3 got a lower F1-score than ResNet models. Models
like SqueezeNet, VGG-16, AlexNet, and LeNet-5 performed lower than the previously
mentioned ones. Although their levels of accuracy were still fair, they performed far worse
in terms of precision, recall, and F1-scores. Particularly, AlexNet and LeNet-5 performed
less as they had the lowest results across all criteria.

Table 3. Evaluation parameters via best learning rates.

Model Learning Rate Accuracy Precision Recall F1-Score

DDCNN 0.0001 99 99 98 99
DenseNet121 0.001 97 97 97 97
InceptionV3 0.01 96 97 95 95

ResNet50 0.00001 96 94 95 95
ResNet34 0.00001 96 95 94 95
ResNet18 0.0001 95 94 95 94

EfficinetNetB2 0.00001 95 95 95 95
SqueezeNet 0.0001 94 95 95 94

VGG-16 0.0001 92 92 93 93
AlexNet 0.0001 85 83 83 83
LeNet-5 0.001 71 69 74 72

Figure 6 shows the confusion matrices of ten SOTA DL models used in this study. It is
the classwise correct and incorrect prediction of two classes that allow a better understand-
ing of the performance of individual models against best learning rates. Figure 6a shows
the confusion matrix of DenseNet121 DL model which is dominating with learning rate of
0.001. It also shows the highest evaluation parameters using SOTA DL models. Whereas,
Figure 6b–h shows the better performance of InceptionV3, ResNet50, ResNet34, ResNet18,
EfficientB2, SqueezeNet and VGG-16, respectively. These DL models are showing perfor-
mance matrices greater than 90% which are considered as acceptable in binary classification
problem. However, Figure 6i,j shows the evaluation parameters of AlexNet and LeNet-5
using best learning rates. These both are not performing well.

Similarly, Figure 7 shows the accuracy, precision, recall, and f1-scores against all
models used in this study which can be seen from Table 3 as well. Figure 7a shows the
accuracy which is ratio of correctly predicted samples to the overall samples. Figure 7b–d
shows the percentage of precision, recall, and F1, respectively against all DL models used
in this study.

Table 4 shows the classwise performance matrices (accuracy, precision, recall, and
f1-scores). The DDCNN model achieved a high accuracy of 99%, precision of 99%, recall
of 98%, and f1-score of 99% for non-cancer (class 0). This suggests that with extremely
few false positives, it accurately classified nearly all cases of non-cancerous samples. It
also performed better for cancerous cases (Class 1), showing the perfect classification of
cancer with 99% accuracy, precision, recall, and f1-score. With all metrics ranging around
97%, DenseNet121 performed well for class 0. Its accuracy, precision, recall, and f1-score
were lower than those of the DDCNN model. With accuracy, precision, recall, and f1-score
all ranging around 96% for cancerous cases, the performance remained unchanged. This
suggests that the cases of cancer were accurately classified.
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(a) (b) (c)

(f)

(g)

(d)

(h) (i)

(e)

(j)

Figure 6. The confusion matrix of all ten SOTA DL models with respect to the best learning
rates as mentioned in Table 3. (a) DenseNet121 with 0.0001 learning rate, (b) InceptionV3 with
0.001 learning rate, (c) ResNet50 with 0.00001 learning rate, (d) ResNet34 with 0.00001 learning rate,
(e) ResNet18 with 0.0001 learning rate, (f) EfficientNetB2 with 0.00001 learning rate, (g) SqueezeNet
with 0.0001 learning rate, (h) VGG16 with 0.0001 learning rate, (i) AlexNet with 0.0001 learning rate,
and (j) LeNet-5 with 0.001 learning rate.
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Table 4. Classwise evaluation parameters of DDCNN model and SOTA DCNN models.

Model Learning Rate Class Accuracy Precision Recall F1-Score

DDCNN model 0.0001 0 99 99 98 99
1 99 99 99 99

DenseNet121 0.001 0 98 97 97 97
1 96 96 96 96

InceptionV3 0.01 0 97 96 95 95
1 95 96 96 94

ResNet50 0.00001 0 97 97 96 95
1 95 96 94 95

ResNet34 0.00001 0 97 96 95 96
1 95 95 93 94

ResNet18 0.0001 0 96 94 96 94
1 94 94 94 95

EfficinetNetB2 0.00001 0 96 95 95 95
1 94 94 94 95

SqueezeNet 0.0001 0 95 96 95 94
1 93 94 94 94

VGG-16 0.0001 0 93 92 93 93
1 91 92 92 93

AlexNet 0.0001 0 90 84 81 84
1 80 81 80 81

LeNet-5 0.001 0 79 75 78 79
1 64 61 66 68

(a) (b)

(c) (d)

Accuracy

F1-Score

Precision

Recall

Figure 7. Evaluation parameters for DDCNN and SOTA DL models with respect to learning rates
provided in Table 3. The (a) Accuracy, (b) Precision, (c) Recall, and (d) F1-Scores bar-graphs for all DL
models used in the study.

InceptionV3, ResNet50, ResNet34, ResNet18, EfficientNetB2, SqueezeNet, and VGG-16
models have generally similar trends across both classes, with slightly varying perfor-
mance metrics. With somewhat different performance criteria, the InceptionV3, ResNet50,
ResNet34, ResNet18, EfficientNetB2, SqueezeNet, and VGG-16 models largely showed
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comparable patterns in both classes. Class 0 accuracy was between 93% and 97%, with
slightly lower but still good precision, recall, and F1-score. With accuracy ranging from
91% to 95% and modest changes in precision, recall, and F1-score, class 1 performance was
slightly lower than class 0. The AlexNet and LeNet-5 models underperformed as compared
to other models. For class 0, precision, recall, and F1-score were similarly comparatively
lower, whereas accuracy ranged from 79% to 90%. With accuracy ranging from 64% to 80%
and precision, recall, and F1-score showing a similar decreasing trend, class 1 performance
decreased even more.

In conclusion, the DDCNN model outperformed compared to the others in both classes,
achieving almost perfect recall, accuracy, precision, and F1-score. However, AlexNet and
LeNet-5 performed relatively worse while taking into account all evaluation parameters.

Table 5 presents the influence of five different learning rates on the DDCNN model
and several SOTA DL models trained with five different learning rates. The Dual DCNN
performance demonstrates sensitivity to the learning rate. The best results were obtained
when training at a learning rate of 0.0001, achieving 99%, 99%, 98%, and 99% for accuracy,
precision, recall, and F1-score, respectively, whereas performance decreased from 0.0001 to
0.00001 when the learning rate dropped. However, it remained quite satisfactory, with an
accuracy of 98% and other metrics over 97%. Its lowest performance was for a higher learn-
ing rate as shown in the table. Similar to the Dual DCNN, models like InceptionV3, ResNets,
EfficientNetB2, DenseNet121, SqueezeNet, and VGG-16 demonstrated inconsistent perfor-
mance at different learning rates. Lower learning rates were often associated with better
performance. For instance, DenseNet121 and ResNet18 both achieved their maximum
accuracy of 93% and 96%, respectively, with a learning rate of 0.001 and 0.01, respectively.

Table 5. Evaluation parameters of dual DCNN models and SOTA DL models with respect to
five different learning rates.

Model Learning Rate Accuracy Precision Recall F1-Score

0.1 50 25 50 33
0.01 92 92 92 92

0.001 95 96 96 95
0.0001 99 99 98 99

DDCNN Model

0.00001 98 98 98 98

0.1 70 71 71 70
0.01 68 71 68 66

0.001 97 97 97 97
0.0001 95 96 96 95

DenseNet121

0.00001 83 86 83 83
0.1 48 46 48 42

0.01 96 97 95 95
0.001 94 95 94 94
0.0001 74 78 74 74

InceptionV3

0.00001 50 50 50 50
0.1 67 67 67 66

0.01 93 93 93 93
0.001 95 95 96 95
0.0001 77 79 77 78

ResNet50

0.00001 96 94 95 95
0.1 68 68 68 67

0.01 94 94 94 93
0.001 95 94 95 94
0.0001 67 69 67 66

ResNet34

0.00001 96 95 94 95
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Table 5. Cont.

Model Learning Rate Accuracy Precision Recall F1-Score

0.1 58 74 58 50
0.01 66 80 66 61

0.001 94 94 94 93
0.0001 95 94 95 94

ResNet18

0.00001 93 94 93 93
0.1 67 66 66 65
0.01 85 87 85 85

0.001 89 91 89 89
0.0001 93 94 93 94

EfficinetNetB2

0.00001 95 95 95 95

0.1 50 25 50 33
0.01 60 62 62 61

0.001 91 92 91 91
0.0001 94 95 95 94

SqueezeNet

0.00001 90 90 90 90

0.1 50 25 50 33
0.01 88 78 84 80

0.001 91 92 91 91
0.0001 92 92 93 93

VGG-16

0.00001 90 90 90 90

0.1 50 25 50 33
0.01 60 55 58 54

0.001 83 83 83 83
0.0001 85 83 83 83

AlexNet

0.00001 84 83 82 82

0.1 54 29 54 37
0.01 61 64 59 61

0.001 71 69 74 72
0.0001 67 66 66 65

LeNet-5

0.00001 70 69 69 68

Across all learning rates, AlexNet and LeNet-5 underperformed compared to the
other models in terms of accuracy, precision, recall, and f1-score. For instance, for a
given learning rate of 0.0001, AlexNet’s maximum accuracy was 85%, whereas LeNet-5’s
maximum accuracy was 71% at 0.001.

In conclusion, the findings highlight the crucial role of hyperparameter tuning, par-
ticularly learning rate selection, in optimizing DL model performance. Performance was
generally better at lower learning rates, whereas the ideal learning rate varied based on the
particular model architecture. Additionally, several models showed consistency in their
performance across a variety of learning rates, whereas other models showed variability.
These results highlight how important it is to adjust hyperparameters, including the learn-
ing rate, in order to maximize the DL model’s performance.

4.4. Comparison of SOTA versus DDCNN Model

Table 6 shows the Dual DCNN’s exceptional performance compared to recent studies
employing various DL models validated using MRI images having cancerous (and its type)
and non-cancerous classes. In these studies, our DDCNN model achieves an accuracy of
99% in classifying cancerous and non-cancerous MRI scans, surpassing the highest accuracy
reported in the reviewed literature. Even though other techniques, i.e., optimized Efficient-
NetB2 and MSGGAN achieve high accuracy above 98%, our DDCNN APPROACH still
exceeds them. Moreover, transfer-learning-based models like DenseNet201 and GoogleNet,
together with innovative architectures like Res-BRNet and Self CNN also attain competi-
tive accuracies between 97% and 98%, they are unable to match our performance. These



Bioengineering 2024, 11, 410 16 of 18

findings suggest that the Dual DCNN represents a superior performance in deep learning
for MRI-based cancer and non-cancer classification tasks.

Table 6. Quantitative analysis of DDCNN model and latest related research.

Research Methodology Model Accuracy

In [28] CNN-Fine Tuned EfficientNetB2 98.86%
In [29], Generative Adversarial Network (GAN) MSGGAN 98.57%
In [30], DCNN-Transfer Learning DenseNet201 98.22%
In [31], CNN-Transfer Learning GoogleNet 98%
In [32], CNN-Novel Self CNN 97.3%
In [33], CNN-Cross Validation Self CNN 96.56%
In [34], Neural Network (NN) Self NN 95.86%
In [35], Siamese Neural Network (SNN) MAC-CNN 92.8%

Our Approach Dual DCNN Model DDCNN 99%

5. Conclusions

Detecting brain tumors at an early stage is very crucial as it increases the chances
of patient survival through effective treatment. The manual diagnosis by doctors is slow
and subject to inter-observer variations, especially with the increasing number of new
cases reported on a daily basis. Hence, there is an urgent need for rapid analysis of large
medical data to enable early tumor diagnosis. Here, AI with deep learning methods
are reliable and efficient approach because it can handle complex medical data like MRI
scans more precisely. This study introduces the Dual DCNN (DDCNN) model, which
utilizes two high-performing DL models that achieve better performance than SOTA
models. It compares results with various well-known DL models, including DenseNet121,
InceptionV3, ResNet50, ResNet34, ResNet18, EfficientNetB2, SqueezeNet, VGG16, AlexNet,
and LeNet-5. Furthermore, this study compares the proposed Dual DCNN approach with
recent research and demonstrates better performance.

Future efforts will focus on the prediction of glioma grade which plays an essential
role in guiding treatment decisions. Transformers, which were introduced recently and
became popular, can be instigated and compared with Dual DCNN approach.
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