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Abstract: Imbalance classification is common in scenarios like fault diagnosis, intrusion detection,
and medical diagnosis, where obtaining abnormal data is difficult. This article addresses a one-
class problem, implementing and refining the One-Class Nearest-Neighbor (OCNN) algorithm. The
original inter-quartile range mechanism is replaced with the K-means with outlier removal (KMOR)
algorithm for efficient outlier identification in the target class. Parameters are optimized by treating
these outliers as non-target-class samples. A new algorithm, the Location-based Nearest-Neighbor
(LBNN) algorithm, clusters one-class training data using KMOR and calculates the farthest distance
and percentile for each test data point to determine if it belongs to the target class. Experiments
cover parameter studies, validation on eight standard imbalanced datasets from KEEL, and three
applications on real medical imbalanced datasets. Results show superior performance in precision,
recall, and G-means compared to traditional classification models, making it effective for handling
imbalanced data challenges.

Keywords: One-Class Nearest-Neighbor (OCNN); K-means with outlier removal (KMOR);
Location-based Nearest Neighbor (LBNN)

1. Introduction

The problem of one-class classification poses a unique challenge in machine learning,
where obtaining data from the target class is relatively easy, but data from the non-target
class are either extremely scarce or entirely absent. Identifying the data sample from the non-
target class is crucial, as exemplified in the Stroke-Poor dataset, where correctly identifying
patients enables more proactive medical interventions by healthcare professionals. In
practical scenarios like rare disease identification, target class data (non-rare disease cases)
often dominate the dataset, while non-target-class data are challenging to acquire due to
cost constraints or physiological characteristics. In such highly imbalanced [1] or one-class
situations, building a reasonable model using traditional supervised learning algorithms
becomes a formidable task.

This article introduces a method based on K-means to replace the inter-quartile range
mechanism in the One-Class Nearest Neighbor (OCNN) algorithm. Additionally, we pro-
pose a novel strategy, the Location-based Nearest Neighbor (LBNN) algorithm, aiming to
provide improved model performance with comparable time complexity. Experimental
validation involves assessing algorithm performance enhancement using KEEL datasets [2]
and comparing with traditional algorithms in real medical data experiments. The article’s
structure includes the research motivation, objectives, and an overview of the article’s
organization. It discusses the problem background, the relevant literature, OCNN mecha-
nisms, and the LBNN strategy and details the experimental process, providing analysis
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and interpretation of results for different experiment types. The article concludes with
a summary of the findings and suggests future research directions. We believe the key
contribution with this new strategy would provide better performance results on predicting
imbalanced applications, such as heart diseases, diabetes mellitus, or septicemia, compared
with current bio-engineering algorithms. Here, we emphasize that the target class we
mentioned above is the data sample that is easier to access, which means the non-target
class is the minority sample, which is a non-accessible class.

2. Materials and Methods
2.1. One-Class Classification

The assumption underlying the one-class classification problem [3] is that during
the training process, only one class is available, referred to as the target class, while the
remaining classes are considered non-target classes. One-class classifiers leverage the
distinctive characteristics of the target class to identify a boundary encompassing all target
class data or the majority of it. In practical applications, such as wearable devices for
individual electrocardiogram monitoring in precision healthcare (predicting conditions like
high blood sugar or potassium levels), initially, data may be collected only from healthy
patients. It is impractical to wait until a sufficient amount of data are gathered before
initiating predictions, presenting a typical scenario for a one-class classification problem.

An alternative solution involves using public data to predict individual health con-
ditions, but this approach has proven ineffective due to the inconsistent physiological
characteristics among individuals (e.g., variations in electrocardiogram wavelength, peak
positions, and heights). To overcome the limitations of traditional classification algorithms
in such situations, one-class classification algorithms play a crucial role.

A suitable one-class classifier must exhibit strong generalization capabilities, maintain-
ing a high recognition rate for non-target classes while avoiding overutilization of target
class information to prevent overfitting. Proper handling of target class and outlier [4,5]
values is essential to derive effective decision boundaries. The one-class classification
problem can be mathematically expressed as follows:

f (z) = (d(z) < θz) (1)

Here, d(z) is an unknown measurement of data z with respect to the target class group
(e.g., distance, density), θz is the threshold for d(z), and f (z) is a function determining
whether z is accepted as the target class.

One-Class Support Vector Machine (OC-SVM)

The OC-SVM [6] is a type of unsupervised algorithm based on the SVM [7,8], which
can be used for novelty detection and anomaly detection. The objective of the OC-SVM
is to find a decision function or hyperplane, attempting to separate the target class data
from the non-target-class data. As illustrated below in Figure 1, most of the training data
are allocated to one region and assigned a value of +1, while data outside this region are
assigned a value of −1. The OC-SVM utilizes a kernel function (typically Gaussian) to map
the input data to a higher dimensional space and aims to find a minimal hyperplane. Given
a set of target class training data xi ∈ Rd, i = 1, . . . , N , we can represent the following
quadratic programming expression:

Minimize
1
2
∥w∥2 +

Nv
1

N

∑
i=1

ξi − p

Subject to w ·Φ(xi) ≥ p− ξi, ξi ≥ 0

(2)

Here, N represents the total number of data points, v ∈ (0, 1) is used to determine the
upper limit of outlier values, ξi represents the slack variable for each data point, and Φ is
the kernel function.



Bioengineering 2024, 11, 345 3 of 17

Figure 1. OC SVM.

2.2. One-Class Nearest-Neighbor (OCNN) Algorithm

The OCNN algorithm can be classified into four types based on the number of nearest
neighbors [9,10] chosen:

1. Find the nearest neighbor of the test data in the target class, and then find the nearest
neighbor of this nearest neighbor (11NN).

2. Find the nearest neighbor of the test data in the target class, and then find the K-nearest
neighbors of this nearest neighbor (1KNN).

3. Find J-nearest neighbors of the test data in the target class, and then find the nearest
neighbor of each of these J-nearest neighbors (J1NN).

4. Find J-nearest neighbors of the test data in the target class, and then find the K-nearest
neighbors of each of these J-nearest neighbors (JKNN).

Figure 2 illustrates the four different OCNN methods. The black circles represent the
target class data, and the red asterisk represents an unknown data point. To determine
whether the unknown data point belongs to the target class, different numbers of nearest
neighbors are selected based on the parameters J and K. After calculating the average
distance of J-nearest neighbors and the average distance of K-nearest neighbors, the values
are compared with the threshold θ. Taking JKNN as an example, the detailed process please
referring to Algorithm 1 as follows :

Algorithm 1 Pseudo-code of JKNN

1: Input: N target class data points with d dimensions, test data z, nearest neighbor
parameters J, K, and threshold θ.

2: Output: Accept or reject the test data z as target class data.
3: Calculate the distance from the test data z to the J-nearest neighbors and compute

the average. NNtr
j (z) represents the J-nearest neighbors of z, expressed as:

DJ =
1
J j = 1Jz− NNjtr(z)

4: Calculate the distance from the J-nearest neighbors of the test data z to their
respective K-nearest neighbors and compute the average. NNtr

k (NNtr
j (z)) represents

all K-nearest neighbors of the J-nearest neighbors, expressed as:
DK = 1

J∗K j = 1Jk = 1KNNjtrz− NNktr(NNjtr(z))

5: If DJ
DK

< θ, consider the test data z as the target class; otherwise, consider it as a
non-target class.
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Figure 2. Four kinds of OCNN. The red five-pointed star symbol represents a new data sample,
(a) represents 11NN, the new data sample distance to the closest data point is D1 and the point to
it’s the closest data point is D11, (b) represents 1KNN, in this case K = 3, (c) represents J1NN, in this
case, J = 3, (d) represents JKNN, J = 3, K = 2

In the OCNN algorithm, the threshold θ can be fixed at 1 or chosen arbitrarily. Here,
we will discuss the relationship between 11NN under different threshold values θ and
other OCNN methods.

In Figure 2a, when 11NN has a threshold θ set to 1, if D1 > D11 , the test data will
be classified as a non-target class (outlier), even if D1 is only slightly larger than D11.
Intuitively, the distance (D1) from non-target class (or outlier) to its nearest neighbor
should be much larger than the distance (D11) from the nearest neighbor to itself. This can
be expressed mathematically as:

D1 > θD11 (3)

When θ > 1, some data that were originally classified as a non-target class due to
the rule D1 > D11 will be accepted as a target class. This situation aligns more with our
intuition about outliers. Finding the optimal θ will be an important issue, and the optimal
θ will change depending on the dataset and evaluation criteria.

Figure 2b is the 1KNN for non-target class data, and we represent its distance to the
nearest neighbor as:

D1 >
D11 + D12 + D13 + D1i · · · · · ·D1K

K
(4)

where D1i(K ≥ i ≥ 1) is the distance from the test data point to its i-th nearest neighbor,
and we can observe that D1i should increase as i increases. Expanding the inequality

D1i ≥ D1(i−1) =⇒ D1i ≥ D11 (5)
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we obtain:

D11 + D12 + D13 + D1i · · · · · ·D1K
K

>
D11 + D11 + D11 + · · · · · ·D11

K

=⇒ D11 + D12 + D13 + D1i · · · · · ·D1K
K

> D11

=⇒ D11 + D12 + D13 + D1i · · · · · ·D1K
K

= αD11 (α > 1)

(6)

Based on the derivations from the inequalities (6) and (7), we obtain:

D1 > αD11 (α > 1) (7)

This demonstrates that the 1KNN method can produce similar effects to 11NN (θ > 1).
J1NN: In contrast to 1KNN, we consider J- nearest neighbors for the test data but only
consider one nearest neighbor for each of these neighbors. As shown in Figure 2c, similar
to the derivation of 1KNN, we obtain:

αD1 > D11

=⇒ D1 >
D11

α
(α > 1)

(8)

This proves that the J1NN method can produce similar effects to 11NN(θ < 1). JKNN:
We calculate the average distance of J-nearest neighbors and their respective K-nearest
neighbors. Based on the previous derivations of 1KNN and J1NN, we obtain:

αD1 > βD11

=⇒ D1 >
β

α
D11 (α > 1 , β > 1)

(9)

As the parameters J and K vary, we observe that these two parameters will offset each
other’s influences. When β

α > 1 , JKNN is similar to 11NN (θ > 1), allowing it to accept
more outliers as the target class. When β

α < 1, JKNN is similar to 11NN (θ < 1), making
the criteria more stringent, and more data will be considered as outliers.

2.3. One-Class Nearest Neighbor (OCNN) Parameter Optimization

Based on the above discussion, we understand the relationships between different
types of OCNN classifiers. The settings of parameters J, K, and threshold θ will be an
important topic.

Parameter optimization is a challenging issue in one-class classifiers because, in the
training data, only data from the target class can be used, unlike the situation with multi-
class data, where traditional classifiers utilize data from different classes to make decision
boundaries. Here, we use some methods to identify outliers in the target class data
for parameter optimization of the OCNN classifier. Regarding the selection of nearest
neighbors and their distance calculations, we can identify the following issues faced by
different OCNN classifiers:

Firstly, we assume the target class as negative data and the non-target class as
positive data.

• False Negatives: In real-world datasets, noise samples may be generated due to human
errors (incorrect labeling, operational negligence, etc.). The OCNN classifier described
earlier cannot detect this phenomenon. When target class samples exhibit a tight
configuration, noise samples far from the cluster will lead to unknown non-target-
class data being incorrectly classified as target class data.

• False Positives: If we do not find an appropriate decision threshold θ after removing
noise samples from the dataset, the OCNN classifier will identify many test data as
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non-target-class data. Another situation leading to false positives occurs when the
target class in the training data cannot demonstrate sufficient representativeness.

Yin et al. [11] mentioned that in one-class classification problems, designing an error
detection system while simultaneously reducing false negatives and false positives is a
difficult task due to the lack of non-target class data. Generally, one-class classifiers are
sensitive to parameter settings [12]. A common approach to optimizing parameters for
one-class classifiers is to use generated synthetic samples. Ref. [13] attempts to assume
the distribution of the non-target class using artificially generated samples. However,
generating artificial data has some issues, requires in-depth knowledge of the domain, and
may lead to overfitting.

In this article, we describe how to optimize the parameters of OCNN classifiers using
one-class data using the outliers identified by the above methods, and we consider them as
proxies for the non-target class and use cross-validation to optimize parameters J, K, and θ.

K-Means with Outlier Removal (KMOR) Algorithm

KMOR [14] is an algorithm based on K-means that can simultaneously detect outliers
and perform clustering [15–17]. Traditional K-means algorithms can experience drastic
changes in clustering results due to the presence of outliers, as illustrated in Figure 3 below.
Circles represent normal data, while asterisks represent outliers. Setting the number of
clusters to two, the left portion shows clustering results without considering the presence
of outliers, while the right portion demonstrates clustering results that account for outliers,
resulting in a more asymmetric clustering outcome.

Figure 3. K-means and KMOR illustration. The five-pointed star means the outliers.

To address the aforementioned issue, KMOR introduces the concept of the K + 1
cluster, where data identified as outliers are assigned to the K + 1 cluster. Additionally,
these outliers are independently treated in the objective function. The objective function of
KMOR is defined as follows:

P(U,Z) = ∑n
i=1 ∑k

j=1 ui,j∥xi − zj∥2 + ui,k+1D(U, Z)

subject to
∑n

i=1 ui,k+1 ≤ n0

In the equation, U represents the membership of all data points in the clusters, Z
denotes the cluster centers, and ui,j = 1 if a data point xi belongs to the jth cluster. n0
restricts the maximum number of data points identified as outliers in the entire dataset.

D(U, Z) can be expressed as follows:

D(U, Z) = γ ∗
(

∑k
l=1 ∑n

j=1 uj,l∥xj − zl∥2

n−∑n
j=1 uj,k+1

)
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The parameter γ > 0 represents the weight of the average distance from all non-
outliers to their respective clusters. γ and n0 control the number of outliers in the dataset.
Updating cluster centers and cluster assignments differs slightly from the original K-means.
The rules are as follows:

1. Rule 1: Calculate the distance from each data point to all cluster centers. If the distance
from the data point to the cluster center is less than D(U, Z), assign it to the cluster
with the shortest distance; otherwise, assign it to cluster K + 1.

2. Rule 2: Update the cluster centers for clusters 1 to K by averaging the data points in
each cluster. Data points classified as cluster K + 1 do not participate in the calculation.

The detailed process please referring to Algorithm 2 as follows:

Algorithm 2 Algorithm flow for KMOR

1: Input: X,k,γ,n0, δ, itermax
2: Output: Optimal U and Z
3: Initialize Z by selecting k points from X randomly
4: Foreach i ∈ 1, . . ., i do
5: Update U by assigning xi to its nearest center
6: end
7: s = 0, p0 = 0
8: While True do
9: Update U by rule 1

10: Update Z by rule 2
11: s = s +1
12: ps+1 = P(U, Z)
13: If |ps+1 < ps| < δ or s >= itermax then
14: Break
15: end
16: end

2.4. Optimal Parameters J and K

We initially employ outlier detection methods (such as IQR or KMOR) to identify
outliers in the target class of training data. These outliers are then treated as non-target-
class instances, forming a binary dataset. Subsequently, using the K-fold cross-validation
method, we divide the dataset into K subsets, with one subset reserved for testing and
the remaining (K − 1) subsets for training. We evaluate the performance of each subset
for various combinations of J and K values in JKNN. Based on the results obtained, we
store them in a two-dimensional matrix indexed by J and K. Finally, we select the indices
(representing J and K values) corresponding to the highest average performance.

2.5. Optimal Parameter θ

After identifying outliers in the training dataset and reorganizing it into a binary
dataset, we employ cross-validation to determine, for each validation data point, the
distance to its nearest neighbor and the distance between that neighbor and its own nearest
neighbor (11NN). Dividing these distances yields a test threshold value, θ. After computing
this for all folds, we obtain a θ vector of length N. We then compare these thresholds,
calculating an array representing the performance of G-means. The index of the best
G-means value in this array corresponds to the optimal threshold value, θ.

2.6. Location-Based Nearest Neighbor (LBNN) Algorithm

We understand that, whether it’s 11NN or JKNN, when an unknown data point comes
in, they both need to perform two rounds of nearest neighbor searches on the entire training
dataset. The first-round searches for J-nearest neighbors and the second round searches for
J.K-nearest neighbors result in a time complexity of O(2dn + J × 2dn)→ O((J + 1)× 2dn),
where the part of searching for nearest neighbors of nearest neighbors can be anticipated
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to be mostly within adjacent blocks. In other words, the unknown data point and these
nearest neighbors are mainly compared locally (Figure 4), without considering the overall
distribution characteristics of the data. This may affect the final performance of the model.
Therefore, we propose a clustering-based nearest neighbor search strategy, LBNN, to
compare with 11NN and JKNN.

Figure 4. JKNN search illustration.

Our LBNN strategy initially applies KMOR [18] clustering to the training data, setting
a percentile Q, 0 ≤ Q ≤ 1. For an unknown data point ui, i ∈ {1, 2, . . . n}, we find one
nearest neighbor Pi,c , c ∈ {1, 2, . . . k} from each cluster. These nearest neighbors are
considered reference points for their respective clusters. Finally, we calculate the distance
Li,c between the reference point Pi,c and the other data points in the same cluster. If the
distance di,c from the unknown data to any cluster reference point is less than the percentile
Q of its distance Li,c, we classify the unknown data as the target class. Our LBNN strategy
has a search time complexity of O(kdn + kdn) → O(2kdn), where k is the number of
clusters. The LBNN process is illustrated in Algorithm 3.

Algorithm 3 Pseudo-code of LBNN

1: Input: Target training data (D), number of cluster (k) percentile rank (Q), testing
data (T)

2: Output: an result array R (prediction of T)
3: Apply KMOR clustering for Target training data (D), then we get k clusters in D
4: N ← number of testing data (T)
5: Foreach i ∈ 1, . . ., N do
6: R[i] = 0
7: end
8: Foreach i ∈ 1, . . ., N do
9: foreach i ∈ 1, . . ., k do

10: find nearest neighbor P of T[i] in cluster j and
11: record this distance d
12: compute distance between P and other data in
13: cluster j to get length vector L
14: If d < O percentile rank of L then
15: R[i] = 1
16: Break
17: end
18: end
19: end
20: return R
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2.7. Feature Selection

With the rapid development of modern technology, the improvement in the perfor-
mance of hardware and software, and the widespread application of the Internet of Things,
data are generated at an unprecedented rate. This includes high-definition videos, images,
text, audio, and data obtained from the rise of social relationships and the Internet of Things.
Such data often possesses features with multiple dimensions, presenting a challenging task
for accurate data analysis and decision making. Feature selection can effectively handle
multidimensional data and enhance learning efficiency, a notion that has been proven in
both theory and practice.

Feature selection refers to the process of obtaining a subset of features from the original
features based on certain criteria. The feature selection criteria gather relevant features of
the dataset. It plays a crucial role in reducing the computational cost of data processing
by eliminating unnecessary and irrelevant features. Feature selection is considered a
preprocessing step for data and learning algorithms, where good feature selection results
can improve model accuracy and reduce training time.

In this article, the real-world medical data we used contain a large number of features
(64 in total). To enhance the performance of various algorithm models, we employed a
stepwise feature selection method called “Stepwise”. The concept is, in each round, to select
only one feature at a time, retaining the combination of features with the best performance
or continuing until a specified number of features to retain is achieved. Assuming a
dataset has ten features, and our evaluation metric is the area under the receiver operating
characteristic (ROC) curve, which is the area under the ROC curve (AUC), the detailed
process is as follows:

1. In the first round of feature selection, we select one feature at a time for model training.
After testing all features, we retain the feature with the best AUC performance.

2. Similar to the first step, we choose one feature at a time from the remaining nine
features, but this time, we include the feature retained from the first round. In the end,
we obtain the two features with the best performance.

3. We repeat the first and second steps until the specified number of retained features
is achieved.

3. Results

This section provides an overview of the experimental environment, including details
on the dataset utilized and the configuration of relevant parameters.

3.1. Experimental Environment and Settings
3.1.1. Execution Environment

The experiments were conducted in a controlled setting to ensure consistency and re-
producibility. The hardware device is manufactured by HP who’s headquarter is located in
Palo Alto, CA. United States. The hardware and software specifications are outlined below:

• Central Processing Unit (CPU): AMD Ryzen 7 2700X
• Graphics Processing Unit (GPU): Nvidia GeForce RTX 2080
• Memory: 32 GB
• Programming Language: Python
• Github source: https://github.com/Andrewh232-tpe/LBNN-code-and-datasets,

accessed on 21 March 2024.

3.1.2. Experimental Parameter Configuration and Evaluation Metrics

For all algorithms incorporating the K-Means with Outlier Removal (KMOR) tech-
nique, the setting of the cluster number k is a critical consideration. We employ the KMOR
technique to perform clustering on the data, selecting the cluster number k based on the
minimum value obtained from the objective function.
Evaluation Metrics:

https://github.com/Andrewh232-tpe/LBNN-code-and-datasets


Bioengineering 2024, 11, 345 10 of 17

• AUC (area under the ROC curve)
• Accuracy: (TP + TN)/(TP + TN + FP + FN)

Terms: true positive (TP), true negative (TN), false positive (FP), false negative (FN)

• Precision: TP/(TP + FP)
• Recall (sensitivity, true-positive rate): TP/(TP + FN)
• Specificity (true-negative rate): TN/(TN + FP)
• G-means:

√
(speci f icityRecall)

The specified parameters and evaluation metrics serve as the foundation for assessing
the performance of KMOR-integrated algorithms on the KEEL dataset. The rigorous pa-
rameter tuning and metric selection aim to provide a comprehensive evaluation framework
for the conducted experiments. The algorithm-specific parameter configuration for the
KEEL dataset is as below Table 1:

Table 1. Relevant parameter settings for algorithms using KMOR on KEEL dataset.

Configuration Name Value

Number of folds 5

Inner folds for 1NN(θ), 1NN(θ)-KMOR, JKNN,
JKNN-KMOR 2

Number of rounds 10

Nu for One-Class SVM 0.5

Gamma for One-Class SVM 1/d (number of features)

ω for 1NN(θ), JKNN 1.5

θ for 1NN, 3NN, JKNN-KMOR 1

J, K for 1NN(θ), 1NN(θ)-KMOR 1

n0 for 1NN(θ)-KMOR, JKNN-KMOR, LBNN 0.05 × samples

λ for 1NN(θ)-KMOR, JKNN-KMOR, LBNN 2.5

Iteration(max) for KMOR 100

3.1.3. Dataset Utilization

KEEL is a software tool (Version Release 3.0 and the released date: 9 April 2018) that
assesses evolutionary algorithms for data mining problems such as regression, classification,
clustering, pattern mining, and more. KEEL provides a repository of preprocessed datasets
for classification problems, including imbalanced datasets. Imbalanced datasets are a
special case for classification problems where the class distribution is not uniform among
the classes. Typically, they are composed of two classes: the majority (negative) class and
the minority (positive) class. We leveraged eight standard imbalanced datasets from the
KEEL dataset repository collected from various domains, all comprising two classes. The
datasets such as glass2 and glass4 are for glass classification, with ‘2’ in glass2 indicating
the second class as positive and the rest as negative, forming a one-versus-rest two-class
dataset. Similarly, datasets like glass4, Yeast4, and ecoli4 follow the same concept. The
Yeast series and ecoli4 datasets are for biological applications (protein classification). The
segment0 dataset is for outdoor object image classification, with features consisting of
various pixel information for the images. On the other hand, the pageblocks0 dataset is for
document classification, with features comprising the layout information of the documents.

Regarding the real medical datasets, we obtained three types of medical data from Dr.
Tsai, who is one of our authors working in Chang Gung Memorial Hospital; those datasets
could be obtained from Dr. Tsai’s email address, tcmnor@cgmh.org.tw.

ROSC (return of spontaneous circulation) indicates that an emergency patient had no
breathing or heartbeat upon admission. For such patients, we have two different outcomes
for prediction. ROSC-CPC12 predicts whether a patient will have an excellent prognosis
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after 12 months (able to live independently) after discharge, the minority samples indicate
the alive patients, and the majority samples indicate the patients not able to survive;
ROSC-30DayS predicts whether a patient will survive 30 days after discharge, in which the
minority samples indicate those patients survived after 30 days, and the majority samples
indicate those patients that did not survive. Stroke-Poor is used to predict whether a stroke
patient will have another severe stroke after discharge, where the minority samples mean
the patients will not have another stroke, and the majority samples indicate the patients
will have another stroke. The features of these medical datasets are all derived from the
patients’ physiological test results (blood sugar, blood pressure, etc.) and the use of various
drugs and treatment methods.

In the below Tables 2 and 3, we listed the dataset structure, including features, samples,
minority samples, majority samples, and imbalanced ratio.

Table 2. KEEL datasets.

Dataset Feature Samples Minority
Samples

Majority
Samples

Imbalance
Ratio

Yeast4 8 1484 51 1433 28.09
Yeast5 8 1484 44 1440 32.72
Yeast6 8 1484 35 1449 41.4
Ecoli4 7 336 20 316 15.8
Glass2 9 214 17 197 11.58
Glass4 9 214 15 199 15.47

Segment0 19 2308 329 1979 6.02
Pageblocks0 10 5472 559 4913 8.79

Table 3. Real datasets.

Dataset Feature Samples Minority
Samples

Majority
Samples

Imbalance
Ratio

ROSC-CPC12 64 1071 86 985 11.45
ROSC-30DayS 64 1071 207 864 4.17

Stroke-Poor 25 617 164 453 2.76

3.2. Experimental Framework

The datasets utilized in this article consist exclusively of binary classifications. In
the training process of the One-Class Nearest Neighbor (OCNN) algorithm, one of the
classes is designated as the target class. Initially, the dataset is divided into training and
testing sets using cross-validation. Subsequently, the training data are subjected to the
methodology outlined in Section 2, distinguishing them into target class data and outliers.
The outliers, treated as non-target-class data, are employed for parameter optimization.
The final evaluation of the model is conducted using the testing data, generating various
performance metrics. The experimental framework is illustrated in Figure 5. In contrast
to the OCNN training architecture, our approach, LBNN, initiates with clustering the
one-class training data using KMOR. A percentile, denoted as Q, is set during this process.
The experimental framework is illustrated in Figure 6.
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Figure 5. OCNN Experimental Framework.

Figure 6. LBNN Experimental Framework.

3.3. Experimental Result

The SVM kernel function leverages “SVM with RBF kernel optimized via grid search”.
The below tables express our experimental results. We took different kinds of datasets
and listed the AUC/accuracy/TPR/TNR/G-means with One-Class SVM, 11NN, 11NN(θ) ,
JKNN, 11NN(θ) KMOR, JKNN KMOR, and LBNN algorithms for comparison.

From the above experimental result from Tables 4–8, we can tell the improved OCNN
and LBNN methods exhibit better performance on most datasets. Although the LBNN
method has poorer performance in terms of TPR, it compensates by significantly improving
TNR, resulting in more stable variations between TPR and TNR and hence better G-means
performance. In a few datasets, the LBNN method has an AUC less than 0.6, which may
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be due to insufficient representativeness of one-class data, overlapping phenomena, or
unprocessed features.

Table 4. KEEL dataset AUC.

Datasets One-Class
SVM 11NN 11NN(θ) JKNN 11NN(θ)

KMOR
JKNN

KMOR LBNN

Yeast4 0.473 0.511 0.501 0.503 0.562 0.511 0.534

yeast5 0.502 0.589 0.540 0.599 0.579 0.600 0.605

Yeast6 0.467 0.640 0.600 0.584 0.597 0.607 0.626

ecoli4 0.494 0.668 0.627 0.699 0.656 0.719 0.753

segment0 0.652 0.726 0.802 0.803 0.810 0.814 0.861

glass2 0.481 0.717 0.767 0.789 0.758 0.776 0.813

glass4 0.555 0.623 0.601 0.689 0.596 0.694 0.764

pageblocks0 0.521 0.771 0.781 0.807 0.784 0.813 0.855

Table 5. KEEL dataset accuracy.

Dataset One-Class
SVM 11NN 11NN(θ) JKNN 11NN(θ)

KMOR
JKNN

KMOR LBNN

Yeast4 0.501 0.574 0.183 0.427 0.612 0.468 0.681

yeast5 0.577 0.706 0.317 0.517 0.613 0.551 0.701

Yeast6 0.497 0.675 0.515 0.525 0.612 0.518 0.777

ecoli4 0.620 0.576 0.695 0.591 0.645 0.666 0.741

segment0 0.808 0.965 0.892 0.976 0.934 0.969 0.869

glass2 0.635 0.632 0.771 0.735 0.727 0.724 0.855

glass4 0.736 0.552 0.661 0.669 0.641 0.653 0.773

pageblocks0 0.542 0.960 0.936 0.979 0.943 0.982 0.883

Table 6. KEEL dataset TPR.

Dataset One-Class
SVM 11NN 11NN(θ) JKNN 11NN(θ)

KMOR
JKNN

KMOR LBNN

Yeast4 0.445 0.447 0.828 0.581 0.491 0.555 0.384

yeast5 0.426 0.470 0.766 0.682 0.533 0.648 0.507

Yeast6 0.437 0.605 0.685 0.642 0.572 0.697 0.474

ecoli4 0.365 0.846 0.759 0.907 0.676 0.823 0.775

segment0 0.486 0.470 0.706 0.617 0.943 0.648 0.770

glass2 0.323 0.930 0.775 0.925 0.835 0.909 0.705

glass4 0.370 0.761 0.718 0.727 0.509 0.775 0.746

pageblocks0 0.499 0.574 0.620 0.628 0.618 0.638 0.825
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Table 7. KEEL dataset TNR.

Dataset One-Class
SVM 11NN 11NN(θ) JKNN 11NN(θ)

KMOR
JKNN

KMOR LBNN

Yeast4 0.501 0.575 0.178 0.426 0.634 0.467 0.683

yeast5 0.578 0.707 0.315 0.516 0.625 0.551 0.702

Yeast6 0.497 0.676 0.514 0.525 0.622 0.517 0.779

ecoli4 0.623 0.490 0.495 0.491 0.635 0.622 0.731

segment0 0.819 0.981 0.898 0.988 0.676 0.980 0.951

glass2 0.640 0.503 0.755 0.652 0.680 0.616 0.921

glass4 0.741 0.484 0.484 0.651 0.684 0.643 0.782

pageblocks0 0.543 0.968 0.943 0.986 0.950 (0.038) 0.989 0.884

Table 8. KEEL dataset G-means.

Dataset One-Class
SVM 11NN 11NN(θ) JKNN 11NN(θ)

KMOR
JKNN

KMOR LBNN

Yeast4 0.464 0.499 0.333 0.489 0.553 0.492 0.495

yeast5 0.474 0.557 0.436 0.575 0.572 0.581 0.586

Yeast6 0.443 0.628 0.491 0.554 0.591 0.582 0.593

ecoli4 0.432 0.642 0.564 0.658 0.632 0.703 0.751

segment0 0.629 0.677 0.782 0.778 0.793 0.795 0.855

glass2 0.380 0.682 0.758 0.769 0.744 0.760 0.805

glass4 0.373 0.605 0.561 0.673 0.564 0.678 0.756

pageblocks0 0.520 0.744 0.758 0.784 0.762 0.792 0.854

3.4. Real Medical Dataset Results

In the Tables 9–11 below, we list the evaluation metric results for three real datasets
from a local hospital. We selected 3 traditional methods for our LBNN comparison which
including Logistic Regression, Support Vector Machine, Random Forest [19].

Table 9. Evaluation metrics for ROSC-CPC12.

Evaluation Logistic
Regression

Support Vector
Machine Random Forest LBNN

AUC 0.724 0.787 0.905 0.934

Accuracy 0.810 0.542 0.958 0.935

Precision 0.251 0.139 0.719 0.898

Recall 0.620 0.857 0.841 0.989

Specificity 0.827 0.514 0.969 0.880

G-means 0.711 0.679 0.901 0.932

From the above result with the ROSC-CPC12 dataset, here we can see the LBNN
method obtains better results compared with the three other traditional methods except
for accuracy and specificity. The recall for the LBNN model improved significantly. In
contrast, the LBNN method underperformed the traditional model in terms of accuracy
and specificity. The higher recall of the LBNN model indicates a more stringent evaluation
of unknown data, even at the cost of sacrificing accuracy for the target class.
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Table 10. Evaluation metrics for ROCS-30DayS.

Evaluation Logistic
Regression

Support Vector
Machine Random Forest LBNN

AUC 0.701 0.741 0.819 0.870

Accuracy 0.493 0.577 0.808 0.865

Precision 0.261 0.300 0.519 0.955

Recall 0.820 0.804 0.837 0.861

Specificity 0.411 0.521 0.801 0.876

G-means 0.596 0.683 0.815 0.868

For the ROSC-30Days dataset, the results of the LBNN method are all better than
the three other traditional methods, and the insight of the results should indicate that
with lower imbalance ratio data, the LBNN method obtains significantly improved results
compared with the ROSC-CPC12 dataset results.

Table 11. Evaluation metrics for Stroke-Poor.

Evaluation Logistic
Regression

Support Vector
Machine Random Forest LBNN

AUC 0.870 0.864 0.803 0.820

Accuracy 0.830 0.806 0.797 0.829

Precision 0.710 0.583 0.608 0.882

Recall 0.540 0.769 0.532 0.849

Specificity 0.926 0.818 0.885 0.791

G-means 0.753 0.796 0.744 0.818

From the above Stroke-Poor results, the LBNN method was able to obtain better
performance on precision and recall, which is more important as this means fewer false-
positive and fewer false-negative cases. For the Stroke-Poor example, it means there
were fewer misdiagnosed patients. Therefore, we can believe the LBNN method obtained
enhanced performance for those three real medical datasets.

4. Discussion

For KEEL dataset experiments, based on the experimental results, our enhanced
OCNN method and the proposed LBNN method exhibit superior performance across
most datasets. While the LBNN method may slightly lag behind the other methods in
terms of its true-positive rate (TPR), its substantial improvement in its true-negative rate
(TNR) contributes to a more stable overall performance. The variations in TNR and TPR
are relatively steady. Consequently, the LBNN method outperforms most methods when
evaluated against G-means. In terms of the area under the curve (AUC), a few datasets
show values below 0.6, possibly due to inherent high overlap in the dataset or insufficient
representation of class characteristics. Comparing G-means metrics, the LBNN method
demonstrates superior stability.

For the real dataset experiments, in investigating the ROSC-CPC12 dataset, given its
substantial imbalance, we employed traditional model preprocessing through data sam-
pling, such like oversampleing [20–23] and undersampleing [15,24,25] methods. The results
revealed a notable improvement in recall but at the expense of precision and specificity.
According to experimental findings, the LBNN method exhibited the best performance in
terms of precision, recall, and G-means across all medical datasets. However, in terms of
accuracy and specificity, the LBNN method generally lagged behind the other traditional
algorithms. This is attributed to the LBNN method’s use of a stricter standard to enhance re-
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call, sacrificing the precision of the target class and subsequently reducing overall accuracy.
Nevertheless, as described by medical professionals, in healthcare applications, emphasis
is placed on precision and recall as crucial metrics (typically requiring a recall above 0.8).
This implies that the LBNN method is better suited to effectively identify individuals truly
afflicted with a disease, aligning more closely with the practical requirements of medical
applications. Future research directions may involve further optimizing the LBNN method
to enhance its performance on other metrics and further applying integrated approaches to
strike a balance between accuracy and recall.

5. Conclusions

In practical applications, the collection of industrial and medical data often encounters
challenges related to one-class or imbalanced scenarios. Traditional algorithms typically
require data sampling, weighting adjustments, or cost-sensitive learning to achieve reason-
able results aligned with specific context needs. However, these methods have drawbacks,
such as information loss in sampling, potential overfitting with added minority class data,
and questionable interpretability when generating synthetic samples. Weight adjustments
and cost-sensitive methods focus on ensuring accurate classification of the minority class,
leading to decreased recognition rates for the majority class.

Addressing imbalanced data, we approach the problem from a one-class perspective.
In the medical data experiments, we used the majority of data from the majority class
for training, with the remaining majority class data and all minority class data mixed for
testing. Experimental results indicate that the LBNN method outperforms other traditional
algorithms in terms of accuracy, recall, and G-means. The LBNN method can also be applied
to personal wearable devices in advanced healthcare. In this application, where initially
collected patient data are predominantly normal, requiring patients to wear the device until
sufficient data are collected for both classes is impractical. The LBNN method provides a
viable solution during the transition period of single-class or extremely imbalanced data.

While the LBNN method exhibits good accuracy and recall for the non-target class,
it sacrifices some specificity. Future considerations may involve integrating other tradi-
tional algorithms to reinforce the accuracy of the target class. In terms of computational
complexity, the search for the nearest neighbor is the most time-consuming step. Exploring
approximate nearest-neighbor methods could be attempted to observe the trade-off be-
tween algorithm acceleration and accuracy changes. However, a challenge remains in the
application of the OCNN and LBNN methods in edge computing. They lack the capability
of Online Learning, common in some neural network models, to update internal model
parameters at a faster rate when new data arrive. In the OCNN and LBNN models, every
new data point requires retraining the entire dataset, leading to time-intensive predictions.
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