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Abstract: Artificial intelligence (AI), particularly deep learning, has made enormous strides in
medical imaging analysis. In the field of musculoskeletal radiology, deep-learning models are actively
being developed for the identification and evaluation of bone fractures. These methods provide
numerous benefits to radiologists such as increased diagnostic accuracy and efficiency while also
achieving standalone performances comparable or superior to clinician readers. Various algorithms
are already commercially available for integration into clinical workflows, with the potential to
improve healthcare delivery and shape the future practice of radiology. In this systematic review,
we explore the performance of current AI methods in the identification and evaluation of fractures,
particularly those in the ankle, wrist, hip, and ribs. We also discuss current commercially available
products for fracture detection and provide an overview of the current limitations of this technology
and future directions of the field.
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1. Introduction

About 9.4 million fractures occur each year in the US [1], with an estimated annual
expenditure of USD 22 billion from just osteoporotic fractures [2]. Due to an aging pop-
ulation, this is only expected to increase, with a projected cost of over USD 95 billion by
2040 [3]. Missed fractures are the most common diagnostic errors in the interpretation
of musculoskeletal radiographs, and are especially prevalent in emergency department
settings, where they account for approximately 80% of all misdiagnoses [4,5], leading to
significant consequences such as delays in treatment and increased long-term morbidity [6].

Errors in fracture diagnosis are partially attributed to growing demands for radiologi-
cal imaging, including radiography, computed tomography (CT), and magnetic resonance
imaging (MRI) [7], with radiologist workloads estimated to have increased by 52% between
2012 and 2019 [8]. In the field of musculoskeletal radiology, increased usage of radiography
is further compounded by the increasing incidence of fractures over the past 20 years,
leading to radiologist fatigue and susceptibility to diagnostic errors [9]. Additionally, while
the majority of skeletal radiographs are interpreted by radiologists in hospital settings,
these reads may be performed by trainees or clinicians without specific musculoskeletal
training [4], or even by nonradiologists [9], further contributing to missed fractures [5,10].

Artificial intelligence (AI), particularly machine learning, may provide a solution to
several issues in the field of medical imaging analysis. Machine learning boasts a wide array
of potential applications, including automated generation of diagnoses, image segmentation,
and disease prognosis. One of the most common machine learning approaches to medical
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imaging analysis is deep learning, which uses deep neural network structures inspired by the
human brain to interpret complex datasets [11]. In particular, convolutional neural networks
(CNNs) exhibit strong performance with image-based tasks by using convolutional filters
to automatically learn and extract features for image understanding. Trained using large
imaging datasets, often with tens of thousands of images, these models are able to improve the
accuracy and efficiency of clinician reads for fracture detection [12–14], with many standalone
models achieving performances at the level of experienced clinicians or even outperforming
them [13,15,16]. Applications of deep learning for fracture detection have been explored for a
wide array of anatomical locations across various imaging modalities [12,17–19], and continue
to grow as new capabilities of AI are being developed.

Given this rapidly evolving landscape, we provide a broad overview of the current
state of machine learning in the identification and evaluation of bone fractures, particularly
in the ankle, wrist, hip, and ribs. Specifically, “identification” refers to model tasks such as
binary classification of fracture vs. no fracture, as well as fracture detection and segmenta-
tion, while “evaluation” describes additional tasks such as outcome prediction. We also
highlight current commercial products available for fracture detection and discuss current
challenges in the field, as well as future directions of this technology. As the applications of
AI in medical imaging continue to broaden, an understanding of this technology will be
invaluable as it begins to shape the practice of diagnostic radiology.

2. Methods

A systematic literature search was performed on three public journal databases
(PubMed, IEEE, and Scopus) on 23 August 2023, as summarized in Figure 1. The PRISMA
checklist [20] was used to facilitate transparent and complete reporting of the systematic
review. Potential papers included those published since 1 January 2019, and were filtered
using the following search terms: “ankle fracture” OR “wrist fracture” OR “hip fracture”
OR “rib fracture” AND “artificial intelligence” OR “deep learning”.

Figure 1. Flowchart of PRISMA study selection.
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All search records were first screened by title and abstract, and duplicate studies and
data were excluded. Studies that did not use deep learning as their primary method of bone
fracture detection were also excluded. From a total of 26 filtered papers during screening,
the full texts were reviewed, and 14 studies were selected for discussion. Article selection
was performed independently by two of the authors and collectively reviewed by the group
before inclusion.

3. Performance Metrics

Given the large number of metrics used in evaluating the performance of imaging
AI models, we provide here an overview of several commonly used metrics. Accuracy
indicates the proportion of correctly classified cases relative to the total number of cases.
Sensitivity, also known as recall, measures the proportion of true positives identified by
the model among all ground truth positives, whereas specificity measures the ability of
the model to identify true negatives among all ground truth negatives. Positive predictive
value (PPV), also known as precision, complements sensitivity by indicating the proportion
of true positives among all predicted positives by the model. Negative predictive value
(NPV) similarly complements specificity, representing the proportion of true negatives
among all predicted negatives by the model. The calculation of each of these metrics,
bounded from 0 to 1, is shown below:

Sensitivity =
TP

TP + FN

Speci f icity =
TN

TN + FP

PPV =
TP

TP + FP

NPV =
TN

TN + FN
where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.

Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve
provides a summary of the model’s overall performance, quantifying its ability to dis-
criminate between positive and negative instances at all thresholds. An AUC score of
1 indicates the perfect performance of a model in discriminating between positive and
negative instances, while a score of 0.5 indicates performance equivalent to random chance.
For segmentation tasks, Dice score and intersection over union (IoU) are both commonly
used metrics that evaluate the overlap between AI-predicted segmentations and the ground
truth. For both metrics, a score of 1 indicates perfect overlap, while a score of 0 indicates no
overlap at all.

Dice score =
2 × Area o f Intersection

Total Area

IoU =
Area o f Intersection

Area o f Union

4. Ankle Fractures

Ankle fractures are among the most common injuries treated by orthopedic surgeons,
accounting for 9% of all bone fractures with an estimated cost of USD 10 billion per year
in the US [21]. The incidence of ankle fractures continues to increase, having tripled in
elderly women over the past 30 years [22]. Treatment of ankle fractures relies on careful
identification of bone lesions and damage to soft tissue and ligaments on both clinical
assessment and imaging [23]. However, nearly 23% of ankle fractures are missed on
initial radiographic imaging due to factors such as anatomical variance, superposition of
structures on radiographs, lack of experience, and high physician workload [24,25]. Left
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untreated, these injuries can result in significant long-term morbidity [26,27]. An ankle
fracture as seen on radiography is shown below in Figure 2.

Figure 2. Distal fibular fracture as seen on lateral ankle radiograph.

Ashkani-Esfahani et al. sought to investigate the performance of deep-learning al-
gorithms in the detection of ankle fractures, especially occult fractures [28]. A dataset of
1050 normal ankle radiographs was collected and matched with 1050 radiographs with
ankle fractures, 72 of which were labeled as occult fractures due to being missed initially
and subsequently diagnosed using additional radiographs or CT images. However, the
group also hypothesized that incorporating multiple radiographic views would increase
the detection of previously occult fractures. Using transfer learning, InceptionV3 [29]
and Resnet-50 [30] models pre-trained with ImageNet [31] were trained with the ankle
radiographs, with inputs as either single-view (AP) radiographs or 3-input structures with
multiple views (AP, mortise, and lateral). Overall, the InceptionV3 model outperformed
Resnet-50 in all performance criteria when using 3-view radiographic image stacks, in-
cluding sensitivity (99% vs. 98%), specificity (99% vs. 94%), PPV (99% vs. 95%), NPV
(99% vs. 97%), accuracy (99% vs. 96%), F1 score (99% vs. 96%), and AUC (99% vs. 98%). The
incorporation of multiple views was important in achieving this performance, improving
InceptionV3’s sensitivity (91% to 99%) and specificity (94% to 99%) when compared to
the use of single views. Additionally, of the 72 occult fractures, the InceptionV3 model
was able to detect 71/72 (98.6%) previously missed fractures, while Resnet-50 detected
69/72 (95.8%).

Given that previous work in ankle fracture detection was often bound by limitations
such as large datasets [32], manual feature extraction [33], or pre-trained models [18], recent
work by Kitamura et al. investigated whether comparable accuracy could be achieved by
training CNNs de novo using a smaller dataset of 596 normal and abnormal ankle cases
with multiple radiographic views [34]. The Inception V3, Resnet, and Xception [35] models
were trained using single views, and ensembles were created from a combination of the
trained models and then evaluated using three views for each ankle case. The ensembles
achieved an accuracy of 81%, an impressive feat given the small dataset size and lack of
reliance on manual feature extraction or pre-trained models.

The details and results of these studies are summarized in Table 1.
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Table 1. Summary of study characteristics for ankle fracture detection models.

Lead Author Year Imaging
Modality

Total Number
of Images * Models Used Model Tasks Performance Metrics

Ashkani-
Esfahani 2022 X-ray 6300 InceptionV3

Resnet-50
Fracture
detection

InceptionV3:
sensitivity 99%,

specificity 99%, PPV
99%, NPV 99%,

accuracy 99%, F1
score 99%, AUC 99%
Resnet-50: sensitivity
98%, specificity 94%,
PPV 95%, NPV 97%,

accuracy 96%, F1
score 96%, AUC 98%.

Kitamura 2019 X-ray 1681
InceptionV3
Resnet-101
Xception

Fracture
detection

Accuracy 81%,
sensitivity 80%,

specificity 83%, PPV
82%, NPV 81%

* Reported as the combined total of training, validation, and testing datasets.

5. Wrist Fractures

Fractures of the distal forearm and wrist are the most common sites of bone fracture
in childhood, accounting for one-third of all cases [36]. Among the carpal bones, scaphoid
fractures (as seen in Figure 3) occur most frequently, representing 2–7% of all skeletal
fractures [37]. Left untreated, 12% of scaphoid fractures may progress to non-union [38],
leading to further complications such as osteonecrosis, degenerative arthritis, and func-
tional loss [39,40]. While radiography is generally the imaging modality of choice in
evaluating such fractures, scaphoid fractures are often radiographically occult and difficult
to diagnose, with estimations for occult fractures ranging from 7% to as high as 50% [41–43].

Figure 3. Scaphoid fracture as seen on ulnar-deviated PA scaphoid radiograph.
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Given the challenges of scaphoid fracture detection, Langerhuizen et al. investigated
the utility of deep-learning algorithms in the identification of such fractures, a field that has
not yet been extensively explored [44]. A dataset comprised of 300 radiographic scaphoid
series was assembled, consisting of 150 scaphoid fracture cases and 150 non-fracture cases,
and used to train a convolutional neural network. On testing, the model achieved an
AUC of 0.77 with 72% accuracy, 84% sensitivity, and 60% specificity. In comparison, a
group of five orthopedic surgeons reading the images had similar accuracy (84%) and
sensitivity (76%), but significantly increased specificity (93%; p < 0.01), owing to 13 false
positive suggestions made by the model that were correctly identified by the clinicians.
Interestingly, the model was able to detect 5 of 6 occult scaphoid fractures that were missed
by all clinician readers.

A year later, Hendrix et al. expanded on these findings, developing a CNN capable of
not only the detection of scaphoid fractures but also segmentation [14]. Given the small
sample size of the previous study, a larger dataset was used, consisting of 1039 conventional
radiographs of the hand, wrist, and scaphoid for training of the scaphoid segmentation
CNN, as well as 3000 radiographs for scaphoid detection training. The segmentation model
achieved a Dice score of 97.4%, while the fracture detection model achieved an AUC of 0.87
with 78% sensitivity, 84% specificity, and 83% PPV. This performance was similar to that of
11 clinician readers, who had an AUC of 0.83 (p = 0.09), thus achieving radiologist-level
performance in the detection of scaphoid fractures.

Hendrix et al. continued this work the following year, using a further expanded
dataset of 5004 conventional hand, wrist, and scaphoid radiographs for the training and
testing of the scaphoid fracture detection model, this time also incorporating multi-view
radiographs (PA, ulnar-deviated PA, oblique, lateral) [45]. The new model achieved a 72%
sensitivity, 93% specificity, 81% PPV, and an AUC of 0.88. Although the AUCs for the model
and that of five musculoskeletal radiologists (0.87) were again similar (p > 0.05), the reading
time for four of the readers was significantly reduced with AI assistance (p < 0.001), with an
average 51% reduction in reading time. Altogether, these three studies show that current
state-of-the-art AI algorithms are able to match the performance of human clinicians in
the detection of scaphoid fractures in conventional radiographs and improve diagnostic
efficiency, but are yet to supersede the accuracy of human readers.

In addition to scaphoid fractures, AI methods have also been investigated in the
detection of various other fractures of the wrist. In 2022, Hardalaç et al. evaluated the
performances of several deep-learning models in detecting fractures of the radius and ulna
using a collection of 542 pediatric wrist radiographs from 275 patients [46]. The models,
which were pre-trained with the COCO dataset [47], included SABL [48], RegNet [49],
RetinaNet [50], PAA [51], Libra R-CNN [52], FSAF [53], Faster R-CNN [54], Dynamic
R-CNN [55], and DCN [56]. The best-performing individual model was the PAA model,
achieving an AP50 of 0.754. Six ensemble models were then developed to further improve
detection results, of which the WFD-C ensemble model displayed the strongest results with
an AP50 of 0.864, an increase of 0.11 (14.59%) over the standalone PAA model.

Later work by Hržić et al. compared the performance of deep-learning models for
wrist fracture detection to that of clinicians using a dataset of 19,700 pediatric wrist radio-
graphs [13]. The exact types of wrist fractures included in the study and the distribution of
these fractures were not specified. Several models based on YOLOv4 [57] and U-Net [58]
architectures were trained, with the best-performing model (YOLO 512 Anchors) achieving
an accuracy of 0.95 in binary fracture detection, 0.86 in appropriately counting the number
of fractures, and 0.90 in fracture localization (defined as an IoU of greater than 0.5 between
the predicted and true bounding boxes for each fracture). Compared to five radiologists,
the YOLO 512 Anchors model performed better than four of the radiologists (p < 0.05)
and at the same level as the fifth radiologist (p = 0.0654), with a model AUC of 0.965
compared to an average radiologist AUC of 0.831. When the radiologists utilized the model
to assist their reads, their performances improved by an average F1-score of 0.067 (8.0%)
with significant improvement in two of the readers (p < 0.05), leading the researchers to
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conclude that the model could feasibly be used to support clinical decision-making tasks in
wrist fracture detection.

The details and results of these studies are summarized in Table 2.

Table 2. Summary of study characteristics for wrist fracture detection models.

Lead Author Year Imaging
Modality Region Total Number

of Images Models Used Model Tasks Performance Metrics

Langerhuizen 2020 X-ray Scaphoid 300

Pre-trained
CNN (Visual

Geometry
Group) [59]

Fracture
detection

AUC 0.77, accuracy
72%, sensitivity 84%,

specificity 60%

Hendrix 2021 X-ray Scaphoid 4229 DenseNet-121
[60]

Fracture
detection,
scaphoid

segmentation

AUC 0.87, sensitivity
78%, specificity 84%,
PPV 83%, Dice score

97.4%

Hendrix 2023 X-ray Scaphoid 19,111 InceptionV3

Fracture
detection and
localization,

scaphoid
localization,

laterality
classification

AUC 0.88, sensitivity
72%, specificity 93%,

PPV 81%

Hardalaç 2022 X-ray
Radius,

Ulna
(Pediatric)

542

SABL, RegNet,
RetinaNet,
PAA, Libra

R-CNN, FSAF,
Faster R-CNN,

Dynamic
R-CNN, DCN

Fracture
detection and
localization

AP50 0.864

Hržić 2022 X-ray Wrist
(Pediatric) 19,700 YOLOv4

Fracture
detection,

enumeration,
and

localization

AUC 0.965, accuracy
95%, sensitivity 95%,

PPV 96%, F1 score 0.95
Fracture enumeration:

Accuracy 86%
Fracture localization:

Accuracy 90%

6. Hip Fractures

Hip fractures are a common cause of hospitalization, morbidity, and mortality, ac-
counting for the majority of fracture-related healthcare expenditure in men and women
over 50 years old [61]. Among patients over 65, one in three will suffer a fall each year,
with 10–15% of these falls resulting in a hip fracture [62]. While pelvic radiography is
often used for the evaluation of these fractures (Figure 4), a minority of patients will have
radiographically occult hip fractures, with reported rates between 3–10% among negative
radiographs [63]. In such cases, additional imaging such as CT or MRI must be performed,
resulting in increased diagnostic costs and delays in care [64]. AI may therefore provide a
powerful tool in the diagnosis of previously occult hip fractures.

A systematic review and meta-analysis by Lex et al. evaluates the performance of
AI in diagnosing hip fractures on pelvic radiographs as well as predicting postoperative
outcomes such as mortality [65]. Of 39 included studies, 18 used AI for the diagnosis of
hip fractures, while the other 21 focused on AI’s ability to predict postoperative outcomes,
with a combined total of 754,537 radiographs used for the training, validation, and testing
of machine learning models. On pooled data analysis, the odds ratio for the diagnostic
error of the models as compared to clinician readers was calculated to be 0.79 (p = 0.36). For
mortality predictions, the AUC of the models was 0.84, while traditional statistical methods
using multivariable linear or logistic regression had an AUC of 0.79 (p = 0.09). As such,
this study demonstrates that AI methods provide a promising approach for hip fracture
diagnosis and prognosis from pelvic radiographs, although current implementations do
not yet provide a substantial improvement over traditional methodologies.

Recent work by Kitamura continues to broaden the applications of AI in pelvic radio-
graph analysis, investigating the utility of deep learning not only for the detection of hip
fractures, but also for pelvic fractures, acetabular fractures, radiograph positioning, and
the presence of hardware [66]. A total of 14,374 radiographic images from 7440 patients
were used to train and test the deep-learning models, with labels created to denote the
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presence or absence of hardware as well as radiograph positioning, which included pelvic,
hip, and chest images, with each position further including a number of different views.
For proximal femoral fracture detection, the model achieved an AUC of 0.95, which was
comparable to other recent studies with AUCs of 0.97–0.99 [32,67] that required manual
isolation of the femur using bounding boxes. Performances for fracture detection in other
anatomical locations varied, with AUCs as low as 0.70 for posterior pelvic fractures and as
high as 0.85 for acetabular fractures. For the detection of radiograph position and presence
of hardware, the models achieved an AUC of 0.99–1.00. Altogether, this work highlights
novel applications of deep learning in multiple aspects of pelvic radiography.

Figure 4. Femoral neck fracture as seen on pelvic radiograph.

In order to more accurately omit false negatives during model development,
Mawatari et al. developed a deep CNN for the detection of hip fractures in pelvic ra-
diographs using CT and MRI as a gold standard [16]. The study used a dataset consisting of
radiographs from a population of 316 patients with diagnosed proximal femoral fractures
who had also received CT or MRI. The radiographs, which were manually annotated by
radiologists with reference to CT and MRI for ROI selection, were then used to train the
model, and the diagnostic performance of seven clinician readers with and without the
CNN was then evaluated. The average AUC of the readers without the CNN was 0.832,
which increased to 0.876 (p < 0.05) when guided by model output. Interestingly, the AUC of
the CNN alone was 0.905, outperforming the combined readers even with CNN assistance.
However, this was explained by variability in the experience levels of the readers, with
the more experienced clinicians scoring higher than the CNN, achieving average AUCs of
0.934 and 0.920 with and without model interpretation, respectively.

The details and results of these studies are summarized in Table 3.
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Table 3. Summary of study characteristics for hip fracture detection models.

Lead Author Year Imaging
Modality Region Total Number

of Images Models Used Model Tasks Performance Metrics

Lex 2023 X-ray
Femoral Neck

Intertrochanteric
Subtrocanteric

754,537 1

Various models,
including: AlexNet

[68], GoogLeNet [69],
ResNet-50,

DenseNet-121,
ResNet-18, PelviXNet

[70], Faster RCNN

Fracture
detection,
outcome

prediction

Diagnosis:
odds ratio 0.79,

sensitivity 89.3%,
specificity 87.5%, F1

score 0.90
Postop mortality:

AUC 0.84

Kitamura 2020 X-ray
Pelvic

Acetabular
Hip

14,374 DenseNet-121

Fracture
detection,
hardware
detection,
imaging
position

Proximal femoral:
AUC 0.95

Acetabular:
AUC 0.85

Anterior pelvic: AUC
0.77

Posterior pelvic:
AUC 0.70

Radiograph position:
AUC 0.99

Hardware presence:
AUC 1.00

Mawatari 2020 X-ray Proximal
Femoral 352 GoogLeNet Fracture

detection AUC 0.905

1 Pooled total, with 39,598 images used for fracture detection and 714,939 for outcome prediction.

7. Rib Fractures

Rib fractures are the most common injury in blunt chest trauma, with an estimated
prevalence of 10–38% among all trauma patients [71]. The number and pattern of rib
fractures are an important indicator of trauma severity, with an increased number of
fractured ribs correlated with increased morbidity and mortality [72]. Unless identified and
treated appropriately, rib fractures can present with life-threatening disease, particularly in
elderly patients [73]. Among imaging modalities, plain radiography and CT are the most
commonly used for rib fracture detection. Although radiography is fast and convenient,
the detection rate is poor, missing over 50% of rib fractures [74]. On the other hand, while
CT provides a more detailed assessment of rib fractures (Figure 5), it still presents with a
misdiagnosis rate of 19.2–26.8% [75,76], and diagnosis can be tedious and difficult given
the large amount of CT slices and the complex shape and course of the ribs across the
numerous CT sections [77]. This presents a unique opportunity for machine learning to
augment the accuracy and efficiency of rib fracture reads.

Figure 5. Left rib fracture (circled) as seen on axial CT.



Bioengineering 2024, 11, 338 10 of 20

In 2020, Jin et al. developed the deep-learning model FracNet for the automatic
detection and segmentation of rib fractures on CT images [78]. The model utilizes a dataset
of 900 chest-abdomen CT scans with a total of 7473 annotated traumatic rib fractures.
On testing, FracNet achieved a detection sensitivity of 92.9%, outperforming deep neural
network counterparts such as 3D FCN [79] (87.8%) and 3D DeepLab [80] (91.3%) as well
as reads from two expert radiologists (83.1%). FracNet also boasted an 86% decrease in
reading time as compared to human clinicians, although it was associated with a higher
number of false positives per scan (5.27 vs. R1: 1.34 and R2: 0.92 from the two readers,
respectively). In the segmentation of rib fractures, FracNet continued to exhibit impressive
performance, with a Dice score of 71.5% as compared to 3D FCN (66.2%), 3D DeepLab
(68.7%), and clinician readers (64.7%).

Later work carried out by Zhang et al. in 2021 similarly used deep learning for rib
fracture detection using a collection of CT images from 198 patients [81]. On testing, the
trained model was able to identify 687 of 865 true fractures (79.4%), including a large
number of fractures not originally detected by the two radiologists included in the study
(R1: 75, R2: 66). When the clinicians utilized the model to augment their reads, they
exhibited increased sensitivity in rib fracture detection (R1: 6.1%, R2: 4.8%; p < 0.05) as well
as decreased reading times (R1: 36%, R2: 34%). Again, however, the standalone model
had a higher false positive rate (0.43) than the two human readers (R1: 0.16, R2: 0.19;
p < 0.001). Together, these studies show that deep-learning models may be a valuable asset
in improving the sensitivity and efficiency of clinician rib fracture reads, although there are
still challenges to using them as a standalone tool.

Recent work by Yao et al. further improved the precision of deep-learning methods
with their Rib Fracture Detection System, a model utilizing a three-step algorithm for the
detection of rib fractures in CT imaging consisting of bone segmentation, rib location, and
rib fracture classification [82]. Using a dataset of annotated chest CTs from 1707 patients,
their model achieved a precision of 0.869 and a recall of 0.913, outperforming competing
algorithms such as FracNet, Fast RCNN [83], Faster RCNN, and YOLOv3 [84], and exhibit-
ing comparable precision to that of two clinician readers (R1: 0.935, R2: 0.928) but with
higher recall (R1: 0.693, R2: 0.853).

Given the focus of previous models on CT images, Gao et al. proposed a deep-learning
method for automated rib fracture detection in digital radiographs [85]. CCE-Net, a
novel network architecture for rib fracture detection based on the Faster RCNN framework,
integrates contralateral, contextual, and edge-enhanced modules to improve AI detection of
fractures. Using a dataset of 1639 radiographs with 2703 rib fractures, CCE-Net attained an
AP50 of 0.911 and a recall of 0.934, an improvement of 15.76% and 6.74%, respectively, over
the original Faster RCNN (0.787, 0.875). The model similarly outperformed other methods
such as Libra RCNN (0.825, 0.886), Dynamic RCNN (0.887, 0.903), Cascade RCNN [86]
(0.910, 0.929), and YOLO v4 (0.813, 0.881). The details and results of these studies are
summarized in Table 4.

Table 4. Summary of study characteristics for wrist fracture detection models.

Lead Author Year Imaging
Modality

Total Number
of Images 1 Models Used Model Tasks Performance Metrics

Jin 2020 CT 900 FracNet Fracture detection
and segmentation

Sensitivity 93%, Dice
score 71.5%

Zhang 2021 CT 198 Foveal Network [87]
Faster R-CNN

Rib segmentation,
fracture detection Sensitivity 79.4%

Yao 2021 CT 1707 U-Net
3D DenseNet

Bone segmentation,
fracture detection

Sensitivity 91%, PPV
87%, NPV 97%, F1

score 0.890

Gao 2022 X-ray 1639 CCE-Net Fracture detection
and localization

Sensitivity 93%, AP50
0.911

1 For CT, this is listed as total number of CT scans.
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8. Commercial Availability

A number of AI products for bone fracture detection in these anatomical locations
have already received clearance from the U.S. Food and Drug Administration (FDA). A
comprehensive search for FDA-approved, commercially available products was conducted
using the FDA webpage for AI and machine-learning-enabled medical devices [88], which
is current as of 6 December 2023.

In May 2018, the FDA approved the marketing of the AI-based algorithm OsteoDetect
(Imagen Technologies) for the detection of distal radial fractures in wrist radiographs [89].
The software localizes the fracture with a bounding box, achieving an AUC of 0.965, a
sensitivity of 92.1%, and a specificity of 90.2%. Imagen Technologies also evaluated the
performance of OsteoDetect in assisting 24 emergency medicine physicians with reading
PA and lateral wrist radiographs, finding an improvement in overall AUC (0.84 to 0.89),
sensitivity (75% to 80%), and specificity (89% to 91%).

Two years later, they also received clearance for their product FractureDetect, which
similarly localizes bone fractures on radiographs but includes additional anatomical loca-
tions such as the shoulder, humerus, elbow, forearm, femur, knee, tibia, fibula, ankle, pelvis,
hip, and clavicle [90]. The algorithm achieved an AUC of 0.98, a sensitivity of 95%, and a
specificity of 89% on a testing dataset of 11,970 radiographs, and once again improved the
performance of 24 clinician readers in overall AUC (0.91 to 0.95), sensitivity (82% to 90%),
and specificity (89% to 92%).

uAI EasyTriage-Rib (Shanghai United Imaging Intelligence) received FDA clearance
in 2021 as a workflow optimization algorithm that automatically detects and flags CT scans
with three or more acute rib fractures, with an AUC of 0.94, a sensitivity of 93%, and a
specificity of 85% [91]. Several months later, BriefCase for RibFx Triage (Aidoc Medical)
received approval, an AI algorithm with similar functionality in notifying users of CT scans
with three or more rib fractures [92]. FDA submission data showed an AUC of 0.976, a
sensitivity of 96.7%, and a specificity of 90.4% in a multicenter study of 279 test cases. The
company also showed that BriefCase had a time-to-notification of only 4.2 min, while the
standard of care was associated with an 89.4 min delay between image acquisition and the
time when a radiologist would first open the exam.

In 2022, BoneView (Gleamer) was approved, a software that provides bounding box
localization of radiographic fractures in a variety of anatomical regions including the upper
and lower extremities, pelvis, hip, shoulder, clavicle, ribs, and thoracic and lumbosacral
spine, with a sensitivity of 93% and a specificity of 93% [93]. A study in 2021 funded by
the company showed that BoneView enhanced the sensitivity (64.8% to 75.2%; p < 0.001)
and specificity (90.6% to 95.6%; p = 0.001) of 24 clinician readers while reducing the overall
reading time by 6.3 s per examination (p = 0.046) [94].

Later, that year saw the release of Rayvolve (AZmed), which offers similar functional
capabilities as FractureDetect with additional fracture localization in the hands and feet [95].
The model’s standalone performance showed a sensitivity of 98.8%, a specificity of 88.6%,
and an AUC of 0.986. Research conducted by the company also showed that usage of
Rayvolve improved the diagnostic performance of 24 clinician readers, with an average
increase in AUC from 0.846 to 0.893 (p = 0.0041), alongside increases in sensitivity (0.866 to
0.955) and specificity (0.826 to 0.831).

The performance of these products has also been externally validated by various stud-
ies. Recent work by Oppenheimer et al. demonstrated that implementation of BoneView
led to increased diagnostic performance among residents in the study, with 25 additional
fractures being identified in a dataset of 367 ground truth fractures, along with improve-
ments in sensitivity (84.7% to 91.3%) and specificity (97.1% to 97.35%) [96]. Another study
by Bousson et al. investigated the performance of various commercial algorithms, including
Rayvolve and BoneView, in detecting acute fractures for patients admitted to the emer-
gency department. The products demonstrated strong performance in daily radiological
practice, with sensitivities of 92.6% and 91.3% and specificities of 70.4% and 90.5% for the
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two algorithms, respectively [97]. A summary table detailing the characteristics of these
products is provided in Table 5.

Table 5. Summary of FDA-approved AI products for bone fracture detection.

Product
(Company) Approval Year Imaging Modality Region Functionality Performance Metrics

OsteoDetect
(Imagen

Technologies)
2018 X-ray Distal radius Fracture detection

and localization
AUC 0.97, sensitivity
92%, specificity 90%

FractureDetect
(Imagen

Technologies)
2020 X-ray

Ankle, clavicle,
elbow, femur,
forearm, hip,

humerus, knee,
pelvis, shoulder,

tibia, fibula, wrist

Fracture detection
and localization

AUC 0.98, sensitivity
95%, specificity 89%

uAI
EasyTriage-Rib

(Shanghai United
Imaging Alliance)

2021 CT Ribs Notification if ≥3
fractures

AUC 0.94, sensitivity
93%, specificity 85%

BriefCase (RibFx)
(Aidoc Medical) 2021 CT Ribs Notification if ≥3

fractures
AUC 0.98, sensitivity
97%, specificity 90%

BoneView
(Gleamer) 2022 X-ray

Ankle, foot, knee,
tibia, fibula, wrist,

hand, elbow,
forearm, humerus,
shoulder, clavicle,
pelvis, hip, femur,
ribs, thoracic spine,
lumbosacral spine

Fracture detection
and localization

AUC 0.93, sensitivity
93%, specificity 93%

Rayvolve
(AZmed) 2022 X-ray

Ankle, clavicle,
elbow, forearm,
hip, humerus,
knee, pelvis,

shoulder, tibia,
fibula, wrist, hand,

foot

Fracture detection
and localization

AUC 0.99, sensitivity
99%, specificity 89%

9. Discussion

In summary, we detail recent contributions of AI methodology to the detection of bone
fractures of the ankle, wrist, hip, and ribs, as well as currently available FDA-approved
products for these tasks. However, there are countless additional applications of AI in
musculoskeletal imaging. Numerous studies have investigated the performance of deep-
learning methods for fracture detection in other anatomical locations such as the verte-
brae [98,99], humerus [15], femur [32,100,101], shoulder [102,103], elbow [104,105], and
skull [106]. While not fully covered within the scope of this review, we briefly summarize
current AI methodologies for these types of fractures:

In the vertebrae, Shen et al., in 2023, trained a multitask detection network on 11,397 ra-
diographic images, achieving an overall internal accuracy, sensitivity, and specificity of
97.41%, 84.08%, and 97.25%, respectively, and an overall external accuracy, sensitivity, and
specificity of 96.85%, 83.35%, and 94.70%, respectively [98]. Zhang et al. in 2023 trained a
U-Net/GCN/ResNet-based CNN model on 1217 CT images. For fracture detection, they
achieved a sensitivity of 95.23%, an accuracy of 97.93%, and a specificity of 98.35%. For
fracture classification, they achieved AUCs of 0.904, 0.945, 0.878, and 0.942 for the four
types of vertebral fractures, respectively [99].

In the humerus, Chung et al., in 2018, trained a ResNet CNN on 1891 radiograph
images of four types of humerus fractures, achieving an overall AUC of 0.996, sensitivity
of 0.99, and specificity of 0.97 [15]. In the femur, Beyaz et al., in 2020, trained a CNN on
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234 radiographic images with a genetic algorithm approach to optimize hyperparameters,
achieving an accuracy of 79.3%, sensitivity of 82.9%, and specificity of 72.9% [100]. Similarly,
Gale et al., in 2017, trained a DenseNet CNN on 53,278 radiographic images, achieving an
AUC of 0.994, an accuracy of 97%, a precision of 99%, a recall of 95%, and an F1 score of
0.97 [32]. This was further validated by Oakden-Rayner et al. in 2022, who trained the same
model on 45,786 radiographic images and achieved an AUC of 0.994 on internal validation
and an AUC of 0.969 on external validation [101].

In the shoulder, Uysal et al., in 2021, trained 26 deep-learning models on the MURA X-
ray dataset for two ensemble models, with the first achieving an accuracy of 0.846 and AUC
of 0.886, and the second having an accuracy of 0.847 and AUC of 0.870 [102]. Magnéli et al.
in 2023 trained a modified ResNet CNN on 7189 radiographic images, achieving an AUC of
0.96 for clavicle fractures and 0.87 for scapula fractures [103]. In the elbow, Rayan et al. in
2019 trained a multiview Xception CNN on 58,817 pediatric radiographic images, achieving
an AUC of 0.95, accuracy of 88%, sensitivity of 91%, and specificity of 84% [104]. Luo
et al., in 2021, took a knowledge-guided curriculum learning approach to train a multiview
CNN model on 1964 radiographic images, achieving an AUC of 0.974 and an accuracy of
0.889 [105].

In the skull, Choi et al., in 2022, trained a YOLOv3 CNN on 413 radiographic images,
achieving an AUC of 0.922, sensitivity of 81.1%, and specificity of 91.3% on an internal test
set, and an AUC of 0.870, sensitivity of 78.9% and specificity of 88.2% on the external test
set. Model-assisted AUC improvements of 0.094 and 0.069 were observed for radiology
residents and emergency physicians, respectively, compared to diagnosis without AI
assistance. However, no statistically significant improvement was observed in pediatric
radiologists [106].

Expanding beyond bone fractures, models have also been developed for the diag-
nosis of ACL tears [107], meniscal tears [108,109], osteoarthritis [110], and cartilage le-
sions [111]. Other models are capable of automated grading of various musculoskeletal
diseases [112–114] as well as augmenting several aspects of the image acquisition process,
such as protocoling [115], reducing MRI acquisition times [116], and improving image
quality [117]. These examples only touch the surface of what is possible with current
technology, especially as the field continues to grow.

9.1. Limitations

While recent advances in machine learning have made applications of AI in bone frac-
ture detection more feasible than ever, there remain numerous challenges to be addressed
for both the development and implementation of AI methods. Conventional deep-learning
methods, as used by the majority of studies in this review, require large amounts of anno-
tated data, which is a tedious, time-consuming, and often prohibitively expensive process.
Given the complex regulatory and privacy concerns associated with the sharing of medical
images, the field currently suffers from an overall lack of high-quality annotated images, as
many datasets are not publicly available for research purposes [118,119]. This issue can be
seen in many of the studies covered by this review, which were generally performed as
retrospective, single-center studies on internal datasets unless otherwise specified. Because
images are acquired using different protocols varying by institution, this lack of external
validation presents a major limitation to the generalizability and accuracy of developed
models, as they may suffer from decreased performance when used on external datasets.
Lack of standardization across datasets also leads to intrinsic model biases depending
on the geographic locations, pathologies, and imaging modalities represented in a given
dataset [120,121].

Similarly, imaging quality may also affect model performance in fracture detection.
Work by Lu et al. proposes a reinforcement learning and transformer-based solution to
assess and account for image distortion (e.g., motion artifacts, noise, contrast dosing) to
improve diagnostic accuracy in coronary CT angiography [122]. While this has not yet been
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explicitly studied in the context of fracture detection to the best of the authors’ knowledge,
techniques such as this may have utility in this space.

These issues generate questions surrounding the performance of proposed AI models
in actual clinical settings. As shown in this review, AI methods are not devoid of making
errors, with the inherent architecture of these models making it difficult to decipher the
decision-making and rationale behind incorrect outputs. Due to the diversity of visual
characteristics associated with any given pathology, even overall well-performing models
may consistently misdiagnose specific subsets of cases, especially when imaging features
are subtle or underrepresented [123]. Given that models generally do not report uncertainty
behind decisions, this may lead to model outputs that would be clearly erroneous to a
human reader. Issues surrounding the accountability of such decisions and their impact
on patient care must be thoroughly and explicitly addressed before these models can be
seamlessly integrated into clinical workflows.

9.2. Future Directions

The future of AI in radiology is promising. Current models are capable of clinical
tasks such as diagnosis, prognosis, classification, and segmentation, with performances
that match human clinicians and only continue to improve.

An important contribution to the field has been the recent improvement of self-
supervised and unsupervised learning methods, which are able to learn from large amounts
of data without the need for manual annotations [124]. Models using these approaches have
already achieved similar or even better performances than models trained with traditional
supervised learning methods [125–127], giving rise to the idea of AI foundation models.
While most current models are trained for specific applications with limited fluidity in
adapting to new tasks, foundation models are able to be trained just once on large-scale
datasets and subsequently fine-tuned to perform a wide array of downstream tasks, offer-
ing newfound flexibility and generalizability. Current medical imaging foundation models
are capable of tasks such as the automatic segmentation of medical images [128,129], car-
diac function assessment with text report generation from echocardiograms [130], and the
diagnosis and prognosis of ocular diseases associated with retinal images [131].

The question of how these algorithms will be implemented into clinical workflows
remains unanswered. Numerous studies have already demonstrated the feasibility of
AI in improving the accuracy and efficiency of clinician readers in addition to boasting
impressive standalone performance. Potential applications of AI models in radiology
include augmentation of reads, validation of results, or perhaps the offloading of simple
diagnoses to AI to allow radiologists to focus on more cognitively challenging tasks, as
suggested by Jha and Topol [132]. However, there is no easy answer to this question, as it
involves a complex interplay between patients, radiologists, and other healthcare providers
in addition to associated reimbursement policies and legal ramifications. We continue to
await further research on how these algorithms will impact patient outcomes, which may
help uncover the optimal way to utilize AI in clinical practice, especially as the scope of AI
continues to evolve.

10. Conclusions

Deep-learning models for bone fracture detection in the ankle, wrist, hip, and ribs
have achieved performance that is comparable or superior to that of clinician readers.
These algorithms are already becoming commercially available for integration into clinical
workflows, providing numerous benefits to radiologists such as increased diagnostic
accuracy and efficiency. The utility of AI in fracture detection and radiology on a broader
scale is an area of active research, and the capabilities of generated models continue to
rapidly evolve. While their exact applications in clinical practice remain to be determined,
AI methods have the potential to optimize radiologist workflows and enhance healthcare
delivery for both patients and providers, and clinicians should be informed on the current
state of AI as it will likely impact the future practice of radiology.
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46. Hardalaç, F.; Uysal, F.; Peker, O.; Çiçeklidağ, M.; Tolunay, T.; Tokgöz, N.; Kutbay, U.; Demirciler, B.; Mert, F. Fracture Detection in
Wrist X-Ray Images Using Deep Learning-Based Object Detection Models. Sensors 2022, 22, 1285. [CrossRef] [PubMed]

47. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. ISBN 978-3-319-10601-4.

48. Wang, J.; Zhang, W.; Cao, Y.; Chen, K.; Pang, J.; Gong, T.; Shi, J.; Loy, C.C.; Lin, D. Side-Aware Boundary Localization for
More Precise Object Detection. In Computer Vision—ECCV 20142020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.;
Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12349, pp. 403–419.
ISBN 978-3-030-58547-1.

49. Xu, J.; Pan, Y.; Pan, X.; Hoi, S.; Yi, Z.; Xu, Z. RegNet: Self-Regulated Network for Image Classification. IEEE Trans. Neural Netw.
Learn. Syst. 2023, 34, 9562–9567. [CrossRef] [PubMed]

50. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.
2020, 42, 318–327. [CrossRef] [PubMed]

51. Kim, K.; Lee, H.S. Probabilistic Anchor Assignment with IoU Prediction for Object Detection. In Computer Vision—ECCV ECCV
2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer International Publishing:
Cham, Switzerland, 2020; Volume 12370, pp. 355–371. ISBN 978-3-030-58594-5.

52. Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra R-CNN: Towards Balanced Learning for Object Detection. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 821–830.

53. Zhu, C.; He, Y.; Savvides, M. Feature Selective Anchor-Free Module for Single-Shot Object Detection. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 840–849.

54. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

55. Zhang, H.; Chang, H.; Ma, B.; Wang, N.; Chen, X. Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training.
In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer
International Publishing: Cham, Switzerland, 2020; Volume 12360, pp. 260–275. ISBN 978-3-030-58554-9.

56. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 764–773.

57. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection 2020. arXiv 2020,
arXiv:2004.10934.

58. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi,
A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

59. Zhong, S.; Li, K.; Feng, R. Deep Convolutional Hamming Ranking Network for Large Scale Image Retrieval. In Proceedings of
the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 1018–1023.

60. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 2261–2269.

61. Kanis, J.A.; Odén, A.; McCloskey, E.V.; Johansson, H.; Wahl, D.A.; Cooper, C. on behalf of the IOF Working Group on Epidemiology
and Quality of Life. A Systematic Review of Hip Fracture Incidence and Probability of Fracture Worldwide. Osteoporos. Int. 2012,
23, 2239–2256. [CrossRef] [PubMed]

62. Berry, S.D.; Miller, R.R. Falls: Epidemiology, Pathophysiology, and Relationship to Fracture. Curr. Osteoporos. Rep. 2008, 6,
149–154. [CrossRef] [PubMed]

63. Rizzo, P.F.; Gould, E.S.; Lyden, J.P.; Asnis, S.E. Diagnosis of Occult Fractures about the Hip. Magnetic Resonance Imaging
Compared with Bone-Scanning. JBJS 1993, 75, 395. [CrossRef] [PubMed]

64. Rehman, H.; Clement, R.G.E.; Perks, F.; White, T.O. Imaging of Occult Hip Fractures: CT or MRI? Injury 2016, 47, 1297–1301.
[CrossRef] [PubMed]

65. Lex, J.R.; Di Michele, J.; Koucheki, R.; Pincus, D.; Whyne, C.; Ravi, B. Artificial Intelligence for Hip Fracture Detection and
Outcome Prediction: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2023, 6, e233391. [CrossRef] [PubMed]

66. Kitamura, G. Deep Learning Evaluation of Pelvic Radiographs for Position, Hardware Presence, and Fracture Detection. Eur. J.
Radiol. 2020, 130, 109139. [CrossRef] [PubMed]

67. Krogue, J.D.; Cheng, K.V.; Hwang, K.M.; Toogood, P.; Meinberg, E.G.; Geiger, E.J.; Zaid, M.; McGill, K.C.; Patel, R.; Sohn, J.H.;
et al. Automatic Hip Fracture Identification and Functional Subclassification with Deep Learning 2019. Adiology Artif. Intell. 2020,
2, e190023.

https://doi.org/10.1007/s00330-022-09205-4
https://www.ncbi.nlm.nih.gov/pubmed/36380195
https://doi.org/10.3390/s22031285
https://www.ncbi.nlm.nih.gov/pubmed/35162030
https://doi.org/10.1109/TNNLS.2022.3158966
https://www.ncbi.nlm.nih.gov/pubmed/35333722
https://doi.org/10.1109/TPAMI.2018.2858826
https://www.ncbi.nlm.nih.gov/pubmed/30040631
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1007/s00198-012-1964-3
https://www.ncbi.nlm.nih.gov/pubmed/22419370
https://doi.org/10.1007/s11914-008-0026-4
https://www.ncbi.nlm.nih.gov/pubmed/19032925
https://doi.org/10.2106/00004623-199303000-00011
https://www.ncbi.nlm.nih.gov/pubmed/8444918
https://doi.org/10.1016/j.injury.2016.02.020
https://www.ncbi.nlm.nih.gov/pubmed/26993257
https://doi.org/10.1001/jamanetworkopen.2023.3391
https://www.ncbi.nlm.nih.gov/pubmed/36930153
https://doi.org/10.1016/j.ejrad.2020.109139
https://www.ncbi.nlm.nih.gov/pubmed/32623269


Bioengineering 2024, 11, 338 18 of 20

68. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

69. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–9.

70. Cheng, C.-T.; Wang, Y.; Chen, H.-W.; Hsiao, P.-M.; Yeh, C.-N.; Hsieh, C.-H.; Miao, S.; Xiao, J.; Liao, C.-H.; Lu, L. A Scalable
Physician-Level Deep Learning Algorithm Detects Universal Trauma on Pelvic Radiographs. Nat. Commun. 2021, 12, 1066.
[CrossRef] [PubMed]

71. Ziegler, D.W.; Agarwal, N.N. The morbidity and mortality of rib fractures. J. Trauma. Acute Care Surg. 1994, 37, 975. [CrossRef]
[PubMed]

72. Talbot, B.S.; Gange, C.P.; Chaturvedi, A.; Klionsky, N.; Hobbs, S.K.; Chaturvedi, A. Traumatic Rib Injury: Patterns, Imaging
Pitfalls, Complications, and Treatment. RadioGraphics 2017, 37, 628–651. [CrossRef] [PubMed]

73. Barnea, Y.; Kashtan, H.; Skornick, Y.; Werbin, N. Isolated Rib Fractures in Elderly Patients: Mortality and Morbidity. Can. J. Surg.
2002, 45, 43–46. [PubMed]

74. Traub, M.; Stevenson, M.; McEvoy, S.; Briggs, G.; Lo, S.K.; Leibman, S.; Joseph, T. The Use of Chest Computed Tomography
versus Chest X-Ray in Patients with Major Blunt Trauma. Injury 2007, 38, 43–47. [CrossRef] [PubMed]

75. Banaste, N.; Caurier, B.; Bratan, F.; Bergerot, J.-F.; Thomson, V.; Millet, I. Whole-Body CT in Patients with Multiple Traumas:
Factors Leading to Missed Injury. Radiology 2018, 289, 374–383. [CrossRef] [PubMed]

76. Cho, S.H.; Sung, Y.M.; Kim, M.S. Missed Rib Fractures on Evaluation of Initial Chest CT for Trauma Patients: Pattern Analysis and
Diagnostic Value of Coronal Multiplanar Reconstruction Images with Multidetector Row CT. BJR 2012, 85, e845–e850. [CrossRef]
[PubMed]

77. Ringl, H.; Lazar, M.; Töpker, M.; Woitek, R.; Prosch, H.; Asenbaum, U.; Balassy, C.; Toth, D.; Weber, M.; Hajdu, S.; et al. The Ribs
Unfolded—A CT Visualization Algorithm for Fast Detection of Rib Fractures: Effect on Sensitivity and Specificity in Trauma
Patients. Eur. Radiol. 2015, 25, 1865–1874. [CrossRef]

78. Jin, L.; Yang, J.; Kuang, K.; Ni, B.; Gao, Y.; Sun, Y.; Gao, P.; Ma, W.; Tan, M.; Kang, H.; et al. Deep-Learning-Assisted Detection and
Segmentation of Rib Fractures from CT Scans: Development and Validation of FracNet. EBioMedicine 2020, 62, 103106. [CrossRef]
[PubMed]

79. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA,
2015; pp. 3431–3440.

80. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.,
Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 833–851.

81. Zhang, B.; Jia, C.; Wu, R.; Lv, B.; Li, B.; Li, F.; Du, G.; Sun, Z.; Li, X. Improving Rib Fracture Detection Accuracy and Reading
Efficiency with Deep Learning-Based Detection Software: A Clinical Evaluation. Br. J. Radiol. 2021, 94, 20200870. [CrossRef]
[PubMed]

82. Yao, L.; Guan, X.; Song, X.; Tan, Y.; Wang, C.; Jin, C.; Chen, M.; Wang, H.; Zhang, M. Rib Fracture Detection System Based on
Deep Learning. Sci. Rep. 2021, 11, 23513. [CrossRef] [PubMed]

83. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

84. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement 2018. arXiv 2018, arXiv:1804.02767.
85. Gao, Y.; Liu, H.; Jiang, L.; Yang, C.; Yin, X.; Coatrieux, J.-L.; Chen, Y. CCE-Net: A Rib Fracture Diagnosis Network Based on

Contralateral, Contextual, and Edge Enhanced Modules. Biomed. Signal Process. Control 2022, 75, 103620. [CrossRef]
86. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.
87. Brosch, T.; Saalbach, A. Foveal Fully Convolutional Nets for Multi-Organ Segmentation. In Proceedings of the Medical Imaging

2018: Image Processing; SPIE: Bellingham, WA, USA, 2018; Volume 10574, pp. 198–206.
88. U.S. Food & Drug Administration. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. Available

online: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-
aiml-enabled-medical-devices (accessed on 18 February 2024).

89. U.S. FDA Center for Devices and Radiological Health. Evaluation of Automatic Class III Designation for OsteoDetect: Decision
Summary. Available online: https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180005.pdf (accessed on 20 January 2024).

90. U.S. FDA Center for Devices and Radiological Health. K193417 FractureDetect (FX) Approval Letter. Available online: https:
//www.accessdata.fda.gov/cdrh_docs/pdf19/K193417.pdf (accessed on 27 January 2024).

91. U.S. FDA Center for Devices and Radiological Health. K193271 uAI EasyTriage-Rib Approval Letter. Available online: https:
//www.accessdata.fda.gov/cdrh_docs/pdf19/K193271.pdf (accessed on 27 January 2024).

92. U.S. FDA Center for Devices and Radiological Health. K202992 BriefCase for RibFx Triage Approval Letter. Available online:
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K202992.pdf (accessed on 18 February 2024).

https://doi.org/10.1145/3065386
https://doi.org/10.1038/s41467-021-21311-3
https://www.ncbi.nlm.nih.gov/pubmed/33594071
https://doi.org/10.1097/00005373-199412000-00018
https://www.ncbi.nlm.nih.gov/pubmed/7996614
https://doi.org/10.1148/rg.2017160100
https://www.ncbi.nlm.nih.gov/pubmed/28186860
https://www.ncbi.nlm.nih.gov/pubmed/11837920
https://doi.org/10.1016/j.injury.2006.07.006
https://www.ncbi.nlm.nih.gov/pubmed/17045268
https://doi.org/10.1148/radiol.2018180492
https://www.ncbi.nlm.nih.gov/pubmed/30084754
https://doi.org/10.1259/bjr/28575455
https://www.ncbi.nlm.nih.gov/pubmed/22514102
https://doi.org/10.1007/s00330-015-3598-2
https://doi.org/10.1016/j.ebiom.2020.103106
https://www.ncbi.nlm.nih.gov/pubmed/33186809
https://doi.org/10.1259/bjr.20200870
https://www.ncbi.nlm.nih.gov/pubmed/33332979
https://doi.org/10.1038/s41598-021-03002-7
https://www.ncbi.nlm.nih.gov/pubmed/34873241
https://doi.org/10.1016/j.bspc.2022.103620
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180005.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193417.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193417.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193271.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193271.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K202992.pdf


Bioengineering 2024, 11, 338 19 of 20

93. U.S. FDA Center for Devices and Radiological Health. K212365 BoneView Approval Letter. Available online: https://www.
accessdata.fda.gov/cdrh_docs/pdf21/K212365.pdf (accessed on 27 January 2024).

94. Guermazi, A.; Tannoury, C.; Kompel, A.J.; Murakami, A.M.; Ducarouge, A.; Gillibert, A.; Li, X.; Tournier, A.; Lahoud, Y.; Jarraya,
M.; et al. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence. Radiology 2022,
302, 627–636. [CrossRef]

95. U.S. FDA Center for Devices and Radiological Health. K220164 Rayvolve Approval Letter. Available online: https://www.
accessdata.fda.gov/cdrh_docs/pdf22/K220164.pdf (accessed on 28 January 2024).

96. Oppenheimer, J.; Lüken, S.; Hamm, B.; Niehues, S.M. A Prospective Approach to Integration of AI Fracture Detection Software in
Radiographs into Clinical Workflow. Life 2023, 13, 223. [CrossRef] [PubMed]

97. Bousson, V.; Attané, G.; Benoist, N.; Perronne, L.; Diallo, A.; Hadid-Beurrier, L.; Martin, E.; Hamzi, L.; Depil Duval, A.; Revue,
E.; et al. Artificial Intelligence for Detecting Acute Fractures in Patients Admitted to an Emergency Department: Real-Life
Performance of Three Commercial Algorithms. Acad. Radiol. 2023, 30, 2118–2139. [CrossRef]

98. Shen, L.; Gao, C.; Hu, S.; Kang, D.; Zhang, Z.; Xia, D.; Xu, Y.; Xiang, S.; Zhu, Q.; Xu, G.; et al. Using Artificial Intelligence to
Diagnose Osteoporotic Vertebral Fractures on Plain Radiographs. J. Bone Miner. Res. 2023, 38, 1278–1287. [CrossRef] [PubMed]

99. Zhang, J.; Liu, F.; Xu, J.; Zhao, Q.; Huang, C.; Yu, Y.; Yuan, H. Automated Detection and Classification of Acute Vertebral Body
Fractures Using a Convolutional Neural Network on Computed Tomography. Front. Endocrinol. 2023, 14, 1132725. [CrossRef]
[PubMed]

100. Beyaz, S.; Açıcı, K.; Sümer, E. Femoral Neck Fracture Detection in X-Ray Images Using Deep Learning and Genetic Algorithm
Approaches. Jt. Dis. Relat. Surg. 2020, 31, 175–183. [CrossRef] [PubMed]

101. Oakden-Rayner, L.; Gale, W.; Bonham, T.A.; Lungren, M.P.; Carneiro, G.; Bradley, A.P.; Palmer, L.J. Validation and Algorithmic
Audit of a Deep Learning System for the Detection of Proximal Femoral Fractures in Patients in the Emergency Department: A
Diagnostic Accuracy Study. Lancet Digit. Health 2022, 4, e351–e358. [CrossRef] [PubMed]

102. Uysal, F.; Hardalaç, F.; Peker, O.; Tolunay, T.; Tokgöz, N. Classification of Shoulder X-Ray Images with Deep Learning Ensemble
Models. Appl. Sci. 2021, 11, 2723. [CrossRef]

103. Magnéli, M.; Ling, P.; Gislén, J.; Fagrell, J.; Demir, Y.; Arverud, E.D.; Hallberg, K.; Salomonsson, B.; Gordon, M. Deep Learning
Classification of Shoulder Fractures on Plain Radiographs of the Humerus, Scapula and Clavicle. PLoS ONE 2023, 18, e0289808.
[CrossRef] [PubMed]

104. Rayan, J.C.; Reddy, N.; Kan, J.H.; Zhang, W.; Annapragada, A. Binomial Classification of Pediatric Elbow Fractures Using a Deep
Learning Multiview Approach Emulating Radiologist Decision Making. Radiol. Artif. Intell. 2019, 1, e180015. [CrossRef]

105. Luo, J.; Kitamura, G.; Arefan, D.; Doganay, E.; Panigrahy, A.; Wu, S. Knowledge-Guided Multiview Deep Curriculum Learning
for Elbow Fracture Classification. Mach. Learn. Med. Imaging 2021, 12966, 555–564. [CrossRef] [PubMed]

106. Choi, J.W.; Cho, Y.J.; Ha, J.Y.; Lee, Y.Y.; Koh, S.Y.; Seo, J.Y.; Choi, Y.H.; Cheon, J.-E.; Phi, J.H.; Kim, I.; et al. Deep Learning-Assisted
Diagnosis of Pediatric Skull Fractures on Plain Radiographs. Korean J. Radiol. 2022, 23, 343–354. [CrossRef] [PubMed]

107. Bien, N.; Rajpurkar, P.; Ball, R.L.; Irvin, J.; Park, A.; Jones, E.; Bereket, M.; Patel, B.N.; Yeom, K.W.; Shpanskaya, K.; et al.
Deep-Learning-Assisted Diagnosis for Knee Magnetic Resonance Imaging: Development and Retrospective Validation of MRNet.
PLoS Med. 2018, 15, e1002699. [CrossRef] [PubMed]

108. Couteaux, V.; Si-Mohamed, S.; Nempont, O.; Lefevre, T.; Popoff, A.; Pizaine, G.; Villain, N.; Bloch, I.; Cotten, A.; Boussel, L.
Automatic Knee Meniscus Tear Detection and Orientation Classification with Mask-RCNN. Diagn. Interv. Imaging 2019, 100,
235–242. [CrossRef] [PubMed]

109. Roblot, V.; Giret, Y.; Bou Antoun, M.; Morillot, C.; Chassin, X.; Cotten, A.; Zerbib, J.; Fournier, L. Artificial Intelligence to Diagnose
Meniscus Tears on MRI. Diagn. Interv. Imaging 2019, 100, 243–249. [CrossRef] [PubMed]

110. Pedoia, V.; Lee, J.; Norman, B.; Link, T.M.; Majumdar, S. Diagnosing Osteoarthritis from T2 Maps Using Deep Learning: An
Analysis of the Entire Osteoarthritis Initiative Baseline Cohort. Osteoarthr. Cartil. 2019, 27, 1002–1010. [CrossRef] [PubMed]

111. Liu, F.; Zhou, Z.; Samsonov, A.; Blankenbaker, D.; Larison, W.; Kanarek, A.; Lian, K.; Kambhampati, S.; Kijowski, R. Deep
Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection.
Radiology 2018, 289, 160–169. [CrossRef] [PubMed]

112. Antony, J.; McGuinness, K.; O’Connor, N.E.; Moran, K. Quantifying Radiographic Knee Osteoarthritis Severity Using Deep
Convolutional Neural Networks. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR),
Cancun, Mexico, 4–8 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1195–1200.

113. Lu, J.-T.; Pedemonte, S.; Bizzo, B.; Doyle, S.; Andriole, K.P.; Michalski, M.H.; Gonzalez, R.G.; Pomerantz, S.R. DeepSPINE:
Automated Lumbar Vertebral Segmentation, Disc-Level Designation, and Spinal Stenosis Grading Using Deep Learning 2018. In
Proceedings of the Machine Learning for Healthcare Conference 2018, Palo Alto, CA, USA, 17–18 August 2018.

114. Kapinski, N.; Zielinski, J.; Borucki, B.A.; Trzcinski, T.; Ciszkowska-Lyson, B.; Nowinski, K.S. Estimating Achilles Tendon Healing
Progress with Convolutional Neural Networks. In Proceedings of the Medical Image Computing and Computer Assisted
Intervention—MICCAI 2018, Granada, Spain, 16–20 September 2018; Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López,
C., Fichtinger, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 949–957.

115. Trivedi, H.; Mesterhazy, J.; Laguna, B.; Vu, T.; Sohn, J.H. Automatic Determination of the Need for Intravenous Contrast in
Musculoskeletal MRI Examinations Using IBM Watson’s Natural Language Processing Algorithm. J. Digit. Imaging 2018, 31,
245–251. [CrossRef] [PubMed]

https://www.accessdata.fda.gov/cdrh_docs/pdf21/K212365.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf21/K212365.pdf
https://doi.org/10.1148/radiol.210937
https://www.accessdata.fda.gov/cdrh_docs/pdf22/K220164.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf22/K220164.pdf
https://doi.org/10.3390/life13010223
https://www.ncbi.nlm.nih.gov/pubmed/36676172
https://doi.org/10.1016/j.acra.2023.06.016
https://doi.org/10.1002/jbmr.4879
https://www.ncbi.nlm.nih.gov/pubmed/37449775
https://doi.org/10.3389/fendo.2023.1132725
https://www.ncbi.nlm.nih.gov/pubmed/37051194
https://doi.org/10.5606/ehc.2020.72163
https://www.ncbi.nlm.nih.gov/pubmed/32584712
https://doi.org/10.1016/S2589-7500(22)00004-8
https://www.ncbi.nlm.nih.gov/pubmed/35396184
https://doi.org/10.3390/app11062723
https://doi.org/10.1371/journal.pone.0289808
https://www.ncbi.nlm.nih.gov/pubmed/37647274
https://doi.org/10.1148/ryai.2019180015
https://doi.org/10.1007/978-3-030-87589-3_57
https://www.ncbi.nlm.nih.gov/pubmed/37808083
https://doi.org/10.3348/kjr.2021.0449
https://www.ncbi.nlm.nih.gov/pubmed/35029078
https://doi.org/10.1371/journal.pmed.1002699
https://www.ncbi.nlm.nih.gov/pubmed/30481176
https://doi.org/10.1016/j.diii.2019.03.002
https://www.ncbi.nlm.nih.gov/pubmed/30910620
https://doi.org/10.1016/j.diii.2019.02.007
https://www.ncbi.nlm.nih.gov/pubmed/30928472
https://doi.org/10.1016/j.joca.2019.02.800
https://www.ncbi.nlm.nih.gov/pubmed/30905742
https://doi.org/10.1148/radiol.2018172986
https://www.ncbi.nlm.nih.gov/pubmed/30063195
https://doi.org/10.1007/s10278-017-0021-3
https://www.ncbi.nlm.nih.gov/pubmed/28924815


Bioengineering 2024, 11, 338 20 of 20

116. Hammernik, K.; Klatzer, T.; Kobler, E.; Recht, M.P.; Sodickson, D.K.; Pock, T.; Knoll, F. Learning a Variational Network for
Reconstruction of Accelerated MRI Data. Magn. Reson. Med. 2018, 79, 3055–3071. [CrossRef] [PubMed]

117. Chaudhari, A.S.; Fang, Z.; Kogan, F.; Wood, J.; Stevens, K.J.; Gibbons, E.K.; Lee, J.H.; Gold, G.E.; Hargreaves, B.A. Super-Resolution
Musculoskeletal MRI Using Deep Learning. Magn. Reson. Med. 2018, 80, 2139–2154. [CrossRef] [PubMed]

118. Li, J.; Zhu, G.; Hua, C.; Feng, M.; Bennamoun, B.; Li, P.; Lu, X.; Song, J.; Shen, P.; Xu, X.; et al. A Systematic Collection of Medical
Image Datasets for Deep Learning. ACM Comput. Surv. 2023, 56, 116:1–116:51. [CrossRef]

119. Langlotz, C.P.; Allen, B.; Erickson, B.J.; Kalpathy-Cramer, J.; Bigelow, K.; Cook, T.S.; Flanders, A.E.; Lungren, M.P.; Mendelson,
D.S.; Rudie, J.D.; et al. A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018
NIH/RSNA/ACR/The Academy Workshop. Radiology 2019, 291, 781–791. [CrossRef] [PubMed]

120. Willemink, M.J.; Koszek, W.A.; Hardell, C.; Wu, J.; Fleischmann, D.; Harvey, H.; Folio, L.R.; Summers, R.M.; Rubin, D.L.; Lungren,
M.P. Preparing Medical Imaging Data for Machine Learning. Radiology 2020, 295, 4–15. [CrossRef] [PubMed]

121. Park, S.H.; Han, K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for
Medical Diagnosis and Prediction. Radiology 2018, 286, 800–809. [CrossRef]

122. Lu, Y.; Fu, J.; Li, X.; Zhou, W.; Liu, S.; Zhang, X.; Wu, W.; Jia, C.; Liu, Y.; Chen, Z. RTN: Reinforced Transformer Network for
Coronary CT Angiography Vessel-Level Image Quality Assessment. In Proceedings of the Medical Image Computing and
Computer Assisted Intervention—MICCAI 2022; Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S., Eds.; Springer: Cham,
Switzerland, 2022; pp. 644–653.

123. Oakden-Rayner, L.; Dunnmon, J.; Carneiro, G.; Ré, C. Hidden Stratification Causes Clinically Meaningful Failures in Machine
Learning for Medical Imaging. In Proceedings of the ACM Conference on Health, Inference, and Learning 2020, Toronto, ON,
Canada, 2–4 April 2020; pp. 151–159. [CrossRef]

124. Liu, Z.; Kainth, K.; Zhou, A.; Deyer, T.W.; Fayad, Z.A.; Greenspan, H.; Mei, X. A Review of Self-Supervised, Generative, and
Few-Shot Deep Learning Methods for Data-Limited Magnetic Resonance Imaging Segmentation. NMR Biomed. 2024, e5143.
[CrossRef]

125. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations.
In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, 12–18 July 2020; Volume 119,
pp. 1597–1607.

126. He, K.; Chen, X.; Xie, S.; Li, Y.; Dollar, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. In Proceedings of the
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 15979–15988.

127. Liu, Z.; Tieu, A.; Patel, N.; Zhou, A.; Soultanidis, G.; Fayad, Z.A.; Deyer, T.; Mei, X. VISION-MAE: A Foundation Model for
Medical Image Segmentation and Classification 2024. arXiv 2024, arXiv:2402.01034.

128. Ma, J.; He, Y.; Li, F.; Han, L.; You, C.; Wang, B. Segment Anything in Medical Images. Nat. Commun. 2024, 15, 654. [CrossRef]
[PubMed]

129. Zhou, A.; Liu, Z.; Tieu, A.; Patel, N.; Sun, S.; Yang, A.; Choi, P.; Fauveau, V.; Soultanidis, G.; Huang, M.; et al. MRAnnotator: A
Multi-Anatomy Deep Learning Model for MRI Segmentation 2024. arXiv 2024, arXiv:2402.01031.

130. Christensen, M.; Vukadinovic, M.; Yuan, N.; Ouyang, D. Multimodal Foundation Models for Echocardiogram Interpretation 2023.
arXiv 2023, arXiv:2308.15670.

131. Zhou, Y.; Chia, M.A.; Wagner, S.K.; Ayhan, M.S.; Williamson, D.J.; Struyven, R.R.; Liu, T.; Xu, M.; Lozano, M.G.; Woodward-Court,
P.; et al. A Foundation Model for Generalizable Disease Detection from Retinal Images. Nature 2023, 622, 156–163. [CrossRef]
[PubMed]

132. Jha, S.; Topol, E.J. Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists. JAMA 2016, 316,
2353–2354. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/mrm.26977
https://www.ncbi.nlm.nih.gov/pubmed/29115689
https://doi.org/10.1002/mrm.27178
https://www.ncbi.nlm.nih.gov/pubmed/29582464
https://doi.org/10.1145/3615862
https://doi.org/10.1148/radiol.2019190613
https://www.ncbi.nlm.nih.gov/pubmed/30990384
https://doi.org/10.1148/radiol.2020192224
https://www.ncbi.nlm.nih.gov/pubmed/32068507
https://doi.org/10.1148/radiol.2017171920
https://doi.org/10.1145/3368555.3384468
https://doi.org/10.1002/nbm.5143
https://doi.org/10.1038/s41467-024-44824-z
https://www.ncbi.nlm.nih.gov/pubmed/38253604
https://doi.org/10.1038/s41586-023-06555-x
https://www.ncbi.nlm.nih.gov/pubmed/37704728
https://doi.org/10.1001/jama.2016.17438
https://www.ncbi.nlm.nih.gov/pubmed/27898975

	Introduction 
	Methods 
	Performance Metrics 
	Ankle Fractures 
	Wrist Fractures 
	Hip Fractures 
	Rib Fractures 
	Commercial Availability 
	Discussion 
	Limitations 
	Future Directions 

	Conclusions 
	References

