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Abstract: Chest X-ray (CXR) examination serves as a widely employed clinical test in medical
diagnostics. Many studied have tried to apply artificial intelligence (AI) programs to analyze
CXR images. Despite numerous positive outcomes, assessing the applicability of AI models for
comprehensive diagnostic support remains a formidable challenge. We observed that, even when
AI models exhibit high accuracy on one dataset, their performance may deteriorate when tested on
another. To address this issue, we propose incorporating a variational information bottleneck (VIB)
at the patch level to enhance the generalizability of diagnostic support models. The VIB introduces
a probabilistic model aimed at approximating the posterior distribution of latent variables given
input data, thereby enhancing the model’s generalization capabilities on unseen data. Unlike the
conventional VIB approaches that flatten features and use a re-parameterization trick to sample a new
latent feature, our method applies the trick to 2D feature maps. This design allows only important
pixels to respond, and the model will select important patches in an image. Moreover, the proposed
patch-level VIB seamlessly integrates with various convolutional neural networks, offering a versatile
solution to improve performance. Experimental results illustrate enhanced accuracy in standard
experiment settings. In addition, the method shows robust improvement when training and testing
on different datasets.

Keywords: feature selection; CXR image; classification

1. Introduction

Chest X-ray (CXR) examination is a widely used examination in clinical diagnosis.
However, training a qualified doctor who can understand X-ray images is expensive.
In many developing countries, ensuring every local hospital has a doctor who can read
and understand a medical X-ray imaging is difficult. Therefore, using artificial intelligence
(AI) models [1–4] to simulate the knowledge of diagnosis experts and using them in local
hospitals is a solution that has been considered. Ensuring the generality of AI models is the
most crucial factor in completing this system.

An AI-based diagnosis system is considered a multi-label classification problem [5,6].
Initial research uses transfer learning to train a deep learning model for the classification
task. This method involves reusing or adapting a model trained on one task to improve
performance on a related task. Instead of starting from scratch, transfer learning leverages
knowledge acquired from a source task to enhance learning on the target task. The knowl-
edge from the source task is represented by parameters in the model, which is called a
backbone. This approach is particularly beneficial when there are limited labeled data
available for the target task or when training a model from scratch is computationally
expensive. In chest X-ray (CXR) image analysis, popular backbone architectures used for
transfer learning include AlexNet [7], GoogLeNet [8], DenseNet121 [9], and ResNet [10].
AlexNet, introduced in 2012, is a relatively simple network with five convolutional neural
network (CNN) layers but a large number of parameters (60 million). GoogLeNet, intro-
duced in 2014, employs inception blocks to capture multi-scale features and has a deeper
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architecture compared to AlexNet, with fewer parameters (6.7 million). ResNet utilizes
residual learning, where each layer learns a residual mapping with respect to the input by
incorporating skip connections, resulting in various depths, such as ResNet-18, ResNet-50,
ResNet-101, and ResNet-152. DenseNet introduces dense connectivity patterns, where
each layer is connected to every other layer within a dense block, facilitating feature reuse
and information flow throughout the network. While the backbones work well in most
vision-based applications, CXR image-based diagnosis has its own challenges that must be
adequately addressed.

One major challenge of CXR image-based diagnosis is that multiple lesion areas exist
in a CXR image, as shown in Figure 1a. In the figure, each box represents a lesion area,
and the color corresponds to its respective pathology. This phenomenon occurs because one
latent reason may cause several pathologies. The pathology co-occurrence is considered an
intrinsic correlation among multiple diseases, and the correlation is modeled by interaction
among non-local regions [11]. According to the review of Guo et al. [12], the attention
module is a successful solution to learning non-local features. The attention module is a
mechanism that allows neural networks to focus on specific parts of the input data (such as
words in a sentence or regions in an image) while performing a task. Inspired by the human
visual system, the key idea behind the attention module is to assign different weights to
different parts of the input data dynamically, allowing the model to attend to the most
relevant information selectively. In thoracic disease classification [13–15], attention modules
help lesion areas in a chest X-ray image interact together and extract a better feature.

In addition to the attention mechanisms, advantage techniques [15,16] were used to
enhance accuracy. Typically, an advanced classifier comprises three main components:
the backbone, neck, and head. The backbone is responsible for extracting features from
an input image, while the neck enhances these features, and the head makes the final
classification prediction. In ConsultNet [15], the backbone is DenseNet121, while the neck
consists of a two-branch network comprising a feature selector and a feature integrator,
and the head comprises a fully connected layer. Specifically, the feature integrator is an
attention-based layer designed to capture non-local information, while the feature selector
is a variational selective information bottleneck (VSIB) aimed at selecting crucial disease-
specific features based on their importance. A vanilla variational information bottleneck
(VIB) introduces a probabilistic model aimed at approximating the posterior distribution of
latent variables given input data, thereby enhancing the model’s generalization capabilities
on unseen data. The VSIB module in ConsultNet [15] builds upon the conventional VIB
but introduces a novel selection mechanism. This mechanism generates an importance
matrix to specify the significance of each element of the input feature, eliminating the need
to approximate the posterior distribution for these critical features. Recently, MLRFNet [16]
has greatly improved in CXR image-based diagnosis. This method utilizes Res2Net [17]
as the backbone, the ECA module [18] as the neck, and the CSRA module [19] as the
head. The ECA module, functioning as an attention mechanism, focuses on capturing
non-local features. Meanwhile, the CSRA module serves as the multi-label classification
head. Additionally, MLRFNet employs a multi-scale approach to resolve classification
challenges, thereby enhancing accuracy. While many promising results have been reported,
deploying these models in the operation phase is still an open question. X-ray machines
at different medical facilities will vary in calibration and operation. The domain gap can
degrade the accuracy of the AI model.

Figure 1b illustrates the domain gap between the ChestX-Ray14 [5] and ChestEx-
pert [6] datasets. In the ChestX-Ray14 dataset, all images have a standardized resolution,
with dimensions of 1024 rows and 1024 columns, resulting in a width-to-height ratio of
1.0. Conversely, most images in the ChestExpert dataset have dimensions of 320 rows and
390 columns, leading to a width-to-height ratio of 1.22. During regular training processes,
input images are typically resized to specific ratios, such as [512, 512] or [224, 224]. This
resizing approach may not significantly impact the ChestX-Ray14 data due to the consistent
width-to-height ratio across both training and original images. However, it could introduce
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distortions into the ChestExpert dataset, where the original width-to-height ratio has been
altered. Additionally, the position of lung regions differs between the two datasets. In the
ChestX-Ray14 dataset, the lung region is consistently aligned at the center of the image.
Conversely, in the ChestExpert dataset, the lung region is not consistently centered, result-
ing in some redundancies on the right side of the images. This analysis suggests that the
ChestX-Ray14 dataset is better prepared and cleaner compared to the ChestExpert dataset.

(a) (b)

(c)

Figure 1. Challenges of CXR image-based thoracic disease diagnosis and the contribution of the
proposed method. (a) The challenge of multiple lesion areas in a single CXR image. (b) Domain gap
challenge. (c) Contribution of patch-level VIB. Orange boxes contain images from ChestX-Ray14
dataset, and red boxes contain images from ChestExpert dataset; the dashed lines mean experiments
with P-VIB, and the solid lines mean experiments without P-VIB; the black lines mean training and
validating a model, and the blue lines mean testing a model.
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In real-world applications, deep learning models are trained and validated using
meticulously curated datasets. However, during operational deployment, testing images
may differ substantially from those used in training. To simulate such scenarios, we utilize
the ChestX-Ray14 dataset for training and validation while employing the ChestExpert
dataset for testing purposes. As depicted by the solid line in Figure 1c, the area under the
curve (AUC) is 89.28% and 84.13% for the training and validation datasets, respectively.
However, due to the domain gap illustrated in Figure 1b, there is a significant reduction in
AUC for the testing dataset. Following the blue solid line, the testing AUC is only 78.08%.

To improve accuracy in the operation phase, this paper proposes a patch-level feature
selection technique. This method’s core idea is to use a variational information bottleneck
(VIB) [20] to select important features at a patch level. Given an input image with dimen-
sions [3, W, H], the backbone extracts features at dimensions [d, Wc, Hc], where Wc and Hc
are smaller than W and H, respectively. Hence, each position on the feature map captures
information within a small w × w window. In conventional VIB, features are flattened
before applying the re-parameterization trick. In this scenario, the feature selection is ap-
plied globally on the image. In our method, feature selection is involved at every position
within a feature map in a w × w local region (or a patch-level). In addition, unlike the
conventional VIB approach [20] or ConsultNet [15], where VIB-based features serve as the
input for a classification head, our method can extract VIB-based features at any position in
a CNN network, not just at the classification head. Instead of flattening all features and
using the VIB method [20] to sample a new latent feature, we apply a convolution block to
learn sampling parameters for every position in a feature map. This design allows only
important pixels to respond on a feature map, and the model will select important patches
in an image. In addition, the innovative design enables seamless integration of the P-VIB
module into various CNN-based networks at any position. Consequently, we incorporate it
into MLRFNet [16] to enhance accuracy. With the help of the proposed module, our method
can work better in various scenarios. In detail, implementing the P-VIB module leads to an
improvement in the testing AUC to 79.54%, while the evaluation AUC remains stable at
84.28%. This outcome is depicted by the dashed line in Figure 1c.

In summary, the main contributions of this article are as follows:

• We made a connection between VIB and MLRFNet and proposed a patch-level feature
selection to enhance disease diagnosis models based on MLRFNet [16] architecture.

• In the standard scenarios (training and testing datasets are from the same dataset) as
defined by Wang et al. [5], the proposed method showed an improvement. If the train-
ing dataset and testing dataset have some domain gap, the proposed method avoids
overfitting on the training dataset and improves the performance of the testing dataset.

• Unlike conventional VIB [15,20], which is usually used for the input of a classification
head, the proposed P-VIB could be used at any position in a network and can be
successfully integrated with many different lung disease classification methods.

2. Related Works
2.1. Disease Classification as a Multi-Label Setting

Initially, works focused on using transfer learning [21] to train a multi-label classifier on
the ChestX-Ray14 [5] dataset. Here, deep neuron networks such as AlexNet [7], ResNet [10],
and DenseNet [9] were trained by the ImageNet1K dataset [22], which contain 1.2 million
images across 1000 categories. Later, these networks were fine-tuned on the ChestX-
Ray14 [5] dataset, which only has 112,120 images in 14 categories. In regular fine-tuning,
only one category is assigned for an input. Hence, the softmax function is used in the output
to ensure that the sum of the prediction vector is one. However, CXR image diagnosis
is a multi-label classification in which one input may be assigned to several categories.
Therefore, sigmoid functions are used at every node in the output. This setting allows
multi-outputs to be set to one. Also, binary cross-entropy loss is used in every node to
predict a multiple positive output.
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After directly applying transfer learning, researchers try to customize models for
better performance. Rajpurkar et al. [23] fine-tuned the modified DenseNet121 [9], cre-
ating CheXNet, which outperformed professional radiologists in detecting pneumonia.
Chen et al. [24] introduced DualCheXNet, a double asymmetric feature learning network
based on ResNet and DenseNet, incorporating feature-level fusion and decision-level
fusion in its structure for multi-label classification of thoracic diseases.

Besides ChestX-Ray14 [5], the CheXpert [6] dataset is also well-known. The dataset
includes 224,316 images whose resolution is slightly different from ChestX-Ray14 [5].
In addition, this dataset provides uncertainty labels for which the truth label is not confident.
Hence, it provides scenarios in which uncertainty can be replaced by positive or negative.
In contrast to the large-scale ImageNet1K dataset, where each image is assigned to a single
category, both the ChestX-Ray14 and CheXpert datasets contain numerous chest X-ray
(CXR) images that exhibit no pathology. It creates an imbalance issue when the number of
negative samples is higher than the number of positive samples. Focal loss [25], bias focal
loss [16], and weighted cross-entropy loss (W-CE loss) [26] are well-known losses used to
address the imbalance in these datasets.

These approaches primarily rely on mainstream deep-learning networks to extract
pathological features from CXR images, making them susceptible to image noise and
irrelevant regions. However, multiple lesion areas are available in a CXR image, which
means the corresponding patient suffers from various diseases in a period. Subsequently,
several works have tried to discover the intrinsic correlations among thoracic diseases to
improve prediction accuracy, as discussed in Section 2.2.

2.2. Co-Occurrence Pathologies Challenge

Both ChestX-Ray14 and ChestExpert datasets report that multiple pathologies may
exist in a single CXR image. This means that one latent reason can cause multiple diseases.
Some works address the challenge by modeling the correlation among the diseases and
using it during a training process, while other works try to learn features that will model
the intrinsic correlations of multiple diseases in the latent domain. Section 2.2.1 introduces
correlation modeling methods in label space, and Section 2.2.2 introduces methods that
model intrinsic correlations in feature space.

2.2.1. Correlation Modeling among Thoracic Diseases

In the realm of multi-label thoracic disease classification, improving the model’s
recognition capability involves modeling and analyzing dependencies among thoracic
diseases. Graph neural networks (GNNs) gained popularity for their robust ability to
model relationships between node data. Hence, it is used to encode the relationship
among diseases. Chen et al. [27] introduced a label co-occurrence learning framework
based on GNN and CNN models, delving into correlations among pathological features.
Lee et al. [28] proposed a hybrid deep learning model (CheXGAT) that integrates CNN
and graph convolution neural networks (GNNs), using self-attention to aggregate domain
features from graphical structures and enhance potential correlations among thoracic
diseases. Jung et al. [29] introduced the FGR-PCAM framework, based on GNNs and
CNNs, leveraging graph structure to learn relationships among lesion-specific features
in localized regions. To endow models with prior knowledge comparable to professional
radiologists in diagnosing thoracic diseases, Chen et al. [26] introduced the Semantic
Similarity Graph Embedding (SSGE) module to investigate semantic similarities between
images and optimize the feature extraction process. However, these approaches still lack
semantic information integration at various extraction steps.

2.2.2. Intrinsic Correlation in Feature Space

While GNN can model the correlation among diseases, training a GNN network is
not as easy as training a CNN-based network. An alternative method that addresses the
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correlation among diseases is learning features that can discover the relationship among
multiple lesion areas.

Attention mechanisms have been developed to capture information from non-local
dependencies. They have quickly gained success in both NLP and computer vision. It is
very natural to recognize that this mechanism is very suitable for modeling the correlation
among multiple lesions in a single CXR image. Wang et al. [13] introduced a triple attention
network (A3Net) that employs a pre-trained DenseNet121 as the backbone network for
feature extraction. A3Net integrates three attention modules into a unified framework,
facilitating channel-level, element-level, and scale-level attention learning. ConsultNet [15]
proposed a feature integrator that serves as an attention module. In addition, Consult-
Net [15] utilizes a novel variational selective information bottleneck (VSIB) to concentrate
on disease-correlated regions. Chen et al. [14] proposed the attention-guided network
LLAGnet, which prioritizes discriminative features from lesion locations by combining
region-level attention (RLA) and channel-level attention (CLA). Zhu et al. [30] introduced
the pixel classification and attention network (PCAN) for simultaneous disease classifica-
tion and weakly supervised localization, offering interpretability for disease classification.
Chen et al. [31] proposed the PCSANet, a network for thoracic disease classification based
on pyramidal convolution and a shuffle attention module. Despite the use of attention
mechanisms to guide the model’s focus on key features, these methods rely solely on the
output of the final feature map from a CNN during classification and do not incorporate
semantic information at different levels. This limitation hinders the improvement of classi-
fication accuracy. Recently, MLRFNet [16] uses the advantage of EAC [18] as an attention
module. Also, multi-scale features have been used to significantly increase the accuracy
when evaluating the ChestX-Ray14 dataset.

3. Proposed Method
3.1. System Overview

This section introduces the system overview of the proposed method. Our method
is based on the state-of-the-art (SotA) MLRFNet [16]. The backbone is the Res2Net [17]
network; features are extracted at different scales at P2–P3–P4. For each scale, ECA [18]
serves as a neck, and CSRA [19] is the multi-label classification head. The classification
loss is the bias focal loss in MLRFNet [16]. The left side of Figure 2 summarizes the system
overview of the proposed method.

Our modification is the P-VIB module integrated between the backbone and the ECA
neck. This module aims to select features at the spatial position level on the extracted
feature map. This module is represented on the right side of Figure 2. Here, a KL loss is
used to select critical features at a patch level based on information bottleneck [32] theory.

Figure 2. System overview. The solid lines mean connections between modules in a deep network,
and the dashed lines mean the connection to loss functions.

Section 3.2 introduces the concept of feature selection in a multi-label classification
task, and Section 3.3 explains how VIB is adopted to select features at the patch level.
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3.2. Feature Selection in a Multi-Label Classification Task

In Figure 2, the model is trained by using a multi-label classification loss and a
feature selection loss. In addition, each loss has three components corresponding to three
feature levels.

Denote P̂l as the predicted confidence score, which is normalized by a sigmoid layer
for each classification head; the classification loss is defined as in Equation (1). The final
classification loss for all scales is Losscls(y, P̂) = ∑3

l=1 Losscls(y, P̂l).

Losscls(y, P̂l) =
1
C

C

∑
c=1

−α(1 − P̂l,c)
λl yc log P̂l,c − (1 − α)P̂λl

l,c (1 − yc) log(1 − P̂l,c) (1)

Here, C is the number of classes, α is a hyperparameter that regulates the bias between
negative loss and positive loss, and λl is employed to emphasize challenging samples.

Denote Φ as the parameters of the P-VIB module which are introduced in Section 3.3;
µl = µΦ,l(x) and σl = ΣΦ,l(x) are the mean and variance extracted at the lth scales given

by the P-VIB. The feature selection loss at the lth scale is Loss f ea
l (µl , σl), as defined in

Equation (2).

Loss f ea
l (µl , σl) = KL

(
N (zl ; µl , σl)||q(zl)

)
(2)

Here, N (zl ; µl , σl) is the re-parameterization trick as shown in Figure 2, q(zl) is a
pre-defined distribution representing the approximated latent marginal, and KL(.) is
the Kullback–Leibler divergence. Typically, q(zl) is a standard normal distribution as

N
(

zl ; 0, Ik

)
. Finally, the feature selection loss for all scales is estimated as Equation (3).

Loss f ea(µ, σ) =
3

∑
l=1

Loss f ea
l (µl , σl) (3)

Denote β as a hyperparameter to control the contribution between feature selection
loss and multi-label classification; the model is trained end-to-end using the loss function
L(y, P̂, µ, σ) in Equation (4).

L(y, P̂, µ, σ) = Losscls(y, P̂) + βLoss f ea(µ, σ) (4)

3.3. Feature Selection at the Patch Level

VIB has been applied in medical image diagnostic in ConsultNet [15]. In the method,
the encoder extracts a feature tensor Z ∈ RNC. Here, N is the sum of spatial positions
over a single channel, and C is the number of channels. While promising results have been
reported, it raises the issue that flattened features may not be easy to combine with other
CNN-based modules. Therefore, in ConsultNet [15], the VIB-based features are fed to a
classification head. The limitation of where the VIB module is applied may reduce the
flexibility of a deep neural network (DNN).

Recently, many advantage modules have been developed to help increase the accuracy
of a CNN network. For instance, successful attention modules such as SE [33] or ECA [18]
have been proposed, and they can capture very good non-local features. It raises the
question of whether we could customize the vanilla VIB so that it could be used with the
advantaged modules.

Motivated by the observation, the P-VIB is proposed in Figure 2. Given a feature
Fl ∈ RClW l Hl

at the lth scale, the P-VIB uses two parallel 3 × 3 convolution blocks (padding
= same) to extract µl ∈ RCW l Hl

and σl ∈ RCW l Hl
. Unlike the flatten operator in Consult-

Net [15], a convolution operator can retain the shape of the input tensor; hence, the output
can be integrated with any CNN-based module. Moreover, the convolution operator can
also use neighbor pixels to extract µl and σl at every position.
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To select features, the term Loss f ea(µ, σ) in Equation (3) must be estimated via compo-
nent losses at every lth scale as in Equation (2). Given the mean µl and variance σl at the lth
scale, the KL loss at the lth scale is estimated by Equation (5). Here, the KL loss Loss f ea(µ, σ)
is estimated at every jth position and every C channel. This setting may extract sparse
features and increase the discriminative level of the learned kernels.

Loss f ea
l (µl , σl) =

1
ClWl Hl

Wl Hl

∑
j=1

Cl

∑
k=1

(
µ2

j,k + σ2
j,k − 2log(σj,k)− 1

)
(5)

where:

• Cl is the dimension of the latent features;
• Wl , Hl are the numbers of rows and columns in the extracted feature map at the lth

scale;
• j is the position’s index;
• k is the channel’s index.

The output of the P-VIB module at the lth scale is a feature tensor zl ∈ RCW l Hl
as a

result of a re-parameterization given by Equation (6). Here, the sampling is applied at
every spatial position j on a feature map with ϵ ∼ p(ϵ) = N (0, I).

zl
j,k = µl

j,k + ϵσl
j,k (6)

4. Dataset and Experiment Setting

ChestX-Ray14 [5] is a well-known dataset for thoracic disease classification. It com-
prises 112,120 frontal-view X-ray images of 30,805 (collected from the years 1992 to 2015)
unique patients with 14 common disease labels, text-mined from the radiological reports
via NLP techniques. It expands on ChestX-Ray8 by adding six additional thorax diseases:
edema, emphysema, fibrosis, pleural thinning, and hernia. If one image has no pathologies,
it is considered a No Finding. In addition, each image is assigned one or more of the
14 pathologies, and 880 images have been annotated with 984 labeled bounding boxes
for 8 pathologies. The training dataset, testing dataset, and evaluation dataset have been
defined in Wang et al. [5], which make it a standard setting used by many research works.
Detail of the pathologies and their abbreviations are shown in Table 1.

Table 1. Abbreviations of pathologies.

Pathologies Abbreviation

Emphysema Emph
Hernia Hern
Nodule Nodu
Effusion Effu

Pleural_Thickening PT
Pneumonia Pne1

Cardiomegaly Card
Infiltration Infi

Consolidation Cons
Atelectasis Atel

Pneumothorax Pne2
Mass Mass

Edema Edem
Fibrosis Fibr

Motivated by the observation, this work also uses the ChestX-Ray14 [5] dataset to
evaluate the proposed P-VIB network. We evaluate performance on all 14 labels. For fair-
ness, the dataset split in the comparative experiments strictly follows the official splitting
standards of the dataset published by Wang et al. [5].
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To evaluate the generalization of the model, which is trained by ChestX-Ray14 [5],
we also use the testing dataset from another dataset. For this paper, CheXpert [6] was
selected for the evaluation. The dataset contains 224,316 X-ray scans of 65,240 patients,
with 14 observations extracted from the medical reports. Each observation is assigned a
positive label in our experiments. Because the 14 pathologies in ChestX-Ray14 [5] are not
the same as the 14 pathologies in CheXpert [6] dataset, only 5 observations are selected
for examination. These observations are Atelectasis, Cardiomegaly, Consolidation, Edema,
and Pleural Effusion, as recommended by Irvin et al. [6].

A thoracic disease diagnosis model is evaluated by the area under the curve (AUC) of
the receiver operating characteristic (ROC). This curve is a set of (sensitive and specificity)
pairs, and the area under the curve is better than accuracy in terms of evaluating the
confidence of a classification task. A smaller AUC represents the performance of a random
classifier, and a greater AUC would correspond to a perfect classifier (e.g., with a classifi-
cation error rate equivalent to zero). Originally, the AUC-ROC curve was only for binary
classification problems. However, it can be extended to multi-class classification problems
using the One vs. All technique. The average of AUC represents a unique evaluation metric
in a multi-label classification setting.

We follow the hyperparameter setting in MRLFNet [16] to train the model. Details
of the hyperparameter settings can be found in Table 2. However, our patch size is set as
64 due to the availability of hardware.

In all experiments, early stopping is used to select the best model. This technique
applies an evaluation process that estimates the AUC metric on the evaluation dataset for
every training epoch. The highest AUC is stored during the training phase. If the AUC in
a current epoch is higher than the recent highest AUC, the model at the current epoch is
considered the best model, and the current AUC updates the highest AUC. Because the
model is trained to fit with the training dataset, the training loss and training AUC will
be better at later epochs. Hence, an overfitting may occur at later epochs when the model
is trained too long. Applying early stopping allows us to select the best model for the
evaluation dataset instead of the last model that may be overfitted to training data.

Table 2. Hyperparameter settings.

Hyperparameter Value

Learning rate 0.0001
Patch size 64
Learning rate decay 0.9 for 2 epochs
Pre-trained on ImageNet dataset
Optimizer Adam
Number of epochs 20
α in Equation (1) 0.4
λl in Equation (1) (0.5, 0.3, 0.1) for l = (1, 2, 3)
Data augmentation Resize image (256, 256); crop to (224, 224); horizontally flip (the flip probability

is 0.5); contrast, saturation, and hue (0.9–1.1); to tensor and Normalization

5. Experiment
5.1. Hyperparameter Turning

In this section, we address selecting a suitable β hyperparameter. Also, an analysis of
the feature selection loss is included to discuss how it can affect the learning process.

In Equation (4), the feature selection loss is accompanied by the classification loss for
training. The β parameter controls the contribution of feature selection loss compared to
the classification loss. In theory, if we set β too large, the model will select less information
and reduce the accuracy. In contrast, if we set the β value too low, the model will not
compress the feature, and overfitting may occur. To select a suitable β value, we try several
options in the list [0.01, 0.05, 0.1, 0.15]. The micro AUC values given by different β are
shown in Figure 3. The result shows that the patch-based KL loss can help to improve the
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performance. If β = 0.1, the micro average AUC of the proposed method is 86.4% compared
to the 86.0% reported by the baseline [16]. Moreover, all test cases provide AUCs higher
than the baseline. This means the auxiliary loss is very robust to enhance the performance.
In addition, because the AUC given by β = 0.15 is smaller than the result given by β = 0.1,
we select β = 0.1 in our next experiments.

Figure 3. Turning β parameters to get a higher AUC. The blue line is the baseline without P-VIB.
The experimental setting follows [5].

The method uses two losses (classification loss in Equation (1) and feature selection
loss in Equation (3)) to train the model. Hence, it is valuable to know how each loss
contributes to the training process. To address the question, we visualize the classification
loss (CLS loss—Equation (1)) and feature selection loss (KL loss—Equation (3)) during a
learning process, as in Figure 4. We can see that both losses converge smoothly. However,
while classification loss reduces slowly, the feature selection loss drops significantly in
the first epoch and converges at similar values. This phenomenon shows that the feature
selection loss does not rely too much on an initial state. As shown in Figure 4b, even if
the KL loss is very high at the beginning of a training process, it can converge similarly
at other settings. Moreover, we may see that feature selection loss and classification loss
are quite independent. A smaller KL loss does not mean a smaller CLS loss. For instance,
the AUC given by β = 0.01 and β = 0.05 are similar, and their CLS losses are also
similar during a training process. However, their KL losses converge in different manners.
These observations point out that, while the feature selection loss robustly improves the
performance, it still has many random factors during the training process. Therefore, it is
not guaranteed to say β = 0.1 is always the best option. Fortunately, a comparison to the
baseline in Figure 3 shows that the proposed method can help in all β. This means that,
while many uncertainties may remain about how to select the best β, the proposed feature
selection loss always helps the training process.

In Figure 3, the AUCs are given by the best models for each experiment. As mentioned
in Section 4, the best model is selected using the early stopping method. This method is
based on the performance during a training process to select the model that works well
on the validation set and avoids overfitting on the training set after a long training time.
Hence, we visualize the CLS loss and the KL loss on both training and validating datasets,
as in Figure 5. Here, the KL loss and CLS loss on the training set and validation set given by
β = 0.1 are introduced. The result shows that the best classification loss performance is at
the 14th epoch. During the training process, the CLS loss on the validation dataset slightly
increases from epoch 15 to epoch 20. In contrast, the CLS loss of the training dataset is
reduced smoothly. It means overfitting had occurred on the CLS loss. In the case of feature
selection loss, its training and validation loss are similar. It means the proposed feature
selection loss robustly works and has no negative effect on the training process.
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(a) (b)

Figure 4. Losses during the training process. (a) Classification loss on the training set. (b) Feature
selection loss on the training set.

(a) (b)

Figure 5. Losses given by β = 0.1. The blue color means training loss, and the orange color means
validation loss. (a) Classification loss on the training set and the validation set. (b) Feature selection
loss on the training set and the validation set.

5.2. Comparison with SotA for Disease Classification

This section compares our proposed method with SotA methods such as SSGE [26],
LLAGNet [14], CheXGCN [27], A3Net [13], ConsultNet [15], CheXGAT [28], MXT [34],
PCAN [30], PCSANet [31], and F-PCAM [29]. Methodologies of these methods and our
proposed method are compared in Table 3. Five factors for comparison are shown as follows:

• Intrinsic correlations: This factor describes how a method addresses the intrinsic
correlations among pathologies. Correlation modeling (CM) means a GCN is used to
model the correlation. Attention (ATT) means attention modules are used to extract
correlation features. In the CM method, the neck is a graph-based fusion module to
fuse features. In the ATT method, the neck is an attention module to extract features.

• Backbone: The pre-trained model used in a method.
• Head: The head for multi-label classification. FC means fully connected, CNN

means convolution neural network, CSRA [16] means class-specific residual attention,
and MB means multi-branch classifier.

• Loss: Training loss. W-CE means weighted cross-entropy loss, BCE means binary
cross-entropy loss, FL means focal loss, KL means feature selection loss, and BFL
means bias focal loss.

• Scale: The method uses single-scale (S) or multi-scale (M) features for classification.

In this experiment, the accuracy and speed are compared. Macro AUC is used as a
well-known metric to evaluate the CXR diagnosis in terms of accuracy; also, floating-point
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operations per second (FLOPs) and the processing time for one single image are used to
measure the speed of a system.

Table 3. Methodology of the proposed method and previous works.

Method Intrinsic
Correlations Backbone Head Loss Scale

SSGE CM DenseNet169 FC W-CE S
F-PCAM CM DenseNet121 FC BCE S

CheXGAT CM Eff-B4 FC FL S
CheXGCN CM DenseNet169 FC W-CE S

MXT ATT ViT FC W-CE S
LLAGNet ATT DenseNet169 MB W-CE S

A3Net ATT DenseNet121 CNN + FC W-CE M
PCAN ATT DenseNet121 MB BCE S

ConsultNet ATT DenseNet121 FC KL + BCE S
PCSANet ATT ResNet-50 FC BCE M

Ours ATT Res2Net50 CSRA KL + BFL M

Table 4 presents the AUC comparative results obtained by our P-VIB and other SotA
baselines; the receiver operating characteristics (ROCs) of the proposed method are shown
in Figure 6. Some observations from the table are as follows:

(1) Our approach demonstrates a superior balance compared to other methods. Specifi-
cally, our method achieves a higher average AUC than others, even though it excels in
performance for only three thoracic diseases (Infiltration, Mass, and Pneumothorax).
In contrast, PCSA-NET [31] attains the best AUC for five thoracic diseases (Atelectasis,
Cardiomegaly, Effusion, Consolidation, and Edema), but its average AUC is only
0.825. This occurrence arises from SSGE [26] not exhibiting remarkable results for
other diseases. Through the incorporation of the proposed feature selection loss, our
method effectively mitigates overfitting on certain diseases. The results indicate that
our method ranks second-best in 7 out of 14 diseases, leading to an average AUC of
83.7%.

(2) In multi-label classification tasks, the proportion of positive samples plays a pivotal
role in assessing the complexity of the task. To gauge the relationship between
the ratio of positive to negative samples and the AUCs, we visualize this ratio in
Figure 7 and correlate it with the AUC values in Table 4. Analysis of Figure 7 and
Table 4 reveals that the pathology with the lowest AUC (Infiltration) exhibits a higher
number of positive samples. Despite most methods reporting notably low AUCs
for the Infiltration pathology in Table 4, Figure 7 demonstrates that this pathology
possesses a greater number of positive samples and fewer negative samples compared
to others, suggesting its diverse nature and potential dataset coverage issues. In this
context, our proposed method outperforms others due to the re-parameterization
mechanism (Equation (6)), which introduces uncertainty into the latent space, akin to
a data augmentation technique but in the feature domain, thereby enhancing model
robustness. In this scenario, our method surpasses the second-best approach by 2.25%
in terms of AUC.

(3) In our approach, the performance of the Hernia pathology stands in stark contrast
to that of the Infiltration pathology. While our method achieves an AUC of 0.915
for the Hernia pathology, most other methods achieve higher values. Furthermore,
the Hernia pathology exhibits a sparse distribution, with very few positive samples
(227 samples) and numerous negative samples (111,893 samples). These statistics
indicate that Hernia is a pathology with limited representation in the dataset, sug-
gesting potential overlap between the testing and training sets. In such a scenario,
introducing uncertainty into the latent domain may not guarantee improved accuracy.
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Figure 6. ROCs of our proposed method.

Table 4. Comparison of AUC to SotA for the ChestX-Ray14 [5] dataset. Bold represents the best AUC.
Italics represent the second-best AUC.

Method SSGE
[26]

LLAG-
Net [14]

CheX
GCN
[27]

A3Net
[13]

Cons-
ultNet

[15]

CheXGAT
[28]

MXT
[34]

PCAN
[30]

PCSA-
Net [31]

F-
PCAM

[29]
Ours

Atel 0.792 0.783 0.786 0.779 0.785 0.787 0.798 0.785 0.807 0.785 0.803
Card 0.892 0.885 0.893 0.895 0.899 0.879 0.896 0.897 0.910 0.897 0.906
Effu 0.840 0.834 0.832 0.836 0.835 0.837 0.842 0.837 0.879 0.837 0.851
Infi 0.714 0.703 0.699 0.710 0.699 0.699 0.719 0.706 0.698 0.706 0.735

Mass 0.848 0.841 0.840 0.834 0.838 0.839 0.856 0.834 0.824 0.833 0.858
Nodu 0.812 0.790 0.800 0.777 0.775 0.793 0.809 0.786 0.750 0.796 0.790
Pne1 0.733 0.729 0.739 0.737 0.738 0.741 0.758 0.730 0.750 0.732 0.746
Pne2 0.885 0.877 0.876 0.878 0.871 0.879 0.879 0.871 0.850 0.876 0.887
Cons 0.753 0.754 0.751 0.759 0.763 0.755 0.759 0.763 0.802 0.745 0.776
Edem 0.848 0.851 0.850 0.855 0.85 0.851 0.849 0.854 0.888 0.847 0.874
Emph 0.948 0.939 0.944 0.933 0.924 0.945 0.906 0.921 0.890 0.933 0.940
Fibr 0.827 0.832 0.834 0.838 0.831 0.842 0.847 0.817 0.812 0.824 0.842
PT 0.795 0.798 0.795 0.791 0.776 0.794 0.800 0.791 0.768 0.793 0.789

Hern 0.932 0.916 0.929 0.938 0.922 0.931 0.913 0.943 0.915 0.905 0.915
Mean 0.830 0.824 0.826 0.826 0.822 0.827 0.830 0.824 0.825 0.821 0.837

Figure 7. Ratio between the number of positive/negative samples in the ChestX-Ray14 [5] dataset.
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In addition to evaluating AUC, we compared processing speed between our proposed
method and other state-of-the-art (SotA) approaches. Table 5 provides insights into the
floating point operations per second (FLOPs) and processing time required for a single
image. Our experiments were conducted using an RTX Titan GPU for computation. The re-
sults indicate that our method has a higher FLOPs count compared to PCAN and PCSANet,
but lower than SSGE, CheXGCN, and LLAGNet. Notably, in our testing environment,
the processing speed for a single image is sufficiently fast to support diagnostic applications.

Table 5. Comparison of computational consumption by a single image during the test phase on the
ChestX-Ray14 dataset.

Method SSGE [26] CheXGCN [27] LLAGNet [14] PCAN [30] PCSANet [31] Proposed
Method

FLOPs (G) 17.74 17.86 34.96 2.86 3.92 7.98
Time (s) 0.059 0.061 0.094 0.054 0.072 0.049

5.3. Generalization Evaluation

This section discusses how the proposed method can prevent overfitting on the training
dataset. If one model overfits its training data, it may not work well on a testing dataset.
Hence, we train the model with data from one dataset and test it with data from another.
In addition, if the training dataset size is too small, it also leads to overfitting and can not be
generalized enough to work. Therefore, we evaluate our method with various dataset sizes.

In this experiment, we opted to assess the performance of the model trained on the
ChestX-Ray14 dataset [5] using a subset of observations from the testing set of CheXpert [6].
Specifically, we focused on five observations: Atelectasis, Cardiomegaly, Consolidation,
Edema, and Pleural Effusion.

Let Dtrain(.) represent the training dataset and Dval(.) denote the validation dataset,
as specified in Wang et al. [5], tailored specifically for the five selected observations. Addi-
tionally, we introduce sub-datasets D25

train(.), D50
train(.), D75

train(.), and D100
train(.), sampled from

25%, 50%, 75%, and 100% of Dtrain(.), respectively. The testing dataset, denoted as Dtest(.),
is defined in CheXpert [6]. Throughout all experiments, early stopping is implemented to
select the optimal model.

The results are presented in Table 6 and Figure 8a. It is observed that, while P-VIB
shows a slight improvement over the baseline on the validation dataset, the significance of
the improvement becomes more pronounced on the testing set. This phenomenon indicates
a domain gap between ChestX-Ray14 [5] and CheXpert [6]. Without VIB, the best model
selected by Dval(.) exhibits a higher AUC for the training set, but the AUC for Dval(.)
remains the same. This suggests that P-VIB helps prevent overfitting on the training set.
Additionally, the results for the Dtest(.) dataset demonstrate that features learned by P-VIB
are more suitable for CheXpert [6]. P-VIB contributes to a 2% increase in AUC compared
to the baseline when a small dataset (D25

train(.)) is used for training. With a larger dataset
(D100

train(.)), the increment is 1.46%. This result proves that P-VIB can help to achieve better
generalization and improve the accuracy of smaller datasets. The ROC for each observation
with and without P-VIB is shown in Figure 9.
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(a) (b)

Figure 8. Contribution of the proposed method. The baseline is the SotA MLRFNet [16]. (a) Train
and validate on the ChestX-Ray14 dataset; test on the CheXpert dataset. Five common diseases are
selected. (b) Train, validate, and test on the ChestX-Ray14 dataset; all pathologies are selected.

Table 6. A comparison between MRFNet/P-VIB in terms of generalization for five observations.
The result given by P-VIB is in italic format.

Training Set Training AUC Evaluation AUC Testing AUC

25% 84.9/88.36 81.71/82.49 74.82/76.81
50% 86.96/87.78 83.66/83.68 75.87/77.51
70% 88.07/88.01 84.18/84.20 77.46/79.09

100% 89.28/88.16 84.13/84.28 78.08/79.54

Figure 9. ROC curves for five observations. The model was trained on the ChestX-Ray14 dataset and
tested on the CheXpert dataset.

In addition, to better understand the generalization of the proposed P-VIB, we tested all
pathologies in the ChestX-Ray14 [5] dataset with different training ratios. Here, the training
dataset and testing dataset are established in prior works [5,15,16]. We used sub-training
datasets to evaluate how the number of training samples affects the micro AUC. The result
in Figure 8b shows that, if more training samples are applied, the increment given by
P-VIB is higher. The observation is a little different from the result in Figure 8a where the
increment is quite the same with different numbers of training samples. This means that
the increment given by P-VIB is dependent on many factors, such as the complexity of the
problem and the domain gap issue. However, a bright observation is that P-VIB can help in
all scenarios.
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5.4. Working with Other Networks

This section explores the versatility of applying the P-VIB module across various
CNN-based networks. Firstly, Section 5.4.1 investigates how the P-VIB module interacts
with different backbone architectures. Secondly, Section 5.4.2 examines the performance
of P-VIB when positioned at various locations within a classification network. Lastly,
Section 5.4.3 presents an ablation study to evaluate the impact of the P-VIB module across
diverse network architectures.

The experiment utilizes two datasets: the first comprises all training images listed in
Wang et al. [5], while the second contains 50% of the first case. For consistency, the testing
dataset, as defined in Wang et al. [5], remains unchanged across all scenarios. Also, micro
AUC is used to evaluate the result.

5.4.1. Working with Different Backbones

Experimental results given by different backbones are listed in Table 7. From these
experiments, some observations are as follows:

• P-VIB consistently enhances performance across all scenarios. With a well-optimized
backbone like Res2Net, the improvement is modest, with a mere 0.4% increase in
micro AUC. However, when the backbone is suboptimal, the enhancement can be
more substantial, ranging between 1.3% to 1.6% in AUC.

• Let ∆VIB denote the improvement attributed to P-VIB, calculated as AUCwithP−VIB −
AUCw/oP−VIB. It is notable that the improvement observed with 100% of the dataset
is slightly higher than that with 50% of the dataset. This trend aligns with the obser-
vations from Figure 8b, where the enhancement tends to increase with more training
samples. However, Figure 8a suggests a slight reduction in improvement as the
number of training samples grows. This experiment underscores that the efficacy of
P-VIB’s enhancement is not solely contingent on the number of training samples.

Table 7. Performance with different backbones.

Dataset 100% Training Data 50% Training Data

No P-VIB With P-VIB No P-VIB With P-VIB

Rest2Net 86.00 86.4 85.15 85.51
ResNet 84.04 85.42 82.6 83.95

DenseNet121 75.21 76.52 73.2 74.4

5.4.2. P-VIB at Different Positions

While the proposed method recommends the utilization of the P-VIB module before
the neck, it is important to note that P-VIB can be applied at any position within a deep
neural network. In our approach, we refrain from integrating P-VIB into the backbone
to maximize the utilization of pre-trained models. Therefore, P-VIB is positioned either
before, as illustrated in Figure 2, or after the neck, as depicted in Figure 10. The two settings
correspond to the following two learning methods:

• VIB-Neck: Employing feature selection at the level of individual pixels and subse-
quently leveraging these features to capture non-local features.

• Neck-VIB: Attempting to extract non-local features from all pixels and then selecting
new features from these long-range relationships.
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Figure 10. Model structure when the P-VIB module is positioned after the neck.

Figure 11 compares results obtained from two settings across all diseases. Both
approaches demonstrate successful learning of a classifier, indicating that end-to-end
learning is capable of adjusting parameters for both feature selection and non-local fusion
regardless of their order of execution. Moreover, the VIB-neck configuration outperforms
the neck-VIB arrangement across all diseases except for Fibrosis. This outcome suggests
that feature selection is more effective when applied to low-level features rather than
high-level features.

Figure 11. Performance when VIB is used at different positions in a CNN network.

5.4.3. P-VIB and Diverse Network Architectures

In this section, the P-VIB module is integrated with diverse network architectures.
Initially, the ECA neck is removed to assess the impact of the proposed P-VIB on the
network. Subsequently, the scaling process is eliminated, implying that only features at
the head P4 are employed for model estimation. Lastly, both the neck and scaling factors
are removed.

The results presented in Table 8 indicate that the neck has a minimal effect on accuracy.
Without the neck, the AUC decreases slightly compared to the proposed method. When
100% of the training samples are used for training, the AUC is reduced by 0.2% and 0.4%
with and without P-VIB. On the contrary, multi-scale features prove to be highly significant.
Without the assistance of multi-scale features, the AUC is reduced by 0.8% and 0.83% with
and without the VIB module, respectively. In the absence of both neck and scale features in
a network, there is a notable drop in AUC.
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Table 8. Comparison of datasets with and without P-VIB in an ablation study on network architectures.

Dataset 100% Training Data 50% Training Data

No P-VIB With P-VIB No P-VIB With P-VIB

No neck (N) 85.59 86.20 85.04 85.18
No multi-scale (MS) 85.17 85.60 84.94 85.05

Neither (N + MS) 84.91 85.25 84.04 84.15

6. Conclusions and Future Work

This paper introduces a P-VIB module designed to selectively extract crucial features
within a CNN-based network. Distinguishing from conventional methods that restrict
feature selection solely before the classification head, our proposed approach allows feature
selection at any stage within a CNN network. Experimental outcomes on the ChestX-
Ray14 [5] dataset demonstrate an increase in AUC compared to state-of-the-art methods.
Furthermore, the module effectively prevents overfitting, enhancing its performance when
training and testing datasets are from different domains. An analysis of the feature selec-
tion loss underscores the robustness of the proposed method across various initializations,
thereby enhancing its applicability across diverse domains. Last but not least, our compre-
hensive experiments at different dataset sizes and diverse DNN architectures point out that
the P-VIB is robust and workable in many scenarios.

While the proposed method effectively mitigates overfitting on the training dataset,
it falls short of bridging the gap between distinct domains. Experimental results reveal
a significant decrease in the AUC metric when the AI model is applied to datasets from
new domains. To advance toward a diagnostic system viable for commercial deployment,
promptly addressing the domain gap between source and target domains is imperative.
This can be achieved by leveraging unlabeled data and a few labeled data from the target
domain for semi-supervised domain adaptation. Our future research endeavors will
concentrate on developing methodologies for facilitating this adaptation process to tailor
the model to a target domain rapidly.
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