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Abstract: Ophthalmological services face global inadequacies, especially in low- and middle-income
countries, which are marked by a shortage of practitioners and equipment. This study employed a
portable slit lamp microscope with video capabilities and cloud storage for more equitable global
diagnostic resource distribution. To enhance accessibility and quality of care, this study targets
corneal opacity, which is a global cause of blindness. This study has two purposes. The first is to
detect corneal opacity from videos in which the anterior segment of the eye is captured. The other is
to develop an AI pipeline to detect corneal opacities. First, we extracted image frames from videos
and processed them using a convolutional neural network (CNN) model. Second, we manually
annotated the images to extract only the corneal margins, adjusted the contrast with CLAHE, and
processed them using the CNN model. Finally, we performed semantic segmentation of the cornea
using annotated data. The results showed an accuracy of 0.8 for image frames and 0.96 for corneal
margins. Dice and IoU achieved a score of 0.94 for semantic segmentation of the corneal margins.
Although corneal opacity detection from video frames seemed challenging in the early stages of
this study, manual annotation, corneal extraction, and CLAHE contrast adjustment significantly
improved accuracy. The incorporation of manual annotation into the AI pipeline, through semantic
segmentation, facilitated high accuracy in detecting corneal opacity.

Keywords: deep learning; semantic segmentation; corneal opacity detection; AI pipeline

1. Introduction
1.1. Shortage of Ophthalmologists in Developing Countries

Despite the global increase in ophthalmologists, there remains a significant shortage in
developing countries [1]. This shortage is compounded by the limited access to appropriate
surgical technologies and diagnostic tools [2,3]. The deployment of local ophthalmolo-
gists is considered a cost-effective solution. However, a need for more professionals in
developing countries remains a challenge [4].

1.2. Device Used in This Study

The smart eye camera (SEC) [5] used in this study to photograph the anterior segment
of the eye was invented and developed by an active ophthalmologist to solve the problems
encountered in ophthalmology treatment in Japan and developing countries; it is an
ophthalmic medical device that has been successfully put into practical use as a medical
device. The SEC is a smartphone attachment that enables observation of various anterior
segment structures of the eyes, including the eyelid, conjunctiva, cornea, anterior chamber,
iris, lens, and anterior vitreous. This device mirrors the functionalities of the conventional
slit lamp microscopy [6,7]. Furthermore, the SEC facilitates the preliminary estimation
and identification of several anterior segment pathologies, such as cataracts [8], primary
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angle closure [9], allergic conjunctivitis [10], and dry eye disease [11,12]. Its integration
with smartphone technology not only enhances accessibility but also potentially expands
the scope of ophthalmologic diagnostics in various settings. An image-filing system with
a dedicated application was also used to enable remote ophthalmology treatment. The
development of the SEC has made it possible for anyone to perform eye examinations at
any time, regardless of location. We are diagnosing videos of the anterior segment of the
eye sent via the cloud, and we are conducting research and development to perform the
diagnosis using AI to support ophthalmologists.

1.3. Application Example of Deep Learning to Ophthalmology

Deep learning has been applied in various ways to diagnose conditions that affect the
anterior segment of the eye. Applications range from detecting angle-closure in anterior
segment optical coherence tomography (AS-OCT) images to diagnosing dry eye disease
(DED) and identifying peripheral anterior synechia (PAS). For instance, a deep learning
system was developed for angle-closure detection in AS-OCT images, which surpassed
previous methods by utilizing a multilevel deep network that captured subtle visual cues
from the global anterior segment structure, local iris region, and anterior chamber angle
(ACA) patch [13]. Another study evaluated a deep learning-based method to autonomously
detect DED in AS-OCT images, which showed promising results compared to standard
clinical dry eye tests [14]. Deep learning classifiers have also been used to measure pe-
ripheral anterior synechia based on swept-source optical coherence tomography (SS-OCT)
images, demonstrating good diagnostic performance for gonioscopic angle closure and
moderate performance for PAS detection [15]. In addition, deep learning classifiers have
been developed to detect gonioscopic angle closure and primary angle closure disease
(PACD) based on a fully automated analysis of AS-OCT images, showing effective de-
tection capabilities [16]. Another study focused on the diagnostic performance of deep
learning for predicting the plateau iris in patients with primary angle-closure disease using
AS-OCT images, which revealed a high performance in predicting the plateau iris [17].
Finally, a deep learning model was developed for automated detection of eye laterality in
anterior segment photographs, which achieved high accuracy and outperformed human
experts [18]. In summary, deep learning has shown significant potential for the diagnosis
of various anterior eye conditions, offering automated, accurate, and noninvasive meth-
ods that could enhance clinical evaluations and improve access to eye care in high-risk
populations [13–18].

1.4. Potential Problems with Deep Learning: Eye Diseases

Deep learning models have shown significant promise in the field of ophthalmology,
particularly for detecting and diagnosing ocular diseases. However, these models have
several limitations that must be considered. One of the primary limitations of this study
was the need for further testing and clinical validation. Although deep learning models
have demonstrated high accuracy in the automated image analysis of fundus photographs
and optical coherence tomography images, additional research is required to validate these
technologies in clinical settings [19]. Another area for improvement is the lack of disease
specificity and the public generalizability of the models. Despite the satisfactory perfor-
mance reported in previous studies, most deep learning models developed for identifying
systemic diseases based on ocular data lack the specificity required for individual diseases
and still need to be generalizable to the broader public for real-world applications [20].
Furthermore, deep learning models can be computationally expensive, and deploying them
on edge devices may pose a challenge. This is particularly relevant when considering the
variety of available models and the potential need for a combination of models to solve
a given task. The computational demands of these models may limit their practicality in
certain clinical settings [21]. Lastly, while deep learning models can predict the develop-
ment of diseases such as glaucoma with reasonable accuracy, they may miss certain cases,
especially those with visual field abnormalities but not glaucomatous optic neuropathy.
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This indicates that although DL models are powerful tools, they may need to be able to
fully replace the nuanced judgment of trained medical professionals [22]. In summary,
while deep learning models hold great potential for revolutionizing the diagnosis of ocular
diseases, their limitations in clinical validation, disease specificity, computational demands,
and the potential to miss certain cases must be addressed before they can be fully integrated
into clinical practice.

1.5. Corneal Opacity Detection Research Using Deep Learning

Research on detecting corneal opacity using AI has focused on developing and ap-
plying sophisticated algorithms and machine learning models to improve accuracy and
objectivity in assessing corneal conditions. AI algorithms analyze images from iris recogni-
tion cameras to quantify corneal opacification objectively. This is particularly relevant for
diseases such as mucopolysaccharidoses (MPS), where the current methods are subjective
or difficult to standardize [23]. Machine learning techniques, including artificial neural net-
works (ANNs), adaptive neuro-fuzzy inference systems (ANFISs), and committee machines
(CMs), are being investigated for their capabilities in classifying corneal images, identify-
ing abnormalities, and enhancing the quality of confocal corneal images, achieving high
accuracy and saving clinicians’ time [24]. AI applications in corneal topography have been
reviewed, focusing on interpreting topographical maps for detecting corneal ectasias, where
combined metrics from different devices could improve the AI model performance [25].
Deep learning models are being developed to screen candidates for refractive surgery
by evaluating corneal tomographic scans, with the potential to outperform traditional
methods and provide guidance to refractive surgeons [26]. Based on these studies, AI has
been leveraged to enhance the detection and classification of corneal opacity and other
abnormalities. These include using image analysis algorithms for objective quantification,
machine learning for image classification and quality enhancement, and deep learning for
screening in refractive surgery. These advancements aim to provide more accurate, reliable,
and efficient tools for ophthalmologists to improve patient care.

1.6. Motivation for Study

Based on this research environment, we found that there has been almost no research
on machine learning for detecting corneal opacity, which is a cause of blindness.

1.7. Purpose of Study

Therefore, in this study, we developed an AI pipeline to determine the presence of
corneal opacity using anterior segment videos captured using a portable sitting microscope
and deep learning techniques.

2. Materials and Methods
2.1. Ethical Approval

This study was conducted in strict accordance with the principles of the Declaration of
Helsinki. Ethical approval for the study protocol was obtained from the Institutional Ethics
Review Board of the Minamiaoyama Eye Clinic, Tokyo, Japan (IRB U. 15000127. Approval
no. 202101). Owing to the retrospective design of the study and the use of anonymized
data, the board waived the requirement for written informed consent from the participants.

2.2. Device to Capture the Anterior Segment Videos

Anterior segment videos were captured using a portable slit lamp microscope (Smart
Eye Camera; SEC. SLM-i07/SLM-i08SE, OUI, Inc., Tokyo, Japan; 13B2X10198030 101/
13B2X10198030201) (Figure 1). By attaching this device to a smartphone, it will be possible
to perform eye examinations in the same way as with existing slit lamp microscopes. There
is evidence that they do not require battery replacement or charging, are easy to carry, and
exhibit the same performance and safety as existing medical devices in several regions [6,7].
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Figure 1. Smart eye camera.

2.3. Method to Build the Dataset

Data acquisition for this study was centralized at a singular ophthalmological facility,
namely, the Yokohama Keiai Eye Clinic. The recordings, systematically obtained between
July 2020 and December 2021, were subsequently collated on a dedicated cloud server, thus
constituting the dataset for this study. The recording process entailed skilled ophthalmol-
ogists directing SEC toward the cornea of the patients, leveraging the device’s feature of
emitting a white diffused light to facilitate clear visualization. The video capture protocol
was aligned with the methodologies conventionally associated with slit lamp microscopes,
ensuring standardization of the visual data. To further emulate the conditions of routine
clinical assessments, patients were advised to avoid blinking during the video recording
phase to enhance the consistency and clinical relevance of the collected video data.

2.4. Deep Learning for Corneal Opacity Detection

First, 30 diffuse light videos were decomposed into images; the images that could be
used as validation data were selected. We used a program of our creation to divide the video
into images. A total of 5996 images, 1617 positive frames, and 4379 negative frames were
used to detect corneal opacity. The resolution of all images was 1280 pixels horizontally and
720 pixels vertically. Using these verified images, we attempted to detect corneal opacity by
performing image classification. EfficientNet-B4 [27] was used as the convolutional neural
network (CNN) model, and cross-validation was performed, but almost no correct positive
frames could be detected. We chose CNN and Vision Transformer for image classification
because they have been used frequently recently and were appropriate for comparison. We
limited the impact of randomness on accuracy by fixing the random seed value throughout
this study.

2.5. Improved Deep Learning for Corneal Opacity Detection

Therefore, to improve the detection accuracy, we manually annotated the cornea,
which is the region of interest (ROI), extracted an image of only the cornea, adjusted
the contrast using contrast-limited adaptive histogram equalization (CLAHE) [28], and
used a convolutional neural network. Image classification was performed again using
EfficientNet-B4 as a (CNN) model. The data structures used for the learning and prediction
are presented in Table 1. The proportion of underlying diseases in the data is shown in the
pie chart in Figure 2, the cornea extraction procedure is shown in Figure 3, and the contrast
changes before and after CLAHE image processing are shown in Figure 4.
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Table 1. Data structure.

Negative Positive Total

train/val 188 188 376
test 47 47 94

Figure 2. Ratio of underlying diseases. Bullous keratopathy and senilis account for the majority of
the underlying diseases.

Figure 3. The upper left panel shows the original image frame extracted from the movie. The upper
right panel shows the annotated mask of the cornea. The lower left corner is the cornea extracted
using an annotated mask. The lower right corner is the extracted cornea (ROI only) and is an input
image for training. The size of the input image is smaller than that of the original image.

2.6. Hyperparameters for Training

Throughout this study, every hyperparameter for each model was determined by
repeated 5-fold cross-validation. The hyperparameters at training were 30 for the num-
ber of epochs, 8 for the batch size, and 0.0001 for the learning rate, with default values
for EfficientNet-B4 for the rest. Data augmentation during training included resizing
(512 × 512), flipping up and down with a 1/2 probability, and flipping left and right with a
1/2 probability.
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Figure 4. The upper left panel shows the extracted cornea image. The upper right is after CLAHE
processing of the left image. The lower left panel shows the other extracted cornea image. The lower
right is after CLAHE processing of the left image. It can be observed that the contrast of both images
was improved.

2.7. Semantic Segmentation

This confirmed that corneal opacity could be detected in the anterior segment images.
However, to incorporate it into an AI-automated prediction system, which we call an AI
pipeline, it is necessary to automate the manual annotation of the process of extracting the
cornea and ROI from the anterior eye image.

Therefore, we performed semantic segmentation learning to segment the cornea from
the anterior segment image by reusing the annotation mask used to extract the cornea
from the anterior segment image and the original extracted image as learning data. U-
Net [29]/EfficientNet-B4 was adopted as the semantic segmentation model.

2.8. Hyperparameters for Semantic Segmentation

The hyperparameters for learning the semantic segmentation were 40 epochs and
10 batch sizes. The learning rate started at 0.001 and decreased to 0.0001 after 25 epochs.
All other values were set to the U-Net/EfficientNet-B4 default.

2.9. Data Augmentation Methods for Semantic Segmentation

Data augmentation during training included resizing (256 × 256), flipping left/right
with 1/2 probability, Affine transformation, padding the edges according to image size,
cropping at random, Gaussian noise with a probability of 1/5, and perspective transforma-
tion with a probability of 1/2. In addition, one set of augmentations among the following
three was performed with a probability of 9/10: the first set includes CLAHE, brightness ad-
justment, and gamma transformation, the second set includes sharpening, blur, and motion
blur, third set includes contrast adjustment and hue, saturation, and luminance change.

2.10. Environment for Study

This study was conducted on a Windows 11 system with the following specifications:
CPU: Intel Core i7-11700KF, memory: 128GB, and GPU: RTX 4070.
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In this way, an AI pipeline was completed that uses semantic segmentation to extract
the ROI and cornea from anterior segment images and uses deep learning to classify images
to detect corneal opacity.

3. Results

Table 2 shows the results of manually annotating the cornea as a region of interest
(ROI), extracting only the cornea, adjusting the contrast with CLAHE, and learning with
CNN (EfficientNet-B4).

Table 2. Confusion matrix.

Confusion Matrix Value

True Positive 45
False Negative 2
False Positive 2
True Negative 45

Table 3 lists the metrics derived from the outcomes predicted by the model. The eval-
uation yielded commendable results across several key indicators: sensitivity, specificity,
accuracy, and the area under the curve (AUC). The values obtained were as follows: sensi-
tivity of 0.96 (95% confidence interval [CI]: 0.97–0.99), specificity of 0.96 (95% CI: 0.97–0.99),
accuracy of 0.96 (95% CI: 0.97–0.99), and an AUC of 0.98 (95% CI: 0.98–0.99).

Table 3. Performance of the model.

Evaluation Index Value

Sensitivity 0.96 (95% CI. 0.97–0.99)
Specificity 0.96 (95% CI. 0.97–0.99)
Accuracy 0.96 (95% CI. 0.97–0.99)

AUC 0.98 (95% CI. 0.98–0.99)

Figure 5 depicts the receiver operating characteristic (ROC) curve, illustrating the
diagnostic ability of the model across various threshold settings.

Table 4 shows the outcomes of the corneal semantic segmentation, as predicted by the
model. The Dice coefficient, also referred to as the F1 score, had a substantial value of 0.94.
Furthermore, the intersection over union (IoU), another critical metric for segmentation
performance, similarly registered a notable value of 0.94.

Table 4. Dice and IoU of semantic segmentation.

Evaluation Index Value

dice 0.94
IoU 0.94

The Dice coefficient is called the “Sørensen-Dice index” or the “Sørensen-Dice coeffi-
cient”. The Dice coefficient DSC(A,B) for set A, and set B is defined by the following equation:

DSC(A, B) =
2|A ∩ B|
|A|+ |B| (1)

The Dice coefficient represents the ratio of the average number of elements in the two
sets to the number of elements they have in common and is a value between zero and one.
The larger the Dice coefficient, the more similar the two sets are.
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Figure 5. Receiver operating characteristic curve for prediction.

The intersection over union (IoU) is an evaluation metric used in object detection
and represents the percentage of image overlap. Specifically, it has a maximum value
of 1 when the detected and true areas completely overlap and a minimum value of zero
when there is no overlap at all. The IoU for regions A and B can be calculated using the
following formula:

IoU =
|A ∩ B|
|A ∪ B| (2)

4. Discussions

We believe that these three approaches contributed to the improved prediction accu-
racy for corneal opacity. First, the cornea, the ROI, was extracted from the anterior segment
image; second, the image resolution was reduced by changing the input image from the
entire anterior segment image to the corneal image, the ROI, thereby reducing the reduction
in image features; and third, CLAHE was applied as a contrast optimization.

It was also a good idea to reuse the anterior segment image used in the model training
phase of corneal opacity prediction and the mask image used to extract the cornea to per-
form corneal semantic segmentation. The corneal semantic segmentation model eliminates
the need to manually extract the cornea and allows it to be integrated into the AI pipeline.
The corneal opacity prediction AI pipeline begins with the selection of anterior segment
image frames from the video that were deemed suitable for diagnosis, followed by the
extraction of the cornea through semantic segmentation, resulting in an accurate diagnosis
of corneal opacity.

Despite the constraints presented by the limited size of the sampling dataset (com-
prising 5996 frames, with 1617 positive and 4379 negative frames), this study successfully
developed a model with high diagnostic accuracy for corneal opacity. It is noteworthy
that previous research in the domain of ocular image analysis often utilized datasets that
exceeded thousands of annotated cases [30,31]. Conversely, the current study leveraged
video data as the primary raw material, capitalizing on the potential to extract multiple
image frames from a single video sequence. This methodology aligns with the tech-
niques employed in prior research focused on the development of automated diagnostic
AI systems [32,33], wherein methods such as cropping, flipping, and other forms of data
augmentation are utilized to effectively expand the dataset from a single image. The im-
plementation of these techniques, particularly the strategic use of video data for frame
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extraction and image amplification [34], is posited as a pivotal factor contributing to the
development of a high-performance model despite the relatively modest size of the dataset.

In the context of developing diagnostic AI programs for medical applications, deter-
mining the optimal performance benchmarks, particularly for diagnostic goals, presents
a substantial challenge. This is exemplified in the realm of ophthalmology, where certain
diseases are the leading causes of blindness globally. Previous investigations, including
our own, have underscored the potential of AI to achieve diagnostic accuracies comparable
to, if not surpassing, those of human specialists. For instance, our prior research indicated
that AI-based diagnostics could achieve over 95% accuracy in comparison with evaluations
conducted by ophthalmologists in the context of a disease with a significant worldwide
blindness burden [30]. Furthermore, Hu et al. reported an impressive diagnostic accu-
racy of 93.5% with an AUC of 0.9198 [35], indicating a high level of diagnostic precision.
Additionally, a cross-sectional study by Son et al. demonstrated AI’s robust diagnostic
performance, with an accuracy of 90.26% and an AUC of 0.9465 [36], further evidencing
AI’s capability to accurately diagnose medical conditions. Moreover, recent studies provide
compelling evidence of the efficacy of AI algorithms in distinguishing between infectious
keratitis and immunological keratitis through image analysis. A notable report highlights
the exceptional performance of the AI algorithm, as evidenced by AUC values of 0.986 for
infectious keratitis and 0.960 for immunological keratitis [30]. These findings underscore
the algorithm’s broad applicability not only in the identification of keratitis subtypes, but
also in its performance across a range of ocular conditions, including corneal scars, ocular
surface tumors, corneal deposits, acute angle-closure glaucoma, cataracts, and bullous
keratopathy [30]. The deployment of this technology in ophthalmology clinics for profes-
sional use signifies a significant advancement in the field. It enables healthcare providers to
more accurately identify the underlying causes of ocular diseases, thereby facilitating the
determination of appropriate differential treatment methods. This development represents
a pivotal step toward integrating AI into clinical practice, offering a promising tool for
enhancing diagnostic accuracy and improving patient outcomes in ophthalmology. These
findings collectively suggest that high diagnostic accuracy should be a key consideration in
establishing performance benchmarks for AI systems aimed at diagnosing corneal opacity.
Such evidence supports the argument for setting ambitious yet achievable accuracy goals
in the development and evaluation of AI diagnostics, thereby enhancing their utility and
reliability in clinical settings.

In the existing literature, there is a scarcity of studies employing deep learning method-
ologies for the identification of corneal opacity through images acquired via slit lamp
microscopy. Consequently, this study is pioneering in its endeavor to develop a highly
accurate model for the detection of corneal opacity. Moreover, the application of AI to
the diagnosis of ocular pathologies from medical examination videos remains a nascent
field. This research, therefore, holds significance because of its innovative approach to both
the development of a precision model for corneal opacity detection and its exploration of
AI-based diagnostic methodologies in ophthalmology. In addition, research on using AI to
diagnose eye diseases from medical examination videos is new, and we believe that this
research is significant in these two respects.

Describe practical considerations and challenges for implementing AI pipelines, in-
cluding computational resources, data privacy, and integration with the existing healthcare
infrastructure. A PC equipped with a GPU is sufficient for computing resources, and
the data are video recorded on a smartphone, so no personal information is recorded.
Integration with existing medical infrastructure can be easily achieved via LAN.

In addition, we discuss the potential clinical effectiveness, cost-effectiveness, and
scalability of the solution proposed in this study. The solution proposed in this study is
that it can be introduced at a much lower cost than expensive medical equipment, even in
environments with poor ophthalmology treatment infrastructure, and that future research
will allow the detection of other anterior segment diseases AI can easily be added.
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Lastly, we discuss the clinical feasibility and acceptability of the AI pipeline proposed
in this study. The devices used in this research have already been introduced in clinical
settings worldwide, and an environment is already in place to diagnose anterior segment
videos received via the cloud using the latest AI.

Limitations of This Study

The current study had several limitations. First, the limited scale of the sample size
was small. Despite the retrospective nature of the study, wherein the use of video recordings
served to augment the dataset, the scope of the data remained relatively constrained. To
develop robust and adaptable AI models, particularly those pertinent to imaging analysis,
there is a significant need for more extensive datasets. Therefore, the limited sample
size in this study may represent a significant impediment to the generalizability and
comprehensive applicability of the derived AI models. In addressing the aforementioned
limitation, this study drew inspiration from prior literature, which demonstrated enhanced
detection of keratitis through the augmentation of single anterior segment images [34].
Such augmentation involves a six-fold increase in data quantity achieved by methods such
as flipping, rotating, and cropping [34]. Similarly, our approach involved the meticulous
recording of digital anterior segment videos, thereby facilitating amplification of the volume
of raw data [32,33]. Second, the dataset in this study was exclusively sourced from a
single medical institution, which may limit the external validity and generalizability of
the findings. To ensure broader clinical applicability and substantiate the robustness of
the conclusions, it is essential for future research endeavors to incorporate and validate
the models against external datasets. Ideally, this validation process should involve a
large-scale cohort comprising data from multiple medical facilities. This comprehensive
approach will be instrumental in enhancing the reliability and relevance of AI models in
diverse clinical settings.

5. Conclusions

We enhanced the accuracy of the prediction model by isolating the cornea, our re-
gion of interest (ROI), from anterior eye images. This refined the ability of the model to
identify corneal opacity. Moreover, we streamlined the process by implementing semantic
segmentation on the original and masked images instead of manual cornea extraction. Our
AI pipeline for corneal opacity detection seamlessly extracts stills from videos, applies
semantic segmentation for cornea extraction, and determines opacity presence.

Expanding beyond corneal opacity by integrating different disease detection modules,
we aimed to create a versatile anterior segment diagnosis AI pipeline. This advancement
could expedite screening during health checkups, lessening the ophthalmologists’ work-
load. To further enhance our corneal opacity detection AI pipeline, we aim to address
three key areas: augmenting training data, refining image selection from video frames, and
distinguishing between the right and left eyes in diagnostic images.

We plan to continue this research to complete an anterior segment diagnostic AI pipeline.
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