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Abstract: As available genomic interval data increase in scale, we require fast systems to search
them. A common approach is simple string matching to compare a search term to metadata, but
this is limited by incomplete or inaccurate annotations. An alternative is to compare data directly
through genomic region overlap analysis, but this approach leads to challenges like sparsity, high
dimensionality, and computational expense. We require novel methods to quickly and flexibly query
large, messy genomic interval databases. Here, we develop a genomic interval search system using
representation learning. We train numerical embeddings for a collection of region sets simultaneously
with their metadata labels, capturing similarity between region sets and their metadata in a low-
dimensional space. Using these learned co-embeddings, we develop a system that solves three
related information retrieval tasks using embedding distance computations: retrieving region sets
related to a user query string, suggesting new labels for database region sets, and retrieving database
region sets similar to a query region set. We evaluate these use cases and show that jointly learned
representations of region sets and metadata are a promising approach for fast, flexible, and accurate
genomic region information retrieval.

Keywords: genomic intervals; search; metadata; embeddings; representation learning; information
retrieval; functional genomics; computational genomics; chromatin

1. Introduction

The increasing volume of biological data has motivated initiatives to facilitate data
search, retrieval, and interoperability [1–7]. This is particularly important for epigenome
data, for which data search and retrieval has become intractable [8]. Two natural ways
to search for genomic interval data are: First, to search with natural language for data
relevant to a query; or second, to search with a query set of genomic intervals to find
similar data. For a natural language search, a typical query system uses string pattern
matching to search the metadata annotations in the database [9–11]. While such lexical
search systems work, they are limited because they rely on annotations rather than the data
itself and, therefore, are only as effective as the quality of the annotations. Furthermore,
they may miss biological similarities between experiments with different annotations: for
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example, prostate cancer and breast cancer data have a clear biological relationship [12],
yet this may be missed by metadata matching. Finally, metadata matching cannot be used
at all for unannotated data.

For the second type of epigenome query, instead of querying using natural language
terms, the query consists of genomic intervals. Many methods exist to facilitate this type
of analysis [13–21]. These methods use the data itself and are powerful and widely used,
but they also have limitations: they may not scale to big data, they require complex input,
and they fail to take into account the biological context in which the data were generated.

To address limitations of these common analytical approaches, we present an alterna-
tive approach that bridges the gap between searching for genomic data based on natural
language and searching with interval overlaps. Our approach leverages recent advances
in neural embedding methods and the growing corpus of epigenome data to tie natural
language to genomic intervals. Neural embedding approaches show great promise for a
variety of biological applications [22–28]. In particular, the StarSpace neural embedding ap-
proach has been recently used to learn representations of cancer mutational signatures and
has shown to be resource-efficient, flexible, and scalable [29]. Here, we use StarSpace [30]
to jointly embed genomic interval region sets with associated metadata into a shared la-
tent embedding space. Using these learned co-embeddings, we develop a system that
solves three related information retrieval tasks: first, retrieving region sets related to a user
query string; second, suggesting new labels for unannotated database region sets; and
third, retrieving database region sets similar to a query region set. Our models do these
tasks using lower-dimensional embedding distance computations instead of computing
interval overlaps or string matching. We evaluate these use cases and show that jointly
learned representations of region sets and metadata are a promising approach for fast,
flexible, and accurate genomic region information retrieval. Furthermore, we show how
our approach can search data with sparse or inaccurate metadata and can also standardize
metadata annotation and correct annotation errors.

2. Results
2.1. Overview

To learn low-dimensional representations of genomic regions and their associated
metadata, we first assembled a dataset of 2548 ChIP-seq region sets from ENCODE [31]. We
focused on two metadata attributes—cell type and ChIP antibody target—and limited the
dataset to eight activating histone modifications: H3K4me1, H3K4me2, H3K4me3, H3K27ac,
H3K9ac, H3K9me1, H3K79me2, and H4K29me1, which represent 131 cell types (Figure 1A).

Like many natural language methods, StarSpace requires documents to share a vocab-
ulary, which corresponds to a predefined genomic interval “universe” for region set data.
After hyper-parameter tuning, we selected a 1000 bp tiling universe and tokenized the raw
intervals by mapping each interval to one in the universe (Figure 1B). After the tokenization
step, we considered each tokenized region set as a document. We split the data into a test
set (15%) and a training set (85%), which we further subdivided into training (90%) and
validation sets (10%) for hyper-parameter tuning and early stopping in the training phase
(Figure 1C). We then trained a StarSpace model to jointly learn numerical representations
for region sets with the cell type and ChIP antibody as labels (Figure 1D; see Methods for
details). The StarSpace algorithm converts each region set and its corresponding label to
a numerical vector—or embedding, an n-dimensional vector represented in embedding
space—putting biologically related region set vectors and their labels close to one another
in the shared latent space (Figure 1E).

Next, we evaluated whether the model could capture biological relationships. As a
global sanity check, we visualized label embeddings using Uniform Manifold Approxi-
mation and Projection (UMAP) in two-dimensional space. We observed results generally
in line with expectations, with similar antibodies mapped near one another, such as all
the H3K4 methylation marks (Figure 1F). Cell type labels also showed some grouping by
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tissue type (Figure 1G), indicating that the embeddings may capture biological information
during the training process.

To test the embeddings more rigorously, we next designed experiments in three
different scenarios (Figure 1H): First, we provide a query term from a set of antibody or cell
type labels as input, and the model outputs a ranked set of region sets similar to the query
term. In the second scenario, we provide a region set as input, and the model outputs a
set of ranked labels annotating the region set. This scenario tests the capability of working
with unannotated data. In the third scenario, we provide a query region set, and the model
retrieves similar region sets. We trained three separate StarSpace models: one using only
the cell type label, one using only the antibody label, and one using both. In each scenario,
we evaluated each of the three models using the test set.
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Figure 1. Overview of the approach and summary of results. (A) Alluvial plot showing the frequency
of each class in the antibody and cell type data sets and their relationships to one another. (B) The
first step is tokenization, in which annotated BED files are converted into a shared vocabulary using
a region universe. (C) Tokenized files are divided into training core, validation, and test sets. (D) The
Starspace model is trained using both the region set and label data. (E) The training procedure
results in co-embedding space for both region sets and labels. (F) UMAP plot of the antibody
label embeddings. (G) UMAP plot of the cell type label embeddings, colored by their tissue of
origin. (H) We evaluated the model with three scenarios—1: retrieve region sets given a query label;
2: annotate a query region set with a label from the embedding space; and 3: retrieve similar region
sets given a query region set.

2.2. Scenario 1. Retrieve Region Sets for a Metadata Query

Scenario 1 evaluates whether we can accurately retrieve region sets that are related to
a query search term. The search term could come from any of the metadata of the region
sets in our training set, such as K562 from cell type labels or H3K4me2 from antibody labels.
To retrieve related region sets, we first map the search term to its numerical vector. Next,
we identify the nearest neighbor embeddings of region sets in our model by calculating the
cosine similarity between the search term and region set embeddings. We return a ranked
list of the most similar region sets (Figure 2A).
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Figure 2. Description of and results for Scenario 1: retrieving relevant region sets given a query
search label. (A) Overview of retrieval process. The search label is mapped to the embedding space,
and nearby region sets are retrieved, returned, and ranked by distance to the query term embedding.
(B) Distributions of cosine similarity of the test region sets to their true labels for 3 StarSpace models.
(C) R-precision of the models trained on one or multiple labels for each search term in the antibody
or cell type labels. (D) Average r-precision of each model. (E) Example of 10 most similar region sets
for the query term 22rv1 from cell type label group. Green bars indicate a perfect match. (F) Example
of 10 most similar region sets for the query term H3K4me2 from antibody label group. Green bars
indicate a perfect match. (G) Heatmap showing the similarity between the antibody label embeddings
and the embeddings of the region sets in the test dataset. The dendrogram depicts relationships
among the label embeddings.

To evaluate the performance for Scenario 1, we first assessed the similarity of a
predicted region set label to the actual label for each region in the test set. Since the
StarSpace algorithm aims to maximize the similarity between the embeddings of the region
sets and the embeddings of their labels, a well-trained model should have a high similarity
value between each region set and its corresponding label. Overall, the similarities are high,
and similarity values for models trained with only one label type (only cell type or only
antibody) are higher than those trained with both (Figure 2B). To test the performance of
the search system, we used r-precision, which is defined as the fraction of results returned
that are relevant, where relevant means its true label matches the provided search term (see
Methods). We calculated r-precision separately for each cell type and antibody on each of
the three StarSpace models (Figure 2C). The mean r-precision across terms shows that the
antibody model performs better than the cell type model (Figure 2D); this result reflects
the increased difficulty of the cell type task, since the antibody task has only 8 classes
whereas the cell type task has 113. Furthermore, training the StarSpace model on one
label separately resulted in better performance, which reflects a similar complexity issue:
training on one label reduces the complexity of the model by limiting it to a specific type of
metadata. Training separately requires training multiple models and results in multiple
embedding vectors for each region set.

To demonstrate a specific example, we visualized the results for query string 22rv1, the
name of a human prostate carcinoma cell line (Figure 2E). The top hit was the only response
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in the test set with label 22rv1, indicating that the retrieval task was successful. Other highly
scoring region sets include other prostate cancer cell lines, c4-2b and vcap, as well as mcf-7,
a breast cancer cell line. Thus, the model reflects known relationships between prostate
and breast cancer in the embedding space [12]. For a query term of H3K4me2, the model
flawlessly ranks the top four region sets with the same label from our test set at the top
(Figure 2F). The remaining region sets belong to mono- and tri-methylation of the histone
H3 lysine K4, which are similar marks.

To explore global performance trends, we calculated the cosine similarity between each
region set embedding in the test dataset with the embeddings of the corresponding labels
for either antibody (Figure 2G) or cell type (Figure S1A). The model generally retrieves
the expected inputs. Furthermore, we observed global relationships among these labels;
H3K4me2 and H3K4me3 form one cluster, which then joins with H3K4me1, H3K27ac, and
H3K9ac; these marks are more distant from H4K20me1, H3K9me1, and H3K79me2. Together,
these results suggest that a co-embedding model is a promising approach for a natural
language search for relevant biological region sets.

2.3. Scenario 2. Annotate Unlabeled Region Sets

Scenario 2 provides annotation suggestions for interval sets with missing or inaccurate
metadata information. In this use case, region sets from the test set are provided as queries,
and the model suggests annotations. We first tokenize the query region set and then convert
the tokenized query set to its embedding representation using the trained StarSpace model.
We then compute the cosine similarity between the query region set embedding and label
embeddings, returning a ranked list. The label achieving the maximum similarity values
(minimum distance) for each label type is proposed as the label for the query region set
(Figure 3A).
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Figure 3. Description of and results for Scenario 2: annotating query region sets. (A) Overview of
Scenario 2: first, the query region set is mapped to the embedding space; then, the labels are ranked
based on their similarity to the region set in the embedding space. (B) The ranked antibody (left)
and cell type (right) labels based on the similarity metric for the ENCFF001WXY.bed query region set.
(C) Reciprocal ranking for the models on one and multiple labels. (D) Mean reciprocal ranking for
the models on one and multiple labels. (E) Confusion matrix of the true class of antibody labels and
predicted antibody by our method. (F) The classification performance (F1 score) of models trained on
one and multiple labels.
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To demonstrate, we queried with a test region set labeled with gm12866 and H3K4me3.
The most similar labels of each type clearly correspond to the correct labels, with top hits
including various lymphoblastoid cell lines and the h3k4me3 antibody label (Figure 3B).

To evaluate performance globally, we used two performance metrics. First, the recip-
rocal rank (RR) calculates the rank at which the label relevant to the region set is retrieved
(see Methods). We consider a label as relevant if it is the same as the actual label of the test
region set. RR is 1 if a relevant label is retrieved at rank 1, and RR is 0.5 when a relevant
label is retrieved at rank 2. The RR statistic shows that the models have generally good
performance; in particular, the antibody-trained models are able to achieve nearly perfect
results (Figure 3C). To summarize these results, we computed the mean of the reciprocal
ranking for all the query region sets in our test dataset (MRR). For all models and tests, our
MRR score is above 0.6, indicating that the relevant result is most frequently ranked as the
top or second search result (Figure 3D). The MRR of the model trained on just one label is
again superior to the model trained on both labels.

For our second evaluation approach, we consider Scenario 2 as a classification task
and use a confusion matrix to explore the results. The confusion matrix reflects generally
strong performance and shows that the confusion mainly occurs between H3K4me3 and
H3K4me2 (Figure 3E). While chemically distinct, these two histone modifications are highly
similar, further indicating that the model is capturing information about the underlying
biology. In addition, there is some confusion between H3K4me3 and H3K9ac: both known to
mark promoters. We also computed the micro-averaged F1 score to measure classification
performance (Figure 3F; see Section 4). We achieved good F1 scores across all tasks and saw
that the models trained on independent labels again outperformed the model trained on
both labels simultaneously. Altogether, these results illustrate a highly capable annotation
model that could be a useful automated system for annotating unlabeled or incorrectly
annotated genomic interval data with standardized terms.

2.4. Scenario 3. Retrieve Region Sets for a Query Region Set

Scenario 3 finds database region sets similar to a given query region set. As before, we
first tokenize the query and then convert it to an embedding using the trained StarSpace
model. We then calculate the similarity of the vector to the database region set embeddings
to retrieve and rank results (Figure 4A). The region set database is our training set, and our
queries come from the test set. To evaluate, we define hits as the number of region sets with
matching antibody and cell type labels.

To demonstrate, we queried with a region set annotated with H3K27ac and vcap labels.
Using the model that is trained only on the cell types, the two most similar region sets also
have vcap as the cell type label (Figure 4B). The remaining most similar region sets come
from other prostate cancer cell lines: lncap, c4-2b, and 22rv1. The antibody results similarly
retrieved the same target antibody as the query region set (Figure 4C).

To summarize these results globally, we calculated the similarity of each test region
set to all the database (training) region sets. We observed consistently good performance,
with higher similarity when the query and dataset region sets share identical or similar
labels for both antibody (Figure 4D) and cell type labels (Figure S1C). We also compared
our results with the Jaccard similarity. We selected files labeled as k652, mcf-7, or a549
and calculated the Jaccard similarity of each selected region set to all database region sets
with one of these labels. The results shows that the Jaccard similarity is correlated with our
embedding similarity score (Figure S1B).
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Figure 4. Description of and results for Scenario 3: Retrieving region sets similar to a query region
set. (A) Overview of Scenario 3: the query region set is mapped to the embedding space, and the
retrieved region sets from the database are ranked based on the their similarities to the query
region set embedding. (B) Ten most similar region sets to the query region set, ENCFF190ZWT.bed,
for model trained on antibody labels. (C) Ten most similar region sets to the query region set,
ENCFF190ZWT.bed, for model trained on cell type labels. (D) The heatmap plot of the similarity
between the test region set embeddings and the embeddings of the region sets in the training dataset.
The model is trained on the antibody labels.

2.5. Annotating External Data with a Pre-Trained Model

Next, to apply our model to a real large-scale use case, we turned to the task of external
data annotation. We used geofetch [32] to collect 32,174 hg19 BED files with associated
metadata from the Gene Expression Omnibus (GEO). Since these datasets come from a
variety of sources, the metadata are not standardized. Our goal is to apply the annotation
task from Scenario 2, using the pre-trained StarSpace model to propose standardized labels
for these new region sets.

Following Scenario 2, we tokenized the GEO regions sets, then used the StarSpace
model trained on the ENCODE dataset to project embeddings, and finally ranked the
labels from our trained model by similarity to the GEO region set embeddings (Figure 5A).
We then annotated each file with the top-ranked label (Table S1). Since this dataset lacks
standardized correct answers, to assess performance loosely, we identified GEO files that
had labels corresponding to our trained labels. For antibody labels, 21% of the data had a
corresponding label, and our model accurately labeled 54% of these samples (Figure 5B).
For cell types, 14% of the GEO samples could be mapped to our labels, and of these, 75%
were labeled correctly (Figure 5B). For example, sample GSM5614147 (“H3K4me1 1TF-4”)
was correctly labeled (Figure 5C); similarly, sample GSM4797835 (“K562 H3K4me2 dmf60
fragments”) was confidently labeled as K562 (Figure 5D). Looking closer at the incorrect
predictions, we noticed that many of these were near misses; for example, the predicted
antibody for GSM5455054 (“Primary AFH1 H3K27ac peaks”) was H3K9ac, but H3K27ac was
ranked second with a negligible difference in the similarity score (Figure 5E). An incorrect
result for file GSM3223711 (“VCaP shCt AR peaks”) shows that the top four labels were
prostate cancer lines, though the correct answer was ranked fourth (Figure 5F). To overcome
this issue, we defined a confidence interval between the first and second predicted labels
and reported the results as confident if this value passed a 0.1 threshold.
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Figure 5. Application of our model for annotating a new dataset: (A) Overview of the approach:
query region set from GEO database is mapped to the embedding space, then labels are ranked based
on their similarity. (B) Statistics of the collected data and the percentage of the match/mismatch
prediction. (C–H) Example search results for the given query file; panels (C,D) show examples of
correctly predicted labels; panels (E,F) show examples of near misses; panels (G,H) show examples
of results for non-standard labels.

We also often identified spelling mistakes or non-standard representations in file-
names or other metadata. We reasoned that this approach could be used to identify such
inconsistencies. For example, we found data labeled with h3k4m3 or h3k4tri, which we
assume are slight variations of the H3K4me3 label. To assess this more systematically, we
used regular expressions to extract likely incomplete or misspelled labels. We identified
several examples for which the model could correct these issues. For example, the model
predicted h3k4me3 as the most similar label for sample GSM2864752 (“IgE H3K3me3 peaks”).
Since the provided H3K3me3 label is likely an error, our model predicts the label for this file
should be h3k4me3 (Figure 5G). Similarly, for sample GSM5220509 (“Lane1 2D H3K27ace
BMI1 macs2 peaks”), the model predicts an acetylation mark as the first predicted label
(Figure 5H; Figure S2). A variety of similar examples show the utility of this process: our
model can update labels k9ac to h3k9ac, k27ac to h3k27ac, K4me3 to h3k4me3, K4ME1 and
K4me1 to h3k4me1, h3k4m3 to h3k4me3, K27 to h3k27ac, and K4 to h3k4me3 (Figure S2A).

Our model predicted h3k4me3 as the label for two files with “tri” in the labels, and it
corrected “mo” and “mono” labels (Figure S2B). The model can only predict from the eight
labels we used when training, so it is rather limited; however, for region sets with other
labels, the retrieved labels typically share biological similarity. For instance, the predicted la-
bel for H3k18ac—which does not exist in our training set—is h3k27ac, which is a biologically
similar marker. We found similar results for labels H4k12me1 and H3k79me3 (Figure S2C).
Furthermore, for labels h3k36me3, h3k27me3, h3k9me3, and h4k20me3, the similarity to the
closest labels is smaller; these are repressive marks, and our model is only trained on eight
activating marks, so the model is able to convey that none of the trained labels are a good fit
(Figure S2D). Taken together, these results confirm that our model can be used for metadata
standardization by predicting the same label for similar files with different label formatting.
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3. Discussion

Here, we described an application of the StarSpace method to convert annotated
genomic interval data into low-dimensional distributed vector representations. This builds
on our previous work with embedding methods for genomic intervals [25], extending it to
exploit accompanying metadata. We tested three different applications for joint embedding
of data files and metadata. Each of these uses the joint representations of labels and genomic
region sets in a shared space, making them comparable in low dimensions, which facilitates
similarity search. This embedding space facilitates the calculation of vector distances for
direct similarity comparisons and calculations between region sets, between labels, or even
between a region set and a label. We also showed that the model can transfer annotations
from a training set to new region sets without any labels. Not only does this make data
search and retrieval more robust, but it can facilitate retroactive annotation of sparse or
inaccurate metadata. To our knowledge, this is the first attempt to develop a system that
leverages neural embedding methods to jointly embed genomic interval data with metadata
for fast and effective dataset searching.

This approach provides a number of nice features for a search system. First, the region
set search can query not only data used in training but also data in other region sets.
Because we can use the trained model to convert new, unseen region sets to numerical
vectors, a trained model can be used to search beyond the training data. This means
no metadata information is required for the region sets to be included in the search,
allowing us to search poorly annotated files. Second, this also means the database can be
continuously updated to include new region sets to query against. Third, this approach is
highly scalable as it is not dependent on region overlap analysis after the embeddings are
computed. Fourth, it provides a natural similarity ranking system based on distances in the
embedding space. Given these benefits, we propose this general approach could be used to
build an impactful search engine that directly relates biological search terms to region sets
regardless of the metadata annotating the original dataset. The user would communicate
to the system by providing one or more labels within the metadata vocabulary, such as cell
line, target antibody, or tissue type of interest. The output is one or more genomic interval
sets that are biologically relevant to the provided query terms. Our proposed model has
the potential to facilitate data annotation and metadata standardization as well as to assist
biologists with analyzing similar experiments by identifying BED files that match a given
query BED file.

Our models have several areas for future development. First, one limitation of our
approach is that, like other NLP methods, it requires a shared vocabulary. New research
in constructing such vocabularies for genomic interval datasets therefore promises to
improve the accuracy of our method [33]. Second, we are also working on methods to
evaluate the quality of the resulting embeddings, which will improve the quality of the
models [34]. Finally, we will seek to expand the scope of natural language terms to enable
a practical natural language search interface. In the future, we believe this approach could
form the basis of a general-purpose genomic interval search framework capable of either
natural language or interval-based queries. We also believe the annotation capability of
this framework is a useful step forward for standardizing metadata annotations for diverse
public datasets.

4. Methods
4.1. Training StarSpace Models

StarSpace is a general representation learning method that can embed different types
of entities into an embedding space [30]. An entity could be anything. For example, in a text
classification task, an entity could be a label or a sentence. This enables direct comparisons
between different types of entities by learning embeddings of all the entities in the same
space. In StarSpace, each entity is represented by a unique feature or a set of features: all
from a fixed-length feature embedding dictionary. Specifically, we denote the dictionary as
D, which is a D × d matrix. The i-th row Di of D represents a d-dimensional embedding



Bioengineering 2024, 11, 263 10 of 13

of the i-th feature. Then, an entity a consisting of a set of features F is represented as
a = ∑i∈F Di. In the context of joint learning of genomic interval sets and metadata, all the
intervals and the labels of interval sets are the features that form the dictionary. Specifically,
a label is an entity with a single feature, and an interval set is an entity with multiple
features, where each interval in the set corresponds to a feature. The goal of StarSpace is to
learn the feature embedding dictionary.

4.2. Tokenization Process

To map region set data to the format required for input into StarSpace, our initial step
requires creating a consensus set of regions, which we define as the "universe of regions".
This is achieved by tiling the reference human genome in intervals of 1000 base pairs, which
collectively constitute this universe. To tokenize a given region set into the universe means
we calculate the overlaps between each data point and the predefined universe. When an
overlap is detected, the corresponding genomic tile is tagged as an existing token and is
subsequently added to the document representing that specific data point. Each region set,
or document, thus represents a collection of tiles for which the input data are mapped to
the overlapping tiles in the universe. These regions are concatenated to form a document.
The label of each document is appended at the end of this sequence, rendering the data
prepared for subsequent processing using the StarSpace method to derive embeddings.
These documents are formatted as required by StarSpace.

4.3. Models with Different and Combined Label Sets

A StarSpace model can be trained on one or several labels (Figure 1B–D). To test
whether this could be used to accommodate different types of biological labels, we trained
three StarSpace models: first, on the region sets labeled by only the antibody metadata;
second, on region sets annotated by cell type metadata; and finally, on the antibody and
cell type labels simultaneously. The model trained on both label types has the advantage of
having a single embedding space for all the labels, which facilitates converting region sets
to a numerical representation since the choice of the model is not dependent on the search
term. However, the single-label models have a simpler learning task by having a reduced
number of classes that the model is supposed to distinguish.

4.4. Training Procedure

Following the required format for the training phase of the StarSpace model, the labels
(i.e., the metadata information for each region set) are appended to the end of each tokenized
region set. For models with more than one label for each region set, we add all of them to
the end of the document. We use the first training mode (trainMode = 0) of the StarSpace
algorithm and cosine similarity as the loss function. This means StarSpace is jointly trained
on both labels and documents such that label–document pairs are close to one another in
the embedding space (Figure 1E).

Starspace learns the dictionary by comparing entities. Each entity is represented by its
embedding computed from D. We sample pairs of entities containing both positive and
negative pairs. A positive pair (a, b+) means entity a and positive sample b+ are similar
based on a similarity measure s(·, ·). On the other hand, a negative pair (a, b−) means
entity a and negative sample b− are dissimilar, and the value of s(a, b−) is small. For each
entity a, we sample a positive sample b+ from the set of all entities to form a positive pair
with a, and we sample k negative samples b− to form k negative pairs with a. Then, we
minimize the following loss L:

L = ∑
a∈E

∑
b+∈E+

a ,b−∈E−
a

ℓ(s(a, b+), s(a, b−
1 ), . . . , s(a, b−

k )), (1)

where E is the set of all entities, and E+
a and E−

a are the positive and negative entity sets, re-
spectively, for a. The loss function ℓ is a negative log loss of softmax, i.e., ℓ(s(a, b+), s(a, b−

1 ),
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. . . , s(a, b−
k )) = − log es(a,b+)

∑k
i=1 es(a,b−i )

+es(a,b+)
. For joint learning the embeddings of genomic

interval sets and metadata, a is a genomic interval set, b+ is a metadata label associated
with a, and b− is some other label that is not associated with a.

4.5. GEO Projection

We downloaded 75,575 BED-like files from GEO using geofetch [32]. Of these,
32,174 annotate the hg19 genome assembly according to the Genome_build column. Since
our model was trained on hg19 data, we restricted the analysis to this subset.

4.6. Evaluation Metrics
4.6.1. R-Precision

R-precision is used to evaluate the quality of r retrieved items for a given query. If we
are given r items for a query, then the r-precision is defined as the proportion of the r items
that are relevant [35]. To evaluate the overall quality of multiple queries, we average the
individual r-precisions over multiple queries. If our method retrieves r region sets for the
specific search term, then r-precision is the fraction of relevant region sets in the r-retrieved
region sets.

4.6.2. F1 Score

The F1 score [36] measures the performance of a classifier, with 1 being the best and
0 being the worst. It can be interpreted as a harmonic mean of the precision and recall,
and thus, it can be called a balanced evaluation metric. The F1 score is defined as follows:

F1score =
2 × Precision × Recall

Precision + Recall
. (2)

Precision is the fraction of correct predictions among all positive predictions and is defined
as follows:

Precision =
TP

TP + FP
(3)

where TP means true positive and FP means false positive predictions. Recall is the fraction
of correct predictions among all positive samples and is defined as:

Recall =
TP

TP + FN
(4)

where FN is the number of false negative predictions. In multi-class prediction, we adopt
the micro-averaged F1 score, which is calculated by treating TP, FP, and FN as the sum of
individual class TP, FP, and FN scores. For class c, its TP is interpreted as the number of
samples that are predicted as c and are also from c; its FP is interpreted as the number of
samples that are predicted as c but are from classes other than c; its FN is interpreted as the
number of samples that are predicted as not c and are also from classes other than c.

4.6.3. Mean Reciprocal Rank

Mean reciprocal rank (MRR) is an information retrieval measure that evaluates the
performance of a retrieval system. MRR is defined as the average of the reciprocal ranks
of all the queries. The reciprocal rank (RR) calculates the reciprocal of the rank at which
the first relevant item was retrieved [35]. For example, in Scenario 1, given a query label,
if the relevant region set is retrieved at rank 1, then the RR for this query is 1; if the set is
retrieved at rank 2, then the RR for this query is 0.5. Formally, given a query item q from
the set of queries Q, its RR is RR(q) = 1/rank(q). The MRR for multiple queries is defined
as follows:
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MRR(Q) =
1
|Q| ∑

q∈Q
RR(q) (5)

where |Q| denotes size of Q.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering11030263/s1. Figure S1: Global performance trends.
(A) Heatmap showing the similarity between the cell type label embeddings and the embeddings of
the region sets in the test dataset. The dendrogram depicts relationships among the label embeddings.
(B) The pair-wise similarity of a subset of BED file embeddings and their Jaccard similarity is
correlated. (C) The heatmap plot of the similarity between the test region set embeddings and
the embeddings of the region sets in the training dataset. The model is trained on the cell type
labels. Figure S2: Examples of corrected labels from public data sources. These examples show that
the model can be used to (A) complete the labels for files with incomplete labels, (B) standardize
metadata from different sources, (C) identify the most related label when the label does not exist in
the training model, and (D) differentiate activating and repressive marks (for repressive marks, no
high-confidence label is found).
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