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Abstract: Three-dimensional registration with the affine transform is one of the most important steps
in 3D reconstruction. In this paper, the modified grey wolf optimizer with behavior considerations and
dimensional learning (BCDL-GWO) algorithm as a registration method is introduced. To refine the 3D
registration result, we incorporate the iterative closet point (ICP). The BCDL-GWO with ICP method
is implemented on the scanned commercial orthodontic tooth and regular tooth models. Since this is a
registration from multi-views of optical images, the hierarchical structure is implemented. According
to the results for both models, the proposed algorithm produces high-quality 3D visualization images
with the smallest mean squared error of about 7.2186 and 7.3999 µm2, respectively. Our results
are compared with the statistical randomization-based particle swarm optimization (SR-PSO). The
results show that the BCDL-GWO with ICP is better than those from the SR-PSO. However, the
computational complexities of both methods are similar.

Keywords: grey wolf optimizer (GWO); oral healthcare; iterative closest point (ICP); 3D image
registration; hierarchical registration; 3D tooth model reconstruction

1. Introduction

Three-dimensional reconstruction from multi-view images has been used in many
applications, including in orthodontics. It is also used in diagnostic and treatment planning
processes in adults and children with dental caries [1,2], especially dental caries that
are a cause of chronic diseases in children [3]. With recent technology, e.g., laser or CT,
there are several 3D reconstructions from multimodal images research works [4–9] from
those technologies. However, in rural areas, there is limited access to these sophisticated
devices and also insufficient oral healthcare [10]. In Thailand, the Dental Innovation
Foundation, under royal patronage, has provided dental care access in rural communities
for a long time. Due to limited access to sophisticated devices in those communities, taking
multi-view teeth images inside children’s mouths is a very difficult task. Hence, multi-
view teeth optical images are collected to be utilized in the 3D reconstruction system. In
3D reconstruction from multi-view images, there are several processes, including image
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registration, which is the transforming process of different sets of data into one coordinate
system. There are existing works on 2D medical image registration [11–26]. Since point
cloud coordinates are used in our 3D teeth reconstruction, the 3D registration is more proper.
In the literature, there are several works on 3D registration [27–31] utilizing several features
in the registration process, including point cloud coordinates representing the 3D shapes
of objects [32–37]. These mentioned works used a variation swarm optimization (PSO) in
the location matching between the source and target images. In the hope of improving
the registration accuracy, there was study conducted on using the grey wolf optimizer
(GWO) instead of PSO in 3D registration [38]. However, only rotation and/or translation
were used in those matching locations. Hence, in our previous work [39], the statistical
randomization-based particle swarm optimization (SR-PSO) algorithm with the iterative
closet point (ICP) method was used to find the optimal affine transform (translation, scaling,
rotation, and shearing (shortened from a shearing mapping that displaces each point in a
fixed direction by an amount proportional to its signed distance from a given line parallel
to that direction)) between teeth optical images.

In particular, a system with the 3D registration using a modified grey wolf optimizer
that can reconstruct a 3D image from teeth optical images is developed. However, due
to a research ethical approval requirement, we will not use real images taken from chil-
dren. Hence, we postulate scanned images from two commercial tooth models and then
create point cloud images [39]. To avoid premature convergence and to balance between
exploration and exploitation, we modify the grey wolf optimization algorithm [40] with
behavior considerations and dimensional learning strategies [41–44], called BCDL-GWO,
to find the suitable affine transform between the source and target images. This can also
enhance global and local searching and improve an ability to escape from a local optima. It
has been shown in [41–44] that the BCDL-GWO is a good optimization tool when used to
find suitable parameters in several applications, including engineering design problems
(pressure vessel design, tension/compression spring design, and welded beam design
problems), biomedical real-life problems (breast cancer and heart disease detection), and
14 real-world problems from the 2011 IEEE Congress on Evolutionary Computation. Fur-
thermore, to refine the resulting registration, the iterative closet point (ICP) method [45,46]
is used because of its ability to refine registered results [11,34,39]. In the final step, we
reconstruct the 3D tooth models.

2. Registration Method

In this section, we will briefly review the 3D registration method used in this paper.
The registration between two point cloud images (target (P = [pi]M × 4, M is the number of
target point cloud points) and source (Q = [qj]N × 4, N is the number of source point cloud
points) point cloud images) can be found by the following transformation:

H∗ = argmin f (H(Q), P) (1)

where H is the geometry transform estimated by finding the nearest neighbor between a
set of point pairs (pj and qj) [46,47], and f (·) is an objective function (minimum distance
error between two corresponding points). Hence, the mean squared error (MSE) can be
used as f (·) to find a suitable H* as

H∗ = argminH
1
N

N

∑
j=1

(
qj · HT − pj

)2

(2)

pj = argmin
pi∈P

∥∥∥qj.H
T − pi

∥∥∥. (3)

In this case, there are 15 unknown parameters, i.e., 3, 3, 3, and 6 parameters for scaling
(S), translation (T), rotation (R), and shearing (SH), respectively [48]. To give a simpler
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equation, let cox = cos(ϕx), coy = cos(ϕy), coz = cos(ϕz), six = sin(ϕx), siy = sin(ϕy), and
siz=sin(ϕz); then, the 3D transformation matrix H is computed as

H = T × S × R × SH, (4)

H =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1




sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1




coy × coz −coy × siz siy 0

six × siy × coz + cox × siz −six × siy × siz + cox × coz −six × coy 0

−cox × siy × coz + six × siz cox × siy × siz + six × coz cox × coy 0

0 0 0 1




1 sh1 sh2 0

sh3 1 sh4 0

sh5 sh6 1 0

0 0 0 1

 (5)

Hence,

H =


a d g tx
b e i ty
c f j tz
0 0 0 1

, (6)

where
a = sx(coy × coz) + sh3sx(−coy × siz) + sh5sx(siy)
b = sy(six × siy × coz + cox × siz) + sh3sy(−six × siy × siz + cox × coz) + sh5sy(−six × coy)
c = sz(−cox × siy × coz + six × siz) + sh3sz(cox × siy × siz + six × coz) + sh5sz(cox × coy)
d = sh1sx(coy × coz) + sx(−coy × siz) + sh6sx(siy)
e = sh1sy(six × siy × coz + cox × siz) + sy(−six × siy × siz + cox × coz) + sh6sy(−six × coy)
f = sh1sz(−cox × siy × coz + six × siz) + sz(cox × siy × siz + six × coz) + sh6sz(cox × coy)
g = sh2sx(coy × coz) + sh4sx(−coy × siz) + sx(siy)
i = sh2sy(six × siy × coz + cox × siz) + sh4sy(−six × siy × siz + cox × coz) + sy(−six × coy)
j = sh2sz(−cox × siy × coz + six × siz) + sh4sz(cox × siy × siz + six × coz) + sz(cox × coy)

(7)

It is worthwhile noting that a through j are non-rigid transformations resulting from
the combination of scaling, shearing, and rotation properties.

To find the optimal H, the proposed grey wolf optimization algorithm with behavior
considerations and dimensional learning strategies (BCDL-GWO) algorithm described in
the following section is utilized. Table 1 shows the defined search space with 15-dimensional
individuals in the swarm.

Table 1. Parameters boundaries in optimization process.

Parameters Lower Bound Upper Bound

tx, ty, tz −1.5 (cm) 1.5 (cm)
ϕx, ϕy, ϕz −45 (deg) 45 (deg)
sx, sy, sz 0.8 (20% downscaling) 1.2 (20% upscaling)

sh1, sh2, sh3, sh4, sh5, sh6 −0.5 (cm) 0.5 (cm)

2.1. Overview of Grey Wolf Optimizer Algorithm (GWO)

The gray wolf optimizer (GWO) [40] algorithm is divided into five mathematical
models, i.e., (1) social hierarchy, (2) encircling prey, (3) hunting prey, (4) attacking prey
(exploitation), and (5) seeking prey (exploration). The wolves are first generated as a set
of candidate solutions (search agents) by randomization. At each generation, the wolves,
called omega (ω), are guided by their three leaders, named alpha (α), beta (β), and delta (δ),
to find more favorable regions in search spaces while searching or hunting for prey. Let
X = {xl |l = 1 . . . K }; xl =

{
xl j|j = 1 . . . d

}
be a set of K search agents (individuals) with

d-dimensional feature space. The encircling behavior of the lth grey wolf (xl) around the
pth prey (xp) in the jth dimension at iteration (t) is

Dt
p =

∣∣∣Ct
p · xt

p − xt
l

∣∣∣ (8)



Bioengineering 2024, 11, 254 4 of 23

xt
l = xt

p − At
p · Dt

p (9)

where Dt
p is the distance between xl and xp at iteration t. The At

p and Ct
p are defined as

At
p = 2 × a · r1 − a (10)

Ct
p = 2 × r2 (11)

where the components of a decrease linearly from 2 to 0 over the course of iterations. r1
and r2 are random vectors in [0, 1]. Therefore, each element in At

p will be a random value
in [−a, a], whereas that in Ct

p will be a random value in [0, 2]. The position update equation
of each individual will follow the 3 leaders, i.e., α, β, and δ represented by xt

α, xt
β, and xt

β,
respectively.

Dt
α =

∣∣Ct
α · xt

α − xt
l
∣∣, Dt

β =
∣∣∣Ct

β · xt
β − xt

l

∣∣∣, and Dt
δ =

∣∣Ct
δ · xt

δ − xt
l
∣∣ (12)

xt
1 = xt

α − At
α · Dt

α, xt
2 = xt

β − At
β · Dt

β, and xt
3 = xt

δ − At
δ · Dt

δ (13)

then

xt+1
l =

xt
1 + xt

2 + xt
3

3
(14)

2.2. The Modified GWO Algorithm with Behavior Considerations and Dimensional
Learning (BCDL-GWO)

The modified GWO with behavior considerations and dimensional learning is based
on the idea of [41–44]. Firstly, we incorporate the Sine Cosine Algorithm (SCA) [41] in the
alpha grey wolf to alleviate the unbalancing between exploration and exploitation and to
help with the premature convergence by

Dt
α = rand()× sin(rand())×

∣∣Ct
α · xt

α − xt
l

∣∣; i f rand() < 0.5

Dt
α = rand()× cos(rand())×

∣∣Ct
α · xt

α − xt
l

∣∣; otherwise
(15)

Each jth element of Ct
α, Ct

β, and Ct
δ is modified following the method in [49] as

Ct
α,j = 1 + (2 × r3 − 1)× c2

Ct
β,j = 1 + (2 × r4 − 1)× c2

Ct
δ,j = 1 + (2 × r5 − 1)× c2

(16)

where r3, r4, and r5 are the uniformly distributed random numbers in [0, 1]. c is decreasing
linearly from 1 to 0 over the course of iterations as follows:

c = cmax − (cmax − cmin)×
(

t − 1
T − 1

)
; cmin = 0, cmax = 1 (17)

Therefore, each element in vector C is stochastically generated in [0, 2] in the first
iteration and decreases to 1 at the final iteration. This process helps to provide a better
exploration capability. The control vectors At

α, At
β, and At

δ are calculated as in Equation (10)
with a calculated by [50]

a = 2 ×
(

T − t
T

)µ

(18)

where T is the total number of iterations, and 0 < µ ≤ 2.
Our hypothesis is that the alpha grey wolf is the most important leader; hence, the

updated position of each omega grey wolf is modified to [51]

xt+1
l = wt

1xt
1 + wt

2xt
2 + wt

3xt
3; wt

1 + wt
2 + wt

3 = 1 (19)
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where
wt

1 = cos θ

wt
2 = 0.5 sin θ cos φ

wt
3 = 1 − (wt

1 + wt
2)

with θ = 2
π cos−1

(
1
3

)
tan−1(t), φ = 0.5 tan−1(t)

(20)

From Equation (20), w1 ≥ w2 ≥ w3. w1 is close to 1, and w2 and w3 are close to 0 at the
beginning. These values will finally be close to 1/3 in the last iteration.

Now, we are ready to incorporate real-life behavioral considerations into the algo-
rithm [52] by discarding the wolves during the migration (prey searching) with low fitness
values and allowing mating (crossover and mutation as in the genetic algorithm) to improve
the pack’s diversity. However, in our GWO, the first half of the iteration is focused on
the exploration behavior (when |A| > 1), whereas the remaining half is transformed into
exploitation behavior (when |A| < 1). Hence, we applied the Lévy flights (LF) [42] and
Random Opposition Learning (ROL) [43] to improve the pack’s diversity and to enhance
the capability of the global and local search. The LF is also applied to each element j of the
three leaders as

xlevy
1,j =

(
xt

α,j − At
α,j × Dt

α,j

)
+ levyt

1,j

xlevy
2,j =

(
xt

β,j − At
β,j × Dt

β,j

)
+ levyt

2,j

xlevy
3,j =

(
xt

δ,j − At
δ,j × Dt

δ,j

)
+ levyt

3,j

(21)

The LF is defined as

levyt
i,j = ηj × αj ⊕

u

|v|1/β
×

(
xt

i,j − xt
α,j

)
(22)

where
η ∼ N(0, 1), u ∼ N(0, σ2

u), v ∼ N(0, σ2
v )

σu =
{

Γ(1+β) sin(πβ/2)
Γ[(1+β)/2]β2(β−1)/2

}1/β
, σv = 1

(23)

and Γ is a standard grammar function. In the experiment, we set β to 1.5, and α decreases
over time [53] as follows:

αj =
L/10√
t × d

; L =
(
ubj − lbj

)
(24)

with lbj and ubj are the lower and upper bound, respectively, of the search space in
the jth dimension. To add in the ROL in the exploitation behavior [43], suppose x̂l ={

x̂l,j|j = 1 . . . d
}

; x̂l,j ∈
[
lbj, ubj

]
be a d-dimensional vector with

x̂l,j = lbj + ubj − rand()× xb
l,j (25)

where xb
l is the individual best [54] of the lth grey wolf. Now, we introduce a new candidate

solution (xBC
l ) as

xBC
l,j =


(

wt
1xt

1,j + wt
2xt

2,j + wt
3xt

3,j

)
+ levyt

j, i f |A| > 1&rand() ≤ 0.5

wt
1xlevy

1,j + wt
2xlevy

2,j + wt
3xlevy

3,j , i f |A| > 1&rand() > 0.5

x̂l,j, i f |A| ≤ 1

(26)

It is worth noting that the fitness function in the BCDL-GWO (f (·)) is the aforemen-
tioned MSE.
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The new update position is

xt+1
l =

{
xBC

l , i f f (xBC
l ) < f (xt+1

l )

xt+1
l , otherwise

(27)

For the dimensional learning part [55], we suppose xDL
l =

{
xDL

l,j |j = 1 . . . d
}

. The

distance between the current and the next position of xt
l is

Rt
l =

∥∥∥xt
l − xt+1

l

∥∥∥ (28)

The neighborhood of xt
l is defined by

Nt
l =

{
xt

k
∣∣Dt

lk ≤ Rt
l
}

where Dt
lk =

∥∥xt
l − xt

k
∥∥, xt

k ∈ K (29)

Hence, each jth element of xDL
l is calculated by

xDL
l,j = xt

l,j + rand()×
(

xt
n,j − xt

r,j

)
(30)

where xt
n and xt

r are randomly selected from Nt
l and search agents, respectively. Then, the

updated position will be

xt+1
l =

{
xDL

l , i f f (xDL
l ) < f (xt+1

l )

xt+1
l else

(31)

Finally, the position of each grey wolf will only change if the next fitness value is better
than the current one. Hence, the final update position equation will be

xt+1
l =

{
xt+1

l , if f (xt+1
l ) < f (xt

l)
xt

l , otherwise
(32)

The BCDL-GWO algorithm is summarized as shown in Algorithm 1.
The BCDL-GWO optimal solution is selected from the global best in the last population.

The iterative closest point algorithm (ICP) method, as in [45,55] with the Nelder–Mead
simplex method [56], is utilized to fine-tune the registration results. Table 2 shows the
parameters used in our experiment.

Table 2. BCDL-GWO parameters configuration.

Parameters Symbols Values

Search agents (wolves) K 100
Iterations T 2000

Control parameter a a0 2
Control parameter c c0 2

Nonlinear exponent indices µ 0.5, 1.0, 1.5, 2.0
Lévy distribution β 1.5
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Algorithm 1. BCDL-GWO algorithm

Input: K population size, maximum iterations T.
Output: Optimal solution.
Initial: K wolves, t = 0.
While t ≤ T

Evaluate fitness value f (xt
l) for each wolf xt

l ∀l = 1 to K.
Find three best leaders, i.e., xt

α, xt
β, xt

δ.

Update individual best positions xb
l ∀l = 1 to K.

Update At
p, and Ct

p using Equations (10) and (11), respectively.
For each wolf in GWO-SCA procedure

Update current position xt+1
l using Equation (19).

Evaluate fitness f (xt+1
l ).

End For
For each wolf in behavior considerations procedure

Generate new candidate solution xBC
l using Equation (26).

Evaluate fitness f (xBC
l ).

Update xt+1
l using Equation (27).

End For
For each wolf in dimensional learning procedure

Generate new candidate solution xDL
l using equations (30).

Evaluate fitness f (xDL
l ).

Update xt+1
l using Equation (31).

End For
Update xt+1

l using Equation (32).
t = t + 1

End While

3. Experimental Results

The diagram of the 3D reconstruction with the optimal transformation matrix H−1

(transform from source point cloud to target point cloud) found by the BCDL-GWO is
shown in Figure 1. To fine-tune the resultant H−1, the ICP method is used. Finally, the 3D
tooth models are reconstructed based on the registered source and target point clouds.
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Figure 1. Three-dimensional reconstruction with BCDL-GWO.

We first test our system on synthetic cylindrical and pyramid shapes as shown in
Figure 2.

The transformation matrix used to generate from source to target point clouds for both
shapes is

H =


0.882050 −0.285362 −0.555884 −0.061153
0.225174 1.041540 0.181496 0.063487
0.249299 −0.413927 0.966936 −0.163016

0 0 0 1

 (33)



Bioengineering 2024, 11, 254 8 of 23

Hence, the H−1 that the BCDL-GWO needs to find is

H−1 =


0.901895 0.421703 0.439339 0.1

−0.143742 0.826257 −0.237726 −0.1
−0.294063 0.244980 0.819157 0.1

0 0 0 1

 (34)

We compare the results from the BCDL-GWO with µ varied from 0.5 to 2.0 with a step
size of 0.5 with those from our previous work (SR-PSO) [39]. Tables 3 and 4 show the best
registration MSEs results using the BCDL-GWO algorithm with and without refining the
ICP method on the synthetic cylindrical and pyramid shapes, respectively. The best result
on the synthetic cylindrical shape with MSE of 2.71 × 10−27 from BCDL-GWO is at µ = 0.5.
Whereas that on the synthetic pyramid shape with MSE of 7.79 × 10−20 is at the same µ.
The final best H−1 from both synthetic shapes is the same. Because the MSE is extremely
small, both final best H−1 are the same as H−1 shown in Equation (34).

Figure 2. The original shape (target point cloud) and the 3D transformation (source point cloud) of
(a) synthetic cylindrical and (b) synthetic pyramid shapes.

The resulting registration of two cylindrical images and two pyramid images are
shown in Figure 3a,b, respectively. It can be said that the best result from the BCDL-GWO
is comparable with the best one from SR-PSO (α = 1.5). And when we look at the results
from the BCDL-GWO with the other µ, those are better than that from the SR-PSO with
the other α. To confirm this result, we also report the average ± standard deviation from
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several experiments of this algorithm on the same data set shown in Tables 5 and 6 for the
synthetic cylindrical and pyramid shapes, respectively.

Table 3. The mean squared error (MSE) in pixels2 of the registration on the synthetic cylindrical shape.

Research work in [39]
α

α = 0.5 α = 1.0 α = 1.5 α = 2.0

Without ICP 7.68 × 10−2 9.23 × 10−2 3.22 × 10−31 9.68 × 10−2

With ICP 7.68 × 10−2 9.23 × 10−2 3.22 × 10−31 9.68 × 10−2

BCDL-GWO
µ

0.5 1.0 1.5 2.0

Without ICP 1.90 × 10−9 5.37 × 10−11 3.46 × 10−13 3.23 × 10−12

With ICP 2.71 × 10−27 7.35 × 10−22 4.11 × 10−26 3.41 × 10−21

Table 4. The mean squared error (MSE) in pixels2 of the registration on the synthetic pyramid shape.

SR-PSO [39]
α

α = 0.5 α = 1.0 α = 1.5 α = 2.0

Without ICP 1.14 × 10−3 1.18 × 10−4 5.71 × 10−30 1.70 × 10−4

With ICP 1.51 × 10−17 9.66 × 10−18 5.71 × 10−30 6.97 × 10−18

BCDL-GWO
µ

0.5 1.0 1.5 2.0

Without ICP 9.37 × 10−10 3.40 × 10−10 1.96 × 10−13 1.95 × 10−12

With ICP 7.79 × 10−20 1.23 × 10−18 1.63 × 10−17 6.51 × 10−18

Table 5. The average registration mean squared error (MSE) ± standard deviation in pixels2 on the
synthetic cylindrical shape.

SR-PSO [39]
α

α = 0.5 α = 1.0 α = 1.5 α = 2.0

Without ICP 5.38 × 10−2

± 3.73 × 10−2
4.66 × 10−2

± 4.05 × 10−2
3.84 × 10−2

± 4.06 × 10−2
5.56 × 10−2

± 3.90 × 10−2

With ICP 5.38 × 10−2

± 3.73 × 10−2
4.66 × 10−2

± 4.05 × 10−2
3.84 × 10−2

± 4.06 × 10−2
5.56 × 10−2

± 3.90 × 10−2

BCDL-GWO
µ

0.5 1.0 1.5 2.0

Without ICP 2.91 × 10−9

± 3.73 × 10−9
1.14 × 10−10

± 1.7 × 10−10
1.07 × 10−11

± 1.67 × 10−11
1.19 × 10−11

± 2.26 × 10−11

With ICP 1.68 × 10−19

± 4.48 × 10−19
4.26 × 10−22

± 1.03 × 10−21
2.64 × 10−19

± 8.31 × 10−19
5.69 × 10−20

± 1.17 × 10−19

We also compare the results from several experiments of both synthetic data sets
shown in Tables 7 and 8 with those achieved by the butterfly optimization algorithm
(BOA) [57], Harris hawks optimization (HHO) [58], slime mold algorithm (SMA) [59], and
whale optimization algorithm (WOA) [60], whereas each method has the best parameter
setting. It can be seen that the result from BCDL-GWO without ICP is better than that from
all compared methods with ICP. Hence, we can assume that our BCDL-GWO can escape
local minima.

We also provide an indirect registration comparison of our BCDL-GWO with other
methods without the utilization of swarm intelligence, i.e., Zhan et al. [33], Li et al. [61],
and Du et al. [62], and as shown in Table 9. The results also confirm that our BCDL-GWO
provides better results than its counterparts.
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Table 6. The average registration mean squared error (MSE) ± standard deviation in pixels2 on the
synthetic pyramid shape.

SR-PSO [39]
α

α = 0.5 α = 1.0 α = 1.5 α = 2.0

Without ICP 1.65 × 10−4

± 3.68 × 10−4
4.92 × 10−5

± 1.08 × 10−4
1.92 × 10−6

± 6.08 × 10−6
1.71 × 10−5

± 5.38 × 10−5

With ICP 2.83 × 10−18

± 5.91 × 10−18
4.90 × 10−19

± 1.55 × 10−18
5.71 × 10−18

± 1.81 × 10−17
9.92 × 10−18

± 2.79 × 10−17

BCDL-GWO
µ

0.5 1.0 1.5 2.0

Without ICP 2.30 × 10−9

± 4.76 × 10−9
6.29 × 10−10

± 9.14 × 10−10
2.49 × 10−10

± 7.04 × 10−10
7.35 × 10−12

± 1.76 × 10−11

With ICP 2.15 × 10−16

± 6.56 × 10−16
3.79 × 10−18

± 4.78 × 10−18
5.79 × 10−18

± 9.57 × 10−18
6.93 × 10−19

± 2.05 × 10−18

Figure 3. The final best registration using BCDL-GWO with µ = 0.5 of synthetic (a) cylindrical and
(b) pyramid images.
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Table 7. The best average registration mean squared error (MSE) ± standard deviation in pixels2 on
the synthetic cylindrical shapes.

BOA [57] HNO [58] SMA [59] WOA [60] SR-PSO [39] BCDL-GWO

Without ICP 1.08 × 10−1

± 3.83 × 10−3
9.63 × 10−2

± 7.49 × 10−3
4.78 × 10−2

± 4.70 × 10−2
7.27 × 10−2

± 1.99 × 10−2
3.84 × 10−2

± 4.06 × 10−2
1.07 × 10−11

± 1.67 × 10−11

With ICP 8.58 × 10−2

± 1.35 × 10−2
8.84 × 10−2

± 1.09 × 10−2
4.54 × 10−2

± 4.79 × 10−2
6.16 × 10−2

± 3.38 × 10−2
3.84 × 10−2

± 4.06 × 10−2
4.26 × 10−22

± 1.03 × 10−21

Table 8. The best average registration mean squared error (MSE) ± standard deviation in pixels2 on
the synthetic pyramid shapes.

BOA [57] HNO [58] SMA [59] WOA [60] SR-PSO [39] BCDL-GWO

Without ICP 4.14 × 10−2

± 2.07 × 10−3
4.05 × 10−2

± 8.42 × 10−3
7.92 × 10−3

± 6.26 × 10−3
3.77 × 10−2

± 8.85 × 10−3
1.92 × 10−6

± 6.08 × 10−6
7.35 × 10−12

± 1.76 × 10−11

With ICP 3.26 × 10−17

± 8.08 × 10−17
4.19 × 10−17

± 1.21 × 10−16
5.39 × 10−18

± 1.08 × 10−17
3.08 × 10−16

± 8.65 × 10−16
4.90 × 10−19

± 1.55 × 10−18
6.93 × 10−19

± 2.05 × 10−18

Table 9. The indirect comparison of several registration data sets with other existing methods.

Data Sets Objects
Root Mean Squared Error (RMSE)

Li et al. [61] BCDL-GWO

SHOT

Super Mario 4.422 × 10−1 4.06 × 10−3

Doll 4.9 × 10−3 4.01 × 10−3

Duck 5.8 × 10−3 5.23 × 10−3

Frog 4.1 × 10−3 3.83 × 10−3

Peter Rabbit 3.9 × 10−3 4.05 × 10−3

Squirrel 1.29 × 10−2 3.17 × 10−3

Stand ford

Du et al. [62] BCDL-GWO

Bunny 1.9935 × 10−3 1.7912 × 10−3

Dragon 1.841 × 10−3 1.7789 × 10−3

Happy Buddha 2.0950 × 10−3 2.0279 × 10−3

Cow and Feet

Mean Squared Error (MSE)

Zhan et al. [33] BCDL-GWO

Cow 1.43 × 10−2 1.24 × 10−22

Feet of man 3.78 × 10−16 2.13 × 10−18

From the synthetic data set results, we are certain that the BCDL-GWO can be used
in the tooth model 3D reconstruction. The regular tooth model and orthodontic tooth
model from [39] were used in the experiment. For each model, six consecutive point cloud
coordinate (x, y, z) views with an interval of 30 degrees are used in the experiment. Table 10
shows the information on the tooth point cloud data.

In this experiment, the size of the original image in each view was randomly sampled
to 60% with the assumption that there was an overlap between each consecutive view. The
voxel hull method [63–65] was used to select representative points inside the overlapping
area. After that, the registration process with the parameter setting shown in Table 2 was
implemented. Since there were six consecutive views, the hierarchical registration with
F = 6 was used to increase the registration performance shown in Figure 4. The survival
at each level was the best final registration result (BCDL-GWO algorithm with the ICP
method), and that result proceeded to the next level of the hierarchical registration.

Table 11 shows the registration MSE results from the BCDL-GWO without the ICP
of the regular tooth model at hierarchical level 1, whereas those with ICP are shown in
Table 12. Figures 5 and 6 show the best registration of each consecutive pair without and
with ICP, respectively.
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Table 10. Tooth data set information.

Model Object View Object Name Number of Points

Regular tooth model

1 Img0 28,807
2 Img1 28,970
3 Img2 28,983
4 Img3 25,809
5 Img4 17,303
6 Img5 21,739

Total Six views 151,592

Orthodontic tooth
model

1 Img0 25,301
2 Img1 25,772
3 Img2 22,432
4 Img3 17,167
5 Img4 22,537
6 Img5 24,148

Total Six views 137,357
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Table 11. MSE of BCDL-GWO on the regular tooth model at hierarchical level 1.

View Pairs
MSE in Micrometer2

µ = 0.5 µ = 1.0 µ = 1.5 µ = 2.0

1 vs. 2 5.8775 6.7106 5.8122 5.8169
2 vs. 3 5.0568 4.9923 4.9406 4.9582
3 vs. 4 5.3752 5.4111 5.4080 5.3940
4 vs. 5 5.5786 5.5135 5.5601 5.4953
5 vs. 6 5.9304 5.7735 5.7640 5.7808

Table 12. MSE of the BCDL-GWO with ICP on the regular tooth model at hierarchical level 1.

View Pairs
MSE in Micrometer2

µ = 0.5 µ = 1.0 µ = 1.5 µ = 2.0

1 vs. 2 5.7533 5.7531 5.7327 5.7328
2 vs. 3 4.9278 4.9266 4.9291 4.9265
3 vs. 4 5.3558 5.3564 5.3854 5.3566
4 vs. 5 5.3860 5.3289 5.3320 5.3412
5 vs. 6 5.7269 5.7316 5.7331 5.7287
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Figure 5. The best registration results of BCDL-GWO only for the following pairs: (a) 1 and 2; (b) 2
and 3; (c) 3 and 4; (d) 4 and 5; (e) 5 and 6.
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Figure 6. The best registration results of BCDL-GWO with ICP for the following pairs: (a) 1 and 2;
(b) 2 and 3; (c) 3 and 4; (d) 4 and 5; (e) 5 and 6.
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We compare our results with those from SR-PSO [39] as well. The MSEs of the regular
tooth model at hierarchical level 1 are shown in Table 13. From the results, we can see that
both methods provide comparable results. However, when we look at the MSEs of the final
3D reconstruction of the regular tooth model from six consecutive views shown in Table 14,
we can see that the results from the best BCDL-GWO with ICP (7.2186 µm2 when µ = 0.5)
are better than SR-PSO with ICP (7.3666 µm2).

Table 13. MSE comparison on regular tooth model at level 1.

View Pairs

MSE in Micrometer2

Coarse Registration Fine Registration

SR-PSO BCDL-GWO SR-PSO BCDL-GWO

1 vs. 2 5.9300 5.8122 5.8628 5.7327
2 vs. 3 4.8937 4.9406 4.8860 4.9265
3 vs. 4 5.4310 5.3752 5.4017 5.3558
4 vs. 5 5.2666 5.4953 5.1253 5.3289
5 vs. 6 5.8166 5.7640 5.6828 5.7269

Table 14. MSE of the final registration of six consecutive views (µm2) for the regular tooth model (the
best value is in bold).

SR-PSO with ICP BCDL-GWO with ICP
α = 1.5 µ = 0.5 µ = 1.0 µ = 1.5 µ = 2.0

7.3666 7.2186 7.2188 7.2209 7.2189

The final registration of the regular tooth model is shown in Figure 7. We can see that
the reconstruction result provides a good visualization.
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Figure 7. The final registration result of six consecutive views of the regular tooth model from the
BCDL-GWO with the ICP.

Finally, we implement the BCDL-GWO on the orthodontic tooth model to observe
more experiments. The MSE registration results at hierarchical level 1 from the BCDL-GWO
and BCDL-GWO with the ICP are shown in Tables 15 and 16, respectively. Figures 8 and 9
show the best registration results for each consecutive pair.
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Table 15. MSE of BCDL-GWO on the orthodontic tooth model at hierarchical level 1.

View pairs
MSE in Micrometer2

µ = 0.5 µ = 1.0 µ = 1.5 µ = 2.0

1 vs. 2 5.5267 5.5227 5.6627 5.5413
2 vs. 3 6.2508 6.8335 6.2865 6.1815
3 vs. 4 5.5515 5.3939 5.6002 5.5869
4 vs. 5 6.4284 6.6458 6.4830 6.4737
5 vs. 6 6.1203 5.3183 5.4125 5.3231

Table 16. MSE of BCDL-GWO with ICP on the orthodontic tooth model at hierarchical level 1.

View Pairs
MSE in Micrometer2

µ = 0.5 µ = 1.0 µ = 1.5 µ = 2.0

1 vs. 2 5.5104 5.5089 5.5108 5.5147
2 vs. 3 6.1425 6.1422 6.1423 6.1422
3 vs. 4 5.2838 5.2842 5.2842 5.2720
4 vs. 5 6.3988 6.3931 6.4010 6.4010
5 vs. 6 5.2861 5.2863 5.2804 5.2820

Again, we compare our MSEs on the registration results with those from the SR-PSO,
as shown in Table 17. We can see that our proposed algorithm without the ICP method
provides better registration results than the SR-PSO without the ICP method, except for a
pair of 2 vs. 3. However, for the fine registration, our BCDL-GWO with ICP is comparable
with those from the SR-PSO with ICP. But when we look at the final registration 3D
orthodontic reconstruction model, as shown in Table 18, the results from the BCDL-GWO
with ICP are better than the best results from the SR-PSO with ICP (7.4130 µm2). While
the best result from the BCDL-GWO with ICP at µ = 1.5 is 7.3999 µm2. The final 3D
reconstruction of the orthodontic tooth model is shown in Figure 10. We can see that the
reconstruction result can still provide a good visualization.

Figure 8. Cont.
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Figure 8. The best registration results of BCDL-GWO for the following pairs: (a) 1 and 2; (b) 2 and 3;
(c) 3 and 4; (d) 4 and 5; (e) 5 and 6.

Figure 9. Cont.
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Figure 9. The best registration results of BCDL-GWO with ICP for the following pairs: (a) 1 and 2;
(b) 2 and 3; (c) 3 and 4; (d) 4 and 5; (e) 5 and 6.

Table 17. MSE comparison on orthodontic tooth model at hierarchical level 1.

View Pairs

MSE in Micrometer2

Coarse Registration Fine Registration

SR-PSO BCDL-GWO SR-PSO BCDL-GWO

1 vs. 2 5.5553 5.5227 5.5093 5.5089
2 vs. 3 6.1613 6.1815 6.1440 6.1422
3 vs. 4 5.4687 5.3939 5.2706 5.2720
4 vs. 5 6.5847 6.4284 6.3945 6.3931
5 vs. 6 5.3262 5.3183 5.2801 5.2804

Table 18. MSE of the final registration of six consecutive views (micrometer2) for the orthodontic-tooth
model (the best value is in bold).

SR-PSO with ICP BCDL-GWO with ICP
α = 0.5 µ = 0.5 µ = 1.0 µ = 1.5 µ = 2.0

7.4130 7.4000 7.4008 7.3999 7.4001
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To confirm that our method is good enough, we indirectly compare our results with
those existing methods in the literature on the dental 3D registration data sets. However,
those methods were performed on different data sets. The comparison results are shown in
Table 19. Again, the results from our BCDL-GWO are better.

Table 19. Indirect comparison results on dental 3D registration data sets.

Research Works Methods Objective Functions Data Sets Transformations Registration Errors

Kalla et al. [66]

Downhill simplex
method and
deformation
techniques

Matt’s Mutual
Information (MMI) CT images Non-Rigid

Pre-registered:
0.546 ± 0.233
Elastic-registered:
0.666 ± 0.286

Kim et al. [67] 2D CNN and ICP Curvature variance
of neighbor (CVN)

CT images and
3D scanned
models

Rigid

Data set 1:
1.39 ± 2.67 mm
Data set 2:
2.37 ± 3.43 mm
Data set 3:
1.01 ± 2.10 mm

Kurniawan
et al. [68] ICP Root Mean Squared

Error (RMSE) 3D point clouds Rigid

Experiment 1:
0.182 ± 0.032 mm
Experiment 2:
0.187 ± 0.041 mm

Chung et al. [69]
CNN and
Downhill simplex
method

Clustered similarity
CT images and
3D scanned
models

Rigid

Surface-based error:
5.11 ± 2.54 mm
Landmark-based error:
1.80 ± 0.84 mm

Our proposed
method

BCDL-GWO and
ICP

Mean Squared Error
(MSE) 3D point clouds Non-Rigid

Tooth model 1:
7.22 × 10−3 mm
Tooth model 2:
7.39 × 10−3 mm

One might wonder what the computational complexity of BCDL-GWO is compared
with the SR-PSO, BOA, HHO, SMA, and WOA shown in Table 20. To compute the com-
plexity of the BCDL-GWO, we start with the population initialization step. Since there are



Bioengineering 2024, 11, 254 20 of 23

K grey wolves in the population and each grey wolf is represented by a D-dimensional
vector, the computational complexity in this step is O(K × D). For the control parameter
step, the first operation is the GWO-SCA, which needs O(K × D). The next operation
in this step is Equation (15), which will need O(D). Then, both the position update and
fitness evaluation will need O(K × D). Hence, in this step, it is O(K × D). However, in
the fitness comparison step, it will need O(K). The next step is the behavior consideration
procedure. In this step, the new candidate solution calculation from Equation (26) will
need O(K × D). The fitness calculation in this step will need O(K × D). The update position
using Equation (27) will be O(K × D). Hence, in this step, the complexity will be O(K × D).
Finally, in the dimensional learning procedure step, the distance calculation will need
O(K × D). Equation (29) used in the search agents will need O(K × D2). Again, the position
update needs O(K × D). However, in this step, the total complexity is O(K × D2). Since
there are T iterations, the total complexity of the BCDL-GWO will be O(T × K × D2). For
other algorithms, the complexities are calculated similarly. Table 20 shows the Big O of each
step in each algorithm. The complexities of all algorithms are very similar. Even though
the BCDL-GWO has a slightly higher complexity than the others, the tradeoff with the
performance of our BCDL-GWO is still good.

Table 20. Computational time complexities of BCDL-GWO and SR-PSO.

Process
Time Complexities

BCDL-GWO SR-PSO [39] BOA [57] HHO [58] SMA [59] WOA [60]

Initialization O(K × D) * O(K × D) O(K × D) O(K × D) O(K × D) O(K × D)

Control parameter
calculations O(K × D) O(K × D) O(K) O(K) O(K × D) O(K × D)

Position update steps O(K × D) O(K × D) O(K × D) O(K × D) O(K × D) O(K × D)

New candidate
generation steps O(K × D2) O(K × D) - - - -

Fitness evaluations O(K × D) O(K × D) O(K × D) O(K × D) O(K × D) O(K × D)

Fitness comparisons O(K) O(K) O(K) O(K) O(KlogK) O(K)

* K denotes population size, and D indicates the number of dimensions in search spaces.

4. Conclusions

To help in dental diagnostic and treatment planning in rural areas with limited access
to sophisticated devices, a 3D reconstruction from multi-view optical images is needed. To
provide a good 3D reconstruction, a good 3D registration process is required. In this paper,
we developed the grey wolf optimization algorithm with behavior considerations and
dimensional learning strategies (BCDL-GWO) with iterative closet point (ICP) to find the
optimal affine transform in the 3D registration process. We compare the results with those
from the statistical randomization-based particle swarm optimization (SR-PSO). We found
that the final best result of BCDL-GWO with the ICP yields a mean squared error (MSE) of
7.2186 µm2 for 3D reconstruction from six consecutive views of the regular tooth model,
whereas that of SR-PSO with the ICP method is 7.3666 µm2. The MSE of the BCDL-GWO
with the ICP method is 7.3999 µm2 for the orthodontic tooth model, while the SR-PSO
with the ICP provides 7.4130 µm2. We can say that the 3D reconstruction of the regular
and orthodontic tooth models from the BCDL-GWO with ICP is better than the SR-PSO
with ICP.

We also estimate the computational complexity of both the BCDL-GWO and the SR-
PSO. We could say that they are comparable. However, from the nature of the BCDL-GWO,
we can also say that it can cope with a premature convergence, an unbalance between
exploration and exploitation, and finally, it increases a pack’s diversity.

Currently, there is only one research work involving the 3D model to assess dental
caries [70]. This shows that there is a need for a 3D model for dental caries assessment.
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Hence, in future work, we plan to implement our algorithm in order to simulate dental
caries for tooth defections in real situations.
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