
Citation: Cheng, C.-H.; Yuen, Z.;

Chen, S.; Wong, K.-L.; Chin, J.W.;

Chan, T.-T.; So, R.H.Y. Contactless

Blood Oxygen Saturation Estimation

from Facial Videos Using Deep

Learning. Bioengineering 2023, 11, 251.

https://doi.org/10.3390/

bioengineering11030251

Academic Editors: Fernando

Vaquerizo-Villar and Verónica

Barroso-García

Received: 5 February 2024

Revised: 26 February 2024

Accepted: 2 March 2024

Published: 4 March 2024

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Contactless Blood Oxygen Saturation Estimation from Facial
Videos Using Deep Learning
Chun-Hong Cheng 1,* , Zhikun Yuen 2, Shutao Chen 3, Kwan-Long Wong 3, Jing-Wei Chin 3, Tsz-Tai Chan 3

and Richard H. Y. So 3,4

1 Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
2 Department of Computer Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada;

zyuen077@uottawa.ca
3 PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China;

shutaochen@panoptic.ai (S.C.); kylewong@panoptic.ai (K.-L.W.); nickchin@panoptic.ai (J.-W.C.);
tericchan@panoptic.ai (T.-T.C.); rhyso@ust.hk (R.H.Y.S.)

4 Department of Industrial Engineering and Decision Analytics, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong, China

* Correspondence: cc1722@ic.ac.uk

Abstract: Blood oxygen saturation (SpO2) is an essential physiological parameter for evaluating a
person’s health. While conventional SpO2 measurement devices like pulse oximeters require skin
contact, advanced computer vision technology can enable remote SpO2 monitoring through a regular
camera without skin contact. In this paper, we propose novel deep learning models to measure
SpO2 remotely from facial videos and evaluate them using a public benchmark database, VIPL-HR.
We utilize a spatial–temporal representation to encode SpO2 information recorded by conventional
RGB cameras and directly pass it into selected convolutional neural networks to predict SpO2. The
best deep learning model achieves 1.274% in mean absolute error and 1.71% in root mean squared
error, which exceed the international standard of 4% for an approved pulse oximeter. Our results
significantly outperform the conventional analytical Ratio of Ratios model for contactless SpO2

measurement. Results of sensitivity analyses of the influence of spatial–temporal representation
color spaces, subject scenarios, acquisition devices, and SpO2 ranges on the model performance are
reported with explainability analyses to provide more insights for this emerging research field.

Keywords: blood oxygen saturation measurement; deep learning; facial videos; non-contact monitoring;
remote health monitoring

1. Introduction

Human vital signs, such as blood oxygen saturation (SpO2), heart rate (HR), respi-
ration rate (RR), blood pressure, and body temperature, are standard parameters used
to evaluate a person’s health status [1,2]. Specifically, SpO2 readings indicate whether a
person has enough oxygen to operate efficiently. SpO2 readings are a common metric for
trauma management and early detection of diseases like hypoxemia, sleep apnea, and heart
diseases [3–5].

The COVID-19 pandemic has critically affected many across the globe. According
to [6,7], monitoring only an individual’s body temperature is insufficient for detecting
COVID-19. Given this limitation, researchers have investigated the feasibility of other
vital signs for pandemic control. SpO2 is a logical candidate for such monitoring. It
has been observed that COVID-infected individuals displayed low SpO2 readings before
the occurrence of other respiratory symptoms [8,9]. Additionally, some patients have
experienced silent hypoxemia, where they exhibit dangerously low SpO2 readings without
signs of respiratory distress [10]. Wide deployment of an accurate tool that can conveniently
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and rapidly monitor SpO2 would greatly enhance a global ability to control inflammatory
infectious diseases such as COVID-19.

Currently, SpO2 is generally measured non-invasively using pulse oximeters and other
wearable devices [11,12]. However, contact-based devices have usability limitations and
are impractical for long-term monitoring. Usage for extended periods can cause discomfort
and are unsuitable for those with skin sensitivity [13]. Moreover, using contact-based
devices for health monitoring may facilitate the spread of infectious diseases. Therefore,
contactless approaches for SpO2 measurement have emerged as highly desirable.

Over the last decade, several contactless SpO2 measurement approaches have been
proposed. Researchers have used a variety of cameras, from infrared cameras [14] and
high-quality monochrome cameras equipped with special filters [15–18] to off-the-shelf
webcams [19–23], to estimate SpO2 by capturing subtle light intensity changes on the
face. Deep learning techniques have achieved state-of-the-art performance for the remote
measurement of physiological signs such as HR [24–39] and RR [36,39–47]. However,
remote SpO2 measurement is still in its infancy, with only a few papers using convolutional
neural networks (CNNs) to predict SpO2 from RGB facial videos [48–50]. Additionally,
most existing methods are evaluated on private self-collected datasets, preventing a fair
comparison of algorithmic performance [51].

In this paper, we utilize a spatial–temporal representation—that is, a spatial–temporal
map (STMap), as proposed in [52]—to encode SpO2-related physiological information
from videos recorded by several consumer-grade RGB cameras. Each STMap is fed into
various 2D CNNs for predicting SpO2 in an end-to-end manner. In addition, We explore
the explainability of the model and visualize feature maps of each hidden layer to uncover
the process of how it addresses input data. This illustrates the advantage of using an
STMap instead of taking the spatial average as input. Moreover, we make use of a public
benchmark dataset, VIPL HR [52,53], to conduct our experiments and analysis. This
research investigates the feasibility of utilizing a spatial–temporal map for remote SpO2
measurement and evaluates the proposed method on a public dataset for fair comparison.
Our deep learning approach offers these contributions to ongoing research:

• It is trained and evaluated on a large-scale multi-modal public benchmark dataset of
facial videos.

• It outperforms conventional contactless SpO2 measurement approaches, showing
potential for applications in real-world scenarios.

• It provides a deep learning baseline for contactless SpO2 measurement. With this base-
line, future research can be benchmarked fairly, facilitating progress in this important
emerging field.

2. Literature Review
2.1. Contact-Based SpO2 Measurement

Today, pulse oximeters are being widely utilized to monitor SpO2 in a non-invasive
manner. The principle underlying SpO2 measurement through pulse oximetry is known
as the Ratio of Ratios [54,55]. Pulse oximeters contain Light Emitter Diodes (LEDs) that
generate two different light wavelengths, 660 nm (red) and 940 nm (infrared), to measure
the different absorption coefficients of oxygenated hemoglobin (HbO2) and deoxygenated
hemoglobin (Hb) [56]. The photodetector inside the pulse oximeter analyzes the light
absorption of these two wavelengths and produces an absorption ratio from which the
SpO2, as a percentage, can be determined from the table in [57]. Healthy SpO2 values
generally range from 95% to 100% [58]. Equation (1) illustrates how pulse oximeters
measure SpO2.

SpO2 =
CHbO2

CHb + CHbO2

× 100% (1)

where CHbO2 is the concentration of HbO2 and CHb is the concentration of Hb.
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2.2. SpO2 Measurement with RGB Cameras

Since smartphones have become ubiquitous in our daily lives, researchers have ex-
plored the possibility of SpO2 measurements through a smartphone camera [11,12]. Using
these methods, subjects place their fingertips on top of the smartphone camera, and SpO2

is estimated based on the reflected light captured by the camera. However, since most
smartphone cameras are visible imaging sensors—that is, they only capture light in the
visible portion of the spectrum—they cannot capture infrared wavelengths. To overcome
this deficiency, Scully et al. [11] proposed to replace the infrared component of the Ratio
of Ratios principle with the blue wavelength, since the difference between the absorption
coefficients of HbO2 and Hb are very similar at the two wavelengths [12,59–61]. Equation (2)
illustrates the Ratio of Ratios principle for SpO2 with an RGB camera.

SpO2 = A − B
(ACRED)/(DCRED)

(ACBLUE)/(DCBLUE)
(2)

where ACBLUE and ACRED represent the standard deviations of the blue and red color
channels, respectively while DCBLUE and DCRED represent the mean of the blue and red
color channels, respectively. A and B are experimentally evaluated coefficients that are
determined by identifying the line of best fit between the ratios of the red and blue channels
and the SpO2 estimated by a ground truth device. Following Equation (2), remote SpO2

measurement with an RGB camera was further validated in [21–23,48,50]. However, only
two methods used deep learning and were tested on a public benchmark dataset [48,49].

2.3. Deep Learning-Based Remote Vital Sign Monitoring

Over the last decade, many deep learning-based methods have been developed for
remote vital sign monitoring, with many studies focusing on HR [24–39], followed by
RR [36,39–47]. In general, the underlying principle behind these methods is remote photo-
plethysmography (rPPG). When body tissues are illuminated by surrounding light, tiny
fluctuations in reflected light intensities due to variation in the concentration of hemoglobin
can be captured by conventional cameras, producing the so-called rPPG signal [62,63].
After extracting the rPPG signal, subsequent vital signs such as HR or RR can be obtained
by further signal processing.

Among the deep learning-based methods for remote SpO2 measurement based on
RGB facial videos [48–50], Hu et al. [48] utilised a multi-model fusion approach and
took advantage of the Ratio of Ratios principle. Hamoud et al. [49] used an XGBoost
Regressor [64] to measure SpO2 with the features extracted by a pre-trained CNN. Akamatus
et al. [50] made use of spatial–temporal input that is based on the AC and DC components
of the Ratio of Ratios principle.

2.4. Spatial–Temporal Representation for Vital Sign Estimation

For remote physiological measurement from facial videos, the crucial information
is extracted from the changes in pixel intensity of the subject’s face. Since contactless
methods are inherently susceptible to noise such as illumination changes and head move-
ments [24], a spatial-averaging operation is generally performed on the region of interest
(face) to enhance the quality of the extracted signal. Niu et al. [52] proposed an rPPG-based
spatial-temporal representation, spatial–temporal map (STMap), that is widely used for
HR estimation as well as face anti-spoofing [39,52,65–68]. The STMap, a low-dimensional
spatial–temporal representation in which physiological information of the original video
is embedded, can be directly fed into a CNN, which learns and develops a function for
mapping a connection between the STMap and the output vital sign. To the best of our
knowledge, there is no existing work that has applied rPPG-based STMaps to predict SpO2.
Given the success of spatial–temporal representations for estimating HR, this motivates us
to utilize a similar approach for remote SpO2 measurement.
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3. Materials and Methods
3.1. Spatial–Temporal Map Generation

As shown in Figure 1, we followed an approach similar to that proposed in [52] to
generate spatial–temporal maps (STMaps). For each video, we randomly sampled 225
consecutive frames and used a face detector (OpenFace [69]) to obtain the subject’s face
location. The facial frames were down-sampled to 128 × 128 using an average pooling
filter (kernel size = 16 and stride = 16) to reduce noise and image dimension. Each frame
was then split into 64 patches (8 × 8, from R1 to R64), and average pooling was applied
to each patch for noise removal. Let P(x,y,t,c) be the intensity value of the pixel with the
coordinate(x,y) of the tth frame of the video at c color space, and the average pooling of
these patches can be denoted as

Vc,i(t) =
∑x,y∈Ri

P(x, y, t, c)
ARi

(3)

where ARi represents the area of the patch Ri. Then, for each patch, we have a sequential
signal with length of 225 for each color space c, which is Vc,i = {Vc,i(1), Vc,i(2), . . . , Vc,i(225)}.
For the case of combining RGB and YUV color space, the value of c should be 6. Lastly,
these sequential signals are concatenated to form an STMap, a 2D map generated from a
video with embedded SpO2-related information.

Figure 1. Process of generating a spatial–temporal map in RGB + YUV color spaces.

Other than the traditional RGB color space, an STMap can also be generated from
different or a combination of multiple color spaces [65]. In this paper, we transformed the
RGB color space to YUV and YCrCb color spaces through Equations (4) and (5), respectively:

Y = 0.299 × R + 0.587 × G + 0.114 × B

U = −0.169 × R − 0.331 × G + 0.5 × B + 128

V = 0.5 × R − 0.149 × G − 0.081 × B + 128

(4)

Y = 0.299 × R + 0.587 × G + 0.114 × B

Cr = (R − Y)× 0.713 + 128

Cb = (B − Y)× 0.564 + 128

(5)

The c color dimensions for each face patch were concatenated to produce the final
spatial–temporal representation of size 225 × 64 × c. Figure 2 shows a visual example of
the STMaps generated from the different color spaces.

3.2. SpO2 Estimation Using CNNs

We framed SpO2 estimation as a regression problem and utilized 2D CNNs to predict
a single SpO2 value from an STMap. The STMaps were resized to 225 × 225 to match the
input size of the CNNs. We selected and compared three state-of-the-art CNN architectures
that are commonly utilized in computer vision tasks, namely ResNet-50 [70], DenseNet-
121 [71], and EfficientNet-B3 [72], which were pre-trained with the ImageNet [73] dataset.
The last layer of each model was replaced with a regression layer. Table 1 shows their
model complexities.
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Figure 2. Examples of the spatial–temporal maps (STMaps) in RGB (left), YUV (middle), and YCrCb
(right) color spaces generated from the VIPL-HR dataset.

Table 1. Number of parameters (Params) and floating point operations per second (FLOPs) of the
selected CNN architectures.

Model Params FLOPs

EfficientNet-B3 [72] 9.2 M 1.0 B
ResNet-50 [70] 26 M 4.1 B

DenseNet-121 [71] 8 M 5.7 B

3.3. Dataset

We trained and tested our models on STMaps generated from the VIPL-HR. The VIPL-
HR dataset (https://vipl.ict.ac.cn/resources/databases/201811/t20181129_32716.html)
(accessed on 20 June 2023) dataset [52,53], is a public-domain dataset originally proposed for
remote HR estimation. Since SpO2 readings were also recorded during the data collection,
VIPL-HR can also be used for bench-marking contactless SpO2 measurement methods. The
dataset contains 2378 RGB and 752 near-infrared (NIR) facial videos of 107 subjects (79
males and 28 females, mostly Asians) recorded by four acquisition devices (web camera,
smartphone frontal camera, RGB-D camera, and NIR camera). The length of each video is
around 30 s, with a frame rate of around 30 frames per second.

For our experiments, we utilized RGB videos of subjects sitting naturally in nine
scenarios as follows: (1) at 1 m, (2) while performing large head movements, (3) while
reading a text aloud, (4) in a dark environment, (5) in a bright environment, (6) at a long
distance (1.5 m instead of 1 m), (7) after doing exercise for 2 min, (8) while holding the
smartphone, and (9) while holding the smartphone and performing large head movements.
Specific details of the data collection process are listed in [53]. The large variety in the sce-
narios contributes to the generalizability of the proposed method for different applications.
Figure 3 illustrates the distribution of ground truth SpO2 values for STMaps generated
from the VIPL-HR dataset.

3.4. Evaluation Metrics

We utilized the following performance metrics to evaluate the performance of SpO2

prediction:

• Mean absolute error (MAE) = ∑N
i=1 |xi−yi |

N ;

• Root mean square error (RMSE) =
√

∑N
i=1(xi−yi)2

N .

where xi is the predicted SpO2 and yi is the ground truth SpO2 in unit of percentage (%).

https://vipl.ict.ac.cn/resources/databases/201811/t20181129_32716.html
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Figure 3. Ground truth SpO2 (%) distribution of STMaps generated from the VIPL-HR dataset.

3.5. Training Settings

To ensure fair evaluation, we performed five-fold subject cross-validation, during
which we first separated the subjects into small bins according to the distribution of the
SpO2 values of each subject. Each small bin contained at least 5 subjects. Within each bin,
the subjects were randomly split into 5 groups. This process guaranteed that the SpO2

values of each fold were equitably distributed. We conducted a Friedman chi-squared test
among different folds and the p value was recorded as 0.273, which meant we could not
refuse the H0 hypothesis that the samples were drawn from the same distribution. The final
MAE and RMSE results were obtained by averaging over the five folds.

For the training data, we randomly sampled 225 consecutive frames 70 times for each
video in the training set to generate STMaps. There are at least 113,068 STMaps for training
in each fold. For model training, we used the AdamW optimizer [74] and batch size of 32
on a NVIDIA RTX 3080 GPU. The initial learning rate was set to 0.0001 with a weight decay
of 0.001. The RMSE loss function was also utilized for all models. It takes around 12 h to
train a single model.

3.6. Feature Map Visualization

While deep learning-based approaches have shown remarkable performance in differ-
ent vital sign estimation tasks, it is of great interest to uncover what the neural network
has learned. A video stream from the dataset was presented to the network and forward-
propagated to predict SpO2, during which the responses of hidden convolutional layers on
different levels were recorded. The extracted feature maps were averaged over all channels
within each layer. As the response map of each layer was a 2D STMap, each row of the
feature map that corresponded to a timestamp was detached and separately transformed
back to an 8 × 8 image for better visualization. This process is illustrated in Figure 4.

We applied this process to all convolutional layers to transform the 2D STMap back to
interpretable 2D squared image sequences. The results are shown in the next section.
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Figure 4. Example of a recorded feature map from the first hidden convolutional layer in blocks.
During forward propagation, different color channels were fused; therefore, we average the feature
maps over different channels within the layer. Each column corresponds to a patch along the temporal
axis and each row corresponds to one frame. For visualization, each row was transformed back to an
8 × 8 square sequence. The subject’s face can still be recognized from the reshaped squares.

4. Results and Discussion
4.1. Performance on STMaps Generated from Different Color Spaces

As mentioned in [52,75], during the generation of the spatial–temporal representation,
selecting an appropriate color space can reduce head motion artifacts and improve the over-
all signal quality of STMaps. To investigate the impact of color space on SpO2 estimation,
we compared the performance of STMaps generated from RGB, YUV, concatenated RGB
and YUV, and YCrCb color spaces.

Among the trained models, EfficientNet-B3 trained on concatenated YCrCb STMaps
(EfficientNet-B3 + YCrCb) achieved the lowest MAE and RMSE (Table 2) but the combina-
tion of YCrCb color space with the other two models resulted in unsatisfactory performance.
Moreover, all deep learning models achieved a relatively satisfactory performance when
trained on RGB STMaps. This indicates that the introduction of additional color spaces
during STMap generation will not improve the deep learning model’s performance for
SpO2 estimation, but the selection of appropriate color space will affect the performance.
Specifically, RGB color space seems to achieve the most stable performance.

Table 2. Performance of selected deep learning models trained on STMaps generated from different
color spaces for SpO2 estimation.

Model
RGB YUV RGB + YUV YCrCb

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
(%) (%) (%) (%) (%) (%) (%) (%)

EfficientNet-B3 [72] 1.274 1.710 1.304 1.756 1.279 1.707 1.273 1.680

ResNet-50 [70] 1.309 1.741 1.307 1.750 1.321 1.781 1.423 1.939

DenseNet-121 [71] 1.284 1.722 1.357 1.783 1.296 1.713 1.421 1.860
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4.2. Performance on Different Subject Scenarios and Acquisition Devices

As EfficientNet-B3 + RGB achieved a relatively stable and good performance in the
previous experiment, we used EfficientNet-B3 + RGB as our deep learning benchmark for
subsequent analysis. We evaluated the performance of our deep learning method against
the conventional Ratio of Ratios algorithm for contactless SpO2 estimation (Equation (2))
with coefficients A and B from previous works [21,22]. We further investigated the per-
formance of these methods in different subject scenarios and acquisition devices in the
VIPL-HR dataset. We also included the performance of other deep learning methods [48,49]
that have been tested on the VIPL-HR dataset. Additionally, the deep learning method
proposed by Hu et al. [48] was first trained on another public dataset, PURE [76], and then
fine-tuned on VIPL-HR.

Table 3 highlights that all deep learning methods significantly outperform the con-
ventional Ratio of Ratios algorithm on the VIPL-HR dataset by at least 30% [21] with an
up to 66.7% [22] reduction in RMSE. Moreover, the results are within the error range (4%)
according to the international standard for a pulse oximeter that can be used for clinical
purposes [77], showing the capability of deep learning-based approaches for real-world
applications. Notwithstanding, due to the variance in the model’s performance between
subjects, the historical trends of SpO2 measurements are often a better indication of the
subject’s health status than a single measurement at one point in time.

Table 3. Performance of deep learning methods and past analytic methods (Ratio of Ratios) for SpO2

estimation.

Method MAE (%) RMSE (%)

Deep Learning with STMap (EfficientNet-B3 + RGB) 1.274 1.710

Deep Learning [48] 1.000 1.430

Deep Learning [49] 1.170 -

Past Analytic (Ratio of Ratios) [22] 3.334 5.137

Past Analytic (Ratio of Ratios) [21] 1.838 2.489

Figures 5 and 6 show the performance of the tested methods in different subject
scenarios in the VIPL-HR dataset (Section 3.3). The deep learning method consistently
achieved the lowest MAE (Figure 5) and RMSE (Figure 6) in all cases. Moreover, it is
worth noting the significant performance difference between methods in Scenarios 4 and 5,
indicating the deep learning method’s potential to address illumination variations.

Figures 7 and 8 illustrate the performance of the tested methods on different acquisition
devices, including: (1) Logitech C310 web camera (960 × 720, 25fps), (2) HUAWEI P9 frontal
camera (1920 × 1080, 30fps), and (3) RealSense F200 RGB-D camera (1920 × 1080, 30fps)
in the VIPL-HR dataset. Consistent with the results of subjects in different scenarios, the
deep learning method achieved the lowest MAE (Figure 7) and RMSE (Figure 8) for all
acquisition devices.

4.3. Performance over Different SpO2 Ranges

Inspired by Li et al. [78], we analyzed the performance of remote SpO2 estimation
methods over different SpO2 ranges. The SpO2 value of a healthy person is usually between
95% and 100% [58]. Based on this classification, we separated the data into two groups:
normal (SpO2 ≥ 95%) and abnormal (SpO2 < 95%).
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Figure 5. Comparison of mean absolute error (MAE) in remote SpO2 estimation by deep learning with
STMap and past analytic methods (Green refers to [22], Orange refers to [21]) for different subject
scenarios of the VIPL-HR dataset.

Figure 6. Comparison of root mean square error (RMSE) in remote SpO2 estimation by deep learning
with STMap and past analytic methods (Green refers to [22], Orange refers to [21]) for different
subject scenarios of the VIPL-HR dataset.

From Table 4, we observe that the deep learning method outperforms the Ratio of
Ratios algorithm in both normal and abnormal SpO2 ranges. However, the model’s MAE
and RMSE in the normal range (0.978 and 1.288, respectively) are significantly lower
than those in the abnormal range (3.077 and 3.563, respectively). The model’s increase
in prediction error in the abnormal range may be because the distribution of the training
dataset contains fewer low SpO2 values. Similar to the conclusion drawn in [78] for
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predicting HR values in the higher and lower ranges, the challenge of predicting abnormal
SpO2 measurements should be a focus of future works.

Figure 7. Comparison of mean absolute error (MAE) in remote SpO2 estimation by deep learning
with STMap and past analytic methods (Green refers to [22], Orange refers to [21]) for different
acquisition devices (1 = Web Camera, 2 = Smartphone Frontal Camera, 3 = RGB-D Camera) of the
VIPL-HR dataset.

Figure 8. Comparison of root mean square error (RMSE) in remote SpO2 estimation by deep learning
with STMap and past analytic methods (Green refers to [22], Orange refers to [21]) for different
acquisition devices (1 = Web Camera, 2 = Smartphone Frontal Camera, 3 = RGB-D Camera) of the
VIPL-HR dataset.
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Table 4. Performance of deep learning with STMap (EfficientNet-B3 + RGB) and past analytic methods
(Ratio of Ratios) for SpO2 estimation in normal (≥95%) and abnormal (<95%) ranges.

Method
Normal Abnormal

MAE RMSE MAE RMSE
(%) (%) (%) (%)

Deep Learning with STMap (EfficientNet-B3 + RGB) 0.978 1.288 3.077 3.563

Past Analytic (Ratio of Ratios) [22] 3.140 4.972 6.798 7.496

Past Analytic (Ratio of Ratios) [21] 1.690 2.264 4.482 5.034

4.4. Feature Maps Learned by CNN Model

In Figure 9, the raw input frame and its down-sampled image are shown on the top
two rows and the responses of different hidden layers in the Efficientnet-b3 model are
shown sequentially. Here, only the first five convolutional layers are displayed as the
feature maps of higher-level convolutional layers are hard to recognize. The untrained
model is shown on the left as a sub-figure for comparison while the results for the trained
model are shown on the right side. All the values were normalized between 0 and 1.

Figure 9. Visualization of feature maps. The left column illustrates the feature maps of hidden
convolutional layers for the given input video stream after training for SpO2 prediction. The first
5 convolutional layers were selected from the sequential blocks of Efficientnet-b3 model. The right
column illustrates the raw image, overlayed with the interpolated feature maps extracted from hidden
layer block1_0_conv_pw for 3 subjects in the VIPL-HR dataset.

It can be seen from the feature maps on the left side of Figure 9 that, in the initial
block0_0_conv_pw layer, the outline of the subject is still recognizable by the human eye.
For the block1_0_conv_pw layer, some regions are emphasized with larger weights and
others are less stressed. To find the physical meaning of these regions, we aligned the
feature map with the raw input frame by applying bicubic interpolation to retain the same



Bioengineering 2023, 11, 251 12 of 16

resolution as input raw images and overlayed them; the results of this process are displayed
on the right side of Figure 9.

After interpolation, it can be seen clearly from the right side of Figure 9 that, in
the block1_0_conv_pw layer, different face parts were assigned different weights. More
specifically, the forehead, nose, and cheeks were assigned a larger weighting while other
regions such as the torso or spaces without the human face carried less weight. This result is
consistent with findings from many rPPG-related studies, where the forehead, left and right
cheeks are often selected as the regions of interest (ROIs) as they carry more physiological
information [21,22].

For the hidden convolutional layers in higher levels of the model, the patterns are
illegible and therefore not discussed in our study.

5. Conclusions and Future Research Direction

In this paper, we proposed and evaluated a new deep learning method for remote
SpO2 measurement from facial videos in the VIPL-HR public database. We encoded the
facial videos into STMaps, low-dimensional spatial–temporal representations containing
physiological information of the subject, and directly used them as model inputs for training
and testing. Our results indicate that the proposed deep learning method outperforms
the conventional Ratio of Ratios technique by reducing the RMSE up to 66.7% when
compared across different subject scenarios, acquisition devices, and SpO2 ranges. This sets
a new bench-marking baseline for upcoming research. The visualization of feature maps
demonstrated that ROIs around the forehead, nose, and cheeks carry more weight for SpO2

estimation. These findings increase the explainability of the models.
Regarding the direction of future research, we posit that improving the face detection

process can generate more representative STMaps and enhance the model’s robustness,
especially for videos of subjects with large head movements. We expect that a face detector
that operates on a per-frame basis, while taking into consideration the dimensional require-
ments to generate the STMap, can optimize the signal-to-noise ratio of the spatial–temporal
representations. Furthermore, as demonstrated by Niu et al. [65], region-of-interest selec-
tion can be incorporated to capture areas that may contain stronger physiological signals.
Additionally, further investigation could be directed toward assessing the impact of resiz-
ing the STMaps to match the CNN’s input dimensions, as this procedure may introduce
additional noise to the model. Other feature maps with hidden layers could be investigated
to elucidate the mechanism of SpO2 prediction. Moreover, most of the subjects that partici-
pated in the VIPL-HR dataset are Asians with Fitzpatrick Scale skin type III and IV [79].
Therefore, the proposed method may be biased to people with these skin types and may not
perform considerably on darker skin tones (type VI), which is a common concern in remote
vital sign monitoring [80–82]. Finally, we would like to collect more data of subjects with
different skin tones and abnormal SpO2 readings or to simulate low SpO2 values through
an approach similar to the one used in [59]. Additional data coverage of subjects with
diverse skin tones and abnormal SpO2 values can contribute to the development of more
robust and accurate models for contactless SpO2 measurement.
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