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Abstract: Perimetry and optical coherence tomography (OCT) are both used to monitor glaucoma
progression. However, combining these modalities can be a challenge due to differences in data
types. To overcome this, we have developed an autoencoder data fusion (AEDF) model to learn
compact encoding (AE-fused data) from both perimetry and OCT. The AEDF model, optimized
specifically for visual field (VF) progression detection, incorporates an encoding loss to ensure the
interpretation of the AE-fused data is similar to VF data while capturing key features from OCT
measurements. For model training and evaluation, our study included 2504 longitudinal VF and
OCT tests from 140 glaucoma patients. VF progression was determined from linear regression slopes
of longitudinal mean deviations. Progression detection with AE-fused data was compared to VF-only
data (standard clinical method) as well as data from a Bayesian linear regression (BLR) model. In
the initial 2-year follow-up period, AE-fused data achieved a detection F1 score of 0.60 (95% CI:
0.57 to 0.62), significantly outperforming (p < 0.001) the clinical method (0.45, 95% CI: 0.43 to 0.47)
and the BLR model (0.48, 95% CI: 0.45 to 0.51). The capacity of the AEDF model to generate clinically
interpretable fused data that improves VF progression detection makes it a promising data integration
tool in glaucoma management.

Keywords: autoencoder; data fusion; glaucoma progression; optical coherence tomography; perimetry;
visual field

1. Introduction

Glaucoma is a progressive optic neuropathy characterized by irreversible vision loss
and abnormal thinning of the retinal nerve fiber layer (RNFL) [1]. Visual field (VF) testing,
also known as perimetry, is the primary clinical test for assessing functional vision loss
in glaucoma, while optical coherence tomography (OCT) is the standard imaging tool
for evaluating the structural integrity of the retinal nerve fiber layer. The subjective and
probabilistic nature of VF testing introduces significant variability and can lead to delays in
detecting disease progression [2]. While OCT data, such as peripapillary RNFL thickness, is
less susceptible to subjective errors, recent research underscores the inadequacy of relying
solely on a single modality for glaucoma monitoring [3–5]. This is due to the fact that at
different stages of the disease, glaucoma progression is associated with changes in either
VF or OCT measurements and these changes can be asynchronous [3–5].

Consequently, there is a pressing need to integrate information from VF and OCT
measurements to accurately detect glaucoma progression. However, integration poses
challenges owing to substantial differences in scales, dimensions, and variability between
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data from the two modalities. Clinical perimeters, like the Humphrey Field Analyzer
(Carl Zeiss Meditec, Inc.; Dublin, CA, USA), provide combined functional and structural
reports yet manual interpretation can be subjective and relies heavily on clinical experience.
One potential solution is to use machine-learning techniques as these offer a data-driven
approach without the need to assume fixed relationships between the different data streams.
However, the black-box nature of machine-learning algorithms presents a challenge in
terms of interpretability and explainability, making it difficult for clinicians to trust the
results generated from such algorithms.

With respect to data fusion studies in glaucoma, a number of methods have been
developed to integrate differential light sensitivity (DLS) measurements from VF testing
and RNFL thickness data from OCT. Bizios et al. [6] developed a model to fuse VF and OCT
data based on manually defined rules that consider the spatial correspondence between
functional and structural measurements. The fused data was then used to train an artificial
neural network (ANN) for glaucoma diagnosis. While detecting glaucoma cases with the
fused data outperformed models trained with VF data alone (i.e., using pattern deviation
maps), the complexity of the fused data limits clinical interpretability of the results. Simi-
larly, in a recent study, Song et al. [7] developed a deep-learning ANN model to integrate
global and regional features of VF and OCT measurements. The authors showed that the
accuracy of diagnosing glaucoma using the proposed model surpassed that of single-modal
approaches. However, the difficulty in tracing through the decision-making process of a
deep-learning model can pose challenges in regard to the comprehension of the diagnostic
results. Wu and Medeiros [8] proposed a structure-function index to combine information
from VF and OCT measurements for glaucoma diagnosis. This method first transforms
data from the two testing modalities to the same scale. Subsequently, the transformed
data is combined based on predefined rules taking into consideration the difference in
measurement ranges of the two data types across varying degrees of glaucoma severity.
Although the combined structure-function index exhibited superior diagnostic performance
compared to using data from a single modality alone [8], the reliance on hard-coded rules
for the data transformation and integration may not account for the variability observed
during disease progression. Furthermore, the combined index is challenging to interpret in
terms of the established clinical criteria for glaucoma diagnosis.

The above methods are aimed primarily at improving glaucoma diagnosis, and not
for the detection of VF progression. A tool for monitoring glaucoma progression should
not only indicate whether an eye is deteriorating but also have the capacity to measure
the rate of progression [9–11]. Medeiros et al. [11] developed a Bayesian hierarchical linear
model that combines changes in visual field index measurements from perimetry and
average RNFL thickness data from scanning laser polarimetry. In this method, statistical
parameters that describe rates of change in a cohort of glaucoma patients were used as
the a priori information to estimate subject-specific progression rates. While the method
demonstrated improved performance in detecting progression, the complexity of the
model poses challenges in its interpretability. Russell et al. [12] developed a Bayesian
linear regression (BLR) model that uses changes in the neuroretinal rim area to improve
estimates of VF progression rates. Results from the BLR model are easily interpretable,
and the combined progression rates demonstrated reduced error in predicting future
VF measurements, which can be further used for progression analysis. However, there
are limitations to this approach as the relationship between functional and structural
measurements is likely nonlinear.

Inspired by these earlier studies, the objective of this paper is to develop a method
that fuses structural RNFL thickness data and functional VF measurements to improve
the detection of VF progression. To overcome the nonlinear and changing relationship
between structural and functional deteriorations in different glaucoma stages, we employed
a trainable ANN model rather than a method based on fixed rules. An ANN is well-suited
for describing complex and nonlinear relationships between data sets with substantial
differences in scales, dimensions, and variability. Moreover, as fused data should be
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interpreted in a similar manner to that of data from a standard clinical VF test, we used
an autoencoder (AE) to construct the data fusion model. The AE model facilitates a
compact representation of input data, referred to as an encoding. This encoding retains
essential features required to reconstruct the original input data while removing any
redundancies [13], thus making it a widely used technique for multimodality data fusion
across diverse fields [14–17]. In what we believe is a key and significant contribution to
this area, we introduce an “encoding loss function” to regularize the fused data so that
the encoding has a similar structure to that of the VF test. The fused data can then be
interpreted in the same way that a visual field test is interpreted, taking a crucial step
towards enhancing the clinical interpretability of the machine-learning model’s results,
thereby addressing a key drawback of conventional AE data fusion models. Finally, to
evaluate the efficacy of the AE data fusion (AEDF) model in glaucoma monitoring, we
compared VF progression detection performance using only VF data (the standard clinical
method), data generated by the BLR model, and data generated by the AEDF model.

2. Materials and Methods:
2.1. VF and OCT Data

In this retrospective study, we evaluated 2504 pairs of longitudinal VF and OCT tests of
140 glaucoma patients who had been followed for a minimum of four years at the glaucoma
clinic of the Toronto Western Hospital. Each pair of VF and OCT tests was performed on
the same day. All VF tests were conducted using the Humphrey Field Analyzer with the
24-2 SITA Standard algorithm. Each VF consists of 54 differential light sensitivity thresholds
at discrete locations extending 30 degrees around the central fixation point. The two VF
testing points that are mapped onto the optic nerve head (ONH), i.e., the blind spot, were
not used in this study. The ONH, where retinal ganglion cell axons exit the retina and
converge to form the optic nerve, represents the primary site of structural damage due to
glaucoma. The peripapillary RNFL thickness profile data obtained from OCT encompasses
256 A-scans along a 3.45 mm circle centered at the ONH. This data is typically recorded
as a 256-dimensional vector, with each element representing a thickness measurement of
the RNFL (in µm) at a particular angular position (0 to 360 degrees) around the ONH (see
Figures 1 and 2). All RNFL thickness profile data utilized in this study was acquired using
the Cirrus HD-OCT (Carl Zeiss Meditec, Inc.; Dublin, CA, USA). Only pairs of reliable
VF and OCT tests were analyzed. In line with prior research [8], the reliability criteria for
VF data were false-positive and false-negative rates < 15% and fixation loss rate < 33%.
For OCT data, the reliability criterion was defined as signal strength ≥ 7. Patients with
severe VF defects, i.e., mean deviation (MD) worse than −20 dB on the first test (visit), were
excluded from model training and evaluation, as both VF and OCT changes are notably
affected by the floor effect in measurements of advanced glaucoma [18]. Additionally, OCT
tests containing missing or corrupted RNFL thickness data points were also excluded.

The study received approval from the Research Ethics Board of the University Health
Network, Toronto, Ontario, Canada, and adhered to the tenets of the Declaration of Helsinki.

2.2. Data Fusion Models for Function-Structure Measurements
2.2.1. Autoencoder Data Fusion Model

The AE data fusion (AEDF) model consists of two components: (1) an encoder network
z = f θ(x) parameterized by θ, which maps the input data x ∈ Rdx to a low dimensional
encoding space z ∈ Rdz (dx > dz), where the encoder’s output is referred to as the AE-fused
data, and (2) a decoder network x′ = gϕ(z) parameterized by ϕ, aiming to reconstruct the
input data from the encoding space, such that x′ ∈ Rdx [13]. Here, dx and dz represent the
dimensions of the input and encoding spaces, respectively.
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Figure 1. The overall architecture of the autoencoder (AE) data fusion model. The input to the model
is a vector that includes pointwise differential light sensitivity thresholds from visual field (VF) testing
(52-dimensional vector), retinal nerve fiber layer (RNFL) thickness profile (256-dimensional vector),
and patient’s age at the time of the test (scalar). The encoder network, constructed with a two-hidden
layer multilayer perceptron (MLP) model, processes the input vector and generates a 52-dimensional
encoding vector as the AE-fused data. The decoder network, a symmetrically structured MLP model,
aims to reconstruct the input data from the encoding vector. The reconstruction loss (Lrec) is the mean
squared error (MSE) between the input and output vectors of the AE data fusion model. The encoding
loss (Lenc) is the MSE between the AE-fused data and the measured VF. The training objective is
to minimize the convex combination of the reconstruction loss and the encoding loss, weighted
by a scalar λ.

Given that similar defects in visual field or retinal structure at different ages may lead
to different clinical interpretations, we used the patient’s age at the time of testing, a (where
a ∈ R), as one of the input parameters to the AEDF model. The other input parameters are
the VF pointwise DLS thresholds, denoted as v (where v ∈ R52), and the RNFL thickness
profile, denoted as r (where r ∈ R256). As such, the dimension of the input to the AE
data fusion model, denoted as x = (v, r, a), is dx = 309. Note that in Section 3.5, we
described sensitivity analysis that investigates the contribution of the input parameters to
the detection of VF progression.

In a similar manner, the output of the decoder is expressed as x′ = (v′, r′, a′), where
v′ ∈ R52, r′ ∈ R256, and a′ ∈ R represent the reconstructed VF, RNFL thickness profile, and
patient’s age, respectively. Furthermore, the encoding space has the same dimensionality
as the input VF data, i.e., dz = 52 for the 24-2 pattern, so that the AE-fused data (z) can be
interpreted in the same space as the data from the VF test.

In the training phase, parameters of the encoder and decoder were simultaneously
updated to minimize the reconstruction loss Lrec, which was defined as the mean squared
error (MSE) between the input and reconstructed data (Equation (1)):

Lrec
(

gϕ( fθ(x)), x
)
=

1
N ∑N

i=1

(
x′i − xi

)2 (1)
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Here, xi and x′i represent the input and reconstructed vectors of the i-th sample,
respectively, and N is the total number of training examples. Training the AEDF model
by solely minimizing the reconstruction loss, as defined in Equation (1), does not ensure
that the AE-fused data (the output of the encoder) will retain the appearance of standard
VF tests.
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Figure 2. Examples of the autoencoder (AE) data fusion model for eyes with mild (panel A), moderate
(panel B), and severe (panel C) VF defects. In each panel, the three visual field (VF) plots represent
the input VF to the AE data fusion model (left), the AE-fused data (middle), and the reconstructed VF
(right). The right graph in each panel illustrates the input retinal nerve fiber layer thickness (RNFLT)
profile data to the AE data fusion model (blue curve) and the reconstructed RNFLT profile data
(orange curve) from the AE data fusion model. The RNFLT profile data, a 256-dimensional vector, is
visualized as a curve of the RNFLT, where the horizontal axis represents the angular position (0 to
360 degrees) around the optic nerve head (ONH), and the vertical axis represents the RNFL thickness
measurement (in µm). These examples provide visualized representations of the way that the AE
data fusion model dynamically combines results from VF and OCT tests.

To address this challenge, we introduced an encoding loss, in addition to the recon-
struction loss, to the model training. Specifically, the encoding loss function was defined as
the MSE between the encoding and the input VF data, formulated as Lenc =

1
N ∑N

i (zi − vi)
2,



Bioengineering 2024, 11, 250 6 of 16

where zi and vi are the encoding and measured VF data of the i-th sample, respectively.
With the incorporation of the encoding loss, each point in the AE-fused data represents
a modified version of the differential light sensitivity from the input VF, making it inter-
pretable by standard clinical methods for VF progression analysis. Thus, it is unnecessary
to develop new criteria for the AE-fused data to detect progression, as it aligns with existing
standard clinical techniques to analyze VF data.

To this point, the total loss function (L) for the training of the AEDF model was defined
as the convex combination of the reconstruction loss and the encoding loss, formulated as:

L = (1 − λ)Lrec + λLenc =
1 − λ

N ∑N
i=1

(
x′i − xi

)2
+

λ

N ∑N
i=1(zi − vi)

2 (2)

where λ ∈ [0, 1] is a hyperparameter that controls the strength of regularization from the
encoding loss. As suggested in Equation (2), the reconstruction and encoding losses work
in an adversarial manner, meaning a reduction in one loss results in an increase in the other.
In our experiments, a grid search was performed to determine the λ that leads to the best
performance in the detection of VF progression (optimal λ). The effects of introducing
encoding loss and the selection of λ on the AE-fused data are discussed later.

Figure 1 illustrates the overall architecture of the proposed AEDF model. The en-
coder and decoder networks were constructed using symmetrical structures of multilayer
perceptron models with two hidden layers. Gaussian error linear unit (GELU) activation
function [19] and layer normalization technique [20] were adopted to accelerate conver-
gence in model training. The performance of the AE data fusion model was assessed using
10-fold cross-validation (CV). In each CV fold, the data from the same eye was not used
simultaneously in both training and validation. Meanwhile, the data distribution in terms
of disease severity was held constant across all training and validation sets. All data were
normalized to the range between 0 and 1, based on their corresponding minimum and
maximum values, and were converted back to the original scales for evaluation and visu-
alization. The AE data fusion model was implemented using the deep learning platform
PyTorch v1.13.0 [21] for Python.

2.2.2. Bayesian Linear Regression Model

To serve as a baseline comparison for the AE data fusion model, we implemented a
Bayesian linear regression (BLR) model that combines the progression rates of structural
and functional measurements. This model is based on the work of Russell et al. [12], who
used the linear regression slope of the neuroretinal rim area as a priori information for
the posterior progression rate of VF mean-sensitivity (MS). Since our study involved a
different type of structural data, we utilized the mean RNFL thickness data from OCT
measurements to derive the prior distribution of the progression rate. Additionally, we
measured the MD slope rather than the MS slope to maintain consistency with clinical
methods to detect VF progression. These modifications do not introduce significant changes
to Russell et al.’s work [12], as the MD and MS slopes in our data are comparable in value
(−0.21 ± 0.44 dB/year for MD slope vs. −0.26 ± 0.42 dB/year for MS slope). Moreover,
the RNFL thickness data used to derive the prior was also suggested as a possible extension
in their original study [12].

In general, the posterior progression rate for the BLR model is a weighted average
of the likelihood (functional) and prior (structural) progression rates, with the weights
determined by the variances of the functional and structural measurements so that data
with lower variability receives a higher weight in determining the posterior progression
rate. More details on the BLR model can be found in the Appendix A.

2.3. Performance Evaluation

For performance evaluation, we first implemented a data augmentation strategy by
dividing each longitudinal VF series for each eye (both measured VF and AE-fused data)
into short-term segments using variable-length sliding windows. In this way, long-term
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gradual VF progression was represented by multiple short-term progressions with different
progression rates, thereby enhancing data diversity. Moreover, this segmentation strategy
helped mitigate the influence of nonlinearity in long-term measurements, making the
clinical linear model a better fit for VF progression detection. Note that the nonlinear trend
is commonly associated with the physiological nature of glaucoma and interventions in
management [22,23]. As a result, the evaluation metrics obtained with the segmented data
are likely to be more representative of the real performance in detecting progression.

A sliding window of 4, 5, 6, 7, and 8 years was applied to both the longitudinal
AE-fused data and the measured VF data for each eye to generate increasingly longer data
segments. These segments of measured VF data were used to determine the ground truth
label of progression via the calculation of a linear regression slope of MD. The segments of
AE-fused data were assigned the same ground truth labels as their corresponding measured
VF segments. The criterion for VF progression was defined as the MD deteriorating at a
rate worse than 0.5 dB per year (i.e., MD linear regression slope <−0.5 dB/year), a common
clinical indicator for moderate VF progression [24]. Classification of VF progression was
then conducted based on segments of AE-fused and measured VF data from the 1–3 years
of data in each segment (in 0.5-year intervals). The classification results were compared to
the corresponding ground truth labels to derive the sensitivity, specificity, and F1 score in
classifying VF progression. The F1 score is an evaluation metric that uses a single numerical
measure to describe the classifier’s capacity to correctly identify true positives and avoid
false positives, providing a comprehensive assessment of the performance. The evaluation
metrics are defined as follows:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

F1 =
2TP

2TP + FP + FN

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives in the classification, respectively.

Furthermore, we aggregated metrics obtained with different sliding windows at each
time point, forming the confidence interval for classification performance with longitudinal
VF data of various durations. These aggregated metrics for AE-fused data segments were
compared to those from measured VF segments and to results from the BLR model to assess
the model’s effectiveness in detecting VF progression. In these comparisons, the Wilcoxon
signed-rank tests were used to determine statistical significance. Statistical analyses were
performed with the SciPy library [25] for Python.

3. Results
3.1. Data Characteristics

A total of 2504 pairs of reliable VF and OCT tests from 253 eyes of 140 glaucoma
patients were included in this study. Across all patients, the average age at the first visit
was 63.7 ± 11.8 years (mean ± standard deviation), ranging from 29.7 to 88.5 years. The
average follow-up length was 7.7 ± 1.7 years (range: 4.2 to 10.6 years), with a mean
number of visits of 9.9 ± 3.7. For all eyes, the average mean deviation (MD) in the first
VF test was −3.2 ± 5.8 dB, with a mean progression rate (linear regression slope) of
−0.21 ± 0.44 dB/year. The mean RNLF thickness for the first OCT test was 78.7 ± 14.4 µm,
with an average progression rate of −0.24 ± 0.97 µm/year. Detailed data characteristics of
the cohort are summarized in Table 1.
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Table 1. Data Characteristics.

Measurements Mean
(Standard Deviation)

Median
(Interquartile Range)

Age (years) 63.7 (11.8) 65.7 (56.4 to 71.8)
Follow-up years 7.7 (1.7) 8.1 (6.8 to 8.8)
Number of visits 9.9 (3.7) 10.0 (7.0 to 13.0)

Initial mean deviation 1 (dB) −3.2 (5.8) −1.4 (−4.2 to 0.4)
Initial mRNFLT 2 (µm) 78.7 (14.4) 78.3 (66.9 to 89.8)
MD slope 3 (dB/year) −0.21 (0.44) −0.15 (−0.33 to 0.02)

mRNFLT slope 4 (µm/year) −0.24 (0.97) −0.24 (−0.58 to 0.10)

Note: 1 The mean deviation (MD) in the first visual field testing. 2 The mean retinal nerve fiber layer thickness
(mRNFLT) in the first optical coherence tomograph test. 3 The linear regression slope of the longitudinal MD
measurements in each eye. 4 The linear regression slope of the longitudinal mRNFLT measurements in each eye.

3.2. Autoencoder Data Fusion Model

We first investigated the reconstruction performance of the AE data fusion (AEDF)
model, as it is a crucial factor in determining the model’s ability to represent information
from both VF and OCT tests. Over the 10-fold cross-validation, the AEDF model achieved
an average pointwise mean absolute error (MAE) of 2.0 dB for VF reconstruction in the
testing phase, with a 95% confidence interval (CI) ranging from 1.8 to 2.4 dB. For RNFL
thickness data, the AEDF model had an average reconstruction MAE of 3.6 µm (95% CI:
2.8 to 4.4 µm) in testing. Additionally, the average pointwise MAE between the input VF
data and AE-fused data (representing the encoding loss) was 2.5 dB (95% CI: 2.1 to 2.9 dB).
This high-level reconstruction performance demonstrated the model’s effectiveness in
extracting and integrating representative features from both modalities into the result-
ing fused data. Meanwhile, the relatively low encoding loss indicated that the AE-fused
data maintained good consistency with VF measurements, which assures its clinical inter-
pretability. This will be explained next in more detail.

Figure 2 provides examples of data from the AEDF model for eyes with mild (Figure 2A),
moderate (Figure 2B), and severe (Figure 2C) VF defects. Each example shows the input
data, AE-fused data, and the output reconstructed data, providing visualized represen-
tations of the way that the AE data fusion model combines results from the two testing
modalities. For the eye with mild VF defect (Figure 2A), the RNFL thickness measurements
(the rightmost plot) exhibit notable thinning in the 225◦ to 315◦ region. As such, the mean
RNFL thickness (70.3 µm) falls below the normal range of 75.0 µm to 107.2 µm suggested by
the Cirrus HD-OCT device [26]. This localized RNFL thinning is reflected in the AE-fused
data as a VF defect of more depression in the superior nasal region of the field (the middle
VF plot). It should be noted that the region where the VF loss lies in the AE-fused data
matches the area of RNFL thinning according to the structure-function map [27]. Since
the VF and OCT data describe the same defect, the AE-fused data tend to have a lower
MD (−3.1 dB in the middle VF plot) than the MD of measured VF data (−1.5 dB in the left
VF plot).

In Figure 2B, the measured VF shows a moderate defect with MD of −7.9 dB. In
this field, the defect pattern is a superposition of an actual VF loss in the superior field
and lens rim artifact. Considering that the RNFL thickness in this eye is overall normal
(mRNLFT = 88.9 µm), the impact of lens rim artifacts is removed in the AE-fused data (the
middle VF plot), leading to milder VF loss (MD = −5.7 dB), while maintaining the arcuate
defect pattern in the superior field. Note that the reconstructed VF data (the right VF plot)
maintains good consistency with the measured VF data in terms of the shape and the depth
of the defect (MD = −7.8 dB), showing that the information from the measured VF test has
been embedded into the AE-fused data.

In the advanced glaucoma case shown in Figure 2C, the floor effect dominates the
RNFL thickness measurements, plateauing at the level of around 50 µm (the rightmost
plot). In this case, the resulting AE-fused data (the middle VF plot) is more dependent on
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data from VF testing and, correspondingly, shows greater consistency (MD = −13.6 dB)
with the measured VF data (MD = −13.8 dB).

3.3. Detecting VF Progression

As discussed in the Section 2, each long-term VF and OCT data series was divided
into multiple short-term segments to increase the number of cases with progressing and
stable VF series. Using the segmented data, we compared the performance of detecting
VF progression with AE-fused data, measured VF data (clinical data), and data from the
BLR model.

For all three methods, we computed specificity, sensitivity, and F1 scores for VF
progression using data collected over the first two years of the follow-up period in each
segment. The selection of a two-year period was based on the minimum suggested follow-
up duration for reliable estimation of VF progression rate [24]. In the initial 2 year follow-up,
the specificity of detecting VF progression using AE-fused data was 0.70 (95% CI: 0.68 to
0.71), representing a 94% improvement (p < 0.001) over the detection specificity with the
measured VF data (0.36, 95% CI: 0.35 to 0.38) and a 27% improvement (p < 0.001) over the
detection specificity when using data from the BLR model (0.55, 95% CI: 0.54 to 0.57). In
the same period (i.e., the initial 2 years), the sensitivity of detecting VF progression with the
AE-fused data was 0.53 (95% CI: 0.47 to 0.58), outperforming that of the BLR model (0.35,
95% CI: 0.31 to 0.38, p < 0.001) and insignificantly lower than that of using measured VF
data (0.54, 95% CI: 0.51 to 0.58, p = 0.291). When considering both specificity and sensitivity,
the F1 score for VF progression detection with AE-fused data was 0.60 (95% CI: 0.57 to
0.62), surpassing the F1 scores obtained with the measured VF data (0.45, 95% CI: 0.43 to
0.47, p < 0.001) and data from the BLR model (0.48, 95% CI: 0.45 to 0.51, p < 0.001).

Figure 3 shows the performance of VF progression detection (specificity, sensitivity,
and F1 scores) with the three data models at different time points over the initial three years
of the follow-up period. As observed, the F1 scores with the AE-fused data consistently
outperformed those with only VF data (clinical method) or data from the BLR model.
Moreover, the improved performance with AE-fused data was mainly attributed to a
significant increase in the detection specificity compared to the other two methods.

Bioengineering 2024, 11, x FOR PEER REVIEW 9 of 16 
 

depth of the defect (MD = −7.8 dB), showing that the information from the measured VF 
test has been embedded into the AE-fused data.  

In the advanced glaucoma case shown in Figure 2C, the floor effect dominates the 
RNFL thickness measurements, plateauing at the level of around 50 µm (the rightmost 
plot). In this case, the resulting AE-fused data (the middle VF plot) is more dependent on 
data from VF testing and, correspondingly, shows greater consistency (MD = −13.6 dB) 
with the measured VF data (MD = −13.8 dB). 

3.3. Detecting VF Progression  
As discussed in the Methods section, each long-term VF and OCT data series was 

divided into multiple short-term segments to increase the number of cases with 
progressing and stable VF series. Using the segmented data, we compared the 
performance of detecting VF progression with AE-fused data, measured VF data (clinical 
data), and data from the BLR model.  

For all three methods, we computed specificity, sensitivity, and F1 scores for VF 
progression using data collected over the first two years of the follow-up period in each 
segment. The selection of a two-year period was based on the minimum suggested follow-
up duration for reliable estimation of VF progression rate [24]. In the initial 2 year follow-
up, the specificity of detecting VF progression using AE-fused data was 0.70 (95% CI: 0.68 
to 0.71), representing a 94% improvement (p < 0.001) over the detection specificity with 
the measured VF data (0.36, 95% CI: 0.35 to 0.38) and a 27% improvement (p < 0.001) over 
the detection specificity when using data from the BLR model (0.55, 95% CI: 0.54 to 0.57). 
In the same period (i.e., the initial 2 years), the sensitivity of detecting VF progression with 
the AE-fused data was 0.53 (95% CI: 0.47 to 0.58), outperforming that of the BLR model 
(0.35, 95% CI: 0.31 to 0.38, p < 0.001) and insignificantly lower than that of using measured 
VF data (0.54, 95% CI: 0.51 to 0.58, p = 0.291). When considering both specificity and 
sensitivity, the F1 score for VF progression detection with AE-fused data was 0.60 (95% 
CI: 0.57 to 0.62), surpassing the F1 scores obtained with the measured VF data (0.45, 95% 
CI: 0.43 to 0.47, p < 0.001) and data from the BLR model (0.48, 95% CI: 0.45 to 0.51, p < 
0.001). 

Figure 3 shows the performance of VF progression detection (specificity, sensitivity, 
and F1 scores) with the three data models at different time points over the initial three 
years of the follow-up period. As observed, the F1 scores with the AE-fused data 
consistently outperformed those with only VF data (clinical method) or data from the BLR 
model. Moreover, the improved performance with AE-fused data was mainly attributed 
to a significant increase in the detection specificity compared to the other two methods.  

 
(A) (B) (C) 

Figure 3. Specificity (panel A), sensitivity (panel B), and F1 scores (panel C) for the detection of visual 
field (VF) progression using data generated by the autoencoder data fusion model (blue), data of VF 
measurements (orange), and data from the Bayesian linear regression model (green) at different 
time points. The x-axis shows the time point, ranging from 1 to 3 years relative to the first test, in 
which the detection (classification) was made. Each point on the curves is the average performance 

Figure 3. Specificity (panel A), sensitivity (panel B), and F1 scores (panel C) for the detection of visual
field (VF) progression using data generated by the autoencoder data fusion model (blue), data of VF
measurements (orange), and data from the Bayesian linear regression model (green) at different time
points. The x-axis shows the time point, ranging from 1 to 3 years relative to the first test, in which
the detection (classification) was made. Each point on the curves is the average performance for the
VF time series with various lengths (ranging from 4 to 8 years), with error bars presenting the 95%
confidence intervals. As expected, the overall detection performance, measured by F1 scores, for all
three data models improved when the number of available data points for the detector increased,
i.e., longer time along the x-axis. At different time points, the overall VF progression detection
performance (F1 scores) with AE-fused data consistently outperformed the other two methods.
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For the results presented above, VF progression was defined as a sequence of VFs in
which the MD linear regression slope is worse than −0.5 dB/year. Considering that there
is no consensus on the criteria for VF progression, clinics may adopt different thresholds for
the detection of VF progression. We investigated the robustness of the detection performance
when the criteria for VF progression was either relaxed (MD slope < −0.2 dB/year) or became
stricter (MD slope < −1.0 dB/year).

Table 2 shows a summary of the VF progression detection performance (specificity,
sensitivity, and F1 scores) for AE-fused data, measured VF data, and the BLR model’s
data in the initial 2 years, for the above three criteria for VF progression. Detection with
AE-fused data achieved the highest F1 scores for all three thresholds, demonstrating that
the performance gained by using the AE data fusion model is robust to variation in the VF
progression criteria. Moreover, the performance patterns for the AE-fused data compared
to the other methods were also consistent across different selections of the progression
criteria, i.e., substantial improvement in specificity while keeping sensitivity approximately
the same.

Table 2. Performance of visual field (VF) progression detection with different criteria.

Criteria 1 Metrics AE-Fused Data 2 Measured Data BLR Data

<−0.2 dB/year Specificity 0.67 ± 0.01 0.34 ± 0.01 0.50 ± 0.01
Sensitivity 0.53 ± 0.01 0.56 ± 0.01 0.51 ± 0.02

F1 score 0.62 ± 0.01 0.50 ± 0.01 0.52 ± 0.02

<−0.5 dB/year Specificity 0.70 ± 0.01 0.36 ± 0.01 0.55 ± 0.01
Sensitivity 0.53 ± 0.03 0.54 ± 0.02 0.35 ± 0.02

F1 score 0.60 ± 0.01 0.45 ± 0.01 0.48 ± 0.02

<−1.0 dB/year Specificity 0.70 ± 0.01 0.36 ± 0.02 0.55 ± 0.01
Sensitivity 0.41 ± 0.07 0.49 ± 0.06 0.27 ± 0.04

F1 score 0.50 ± 0.03 0.37 ± 0.02 0.44 ± 0.03

Note: 1 The criteria for visual field (VF) progression are based on the value of mean deviation linear regression
slopes. 2 The three data columns show the performance of detecting VF progression with data from the autoen-
coder data fusion model (AE-fused data), the measured visual field data (Measured data), and the data from
the Bayesian linear regression model (BLR data) in the initial 2 years of the follow-up period, respectively. The
performance metrics are presented in the form of mean ± standard error of the mean.

3.4. Selection of λ in the Loss Function

When training the AE data fusion model, the hyperparameter λ was used to balance
the contributions of the reconstruction and encoding loss terms. We conducted a grid
search for the optimal λ that leads to the best VF progression detection performance by
varying λ from 0 to 1, in steps of 0.1. The result showed that when λ = 0.6 (optimal λ),
the best overall VF progression detection performance can be achieved, with the F1 score
of 0.60.

Figure 4 presents three examples that demonstrate the interaction between recon-
struction and encoding losses with different λ values. When the training objective of the
AE data fusion model was to only minimize reconstruction loss (Figure 4A, λ = 0), the
VF defect pattern and DLS thresholds of the AE-fused data (the middle VF plot) are so
different from the measured VF that the AE-fused data cannot be interpreted in a manner
similar to that of the measured VF data. Note that the MD of the fused data in Figure 4A is
−13.7 dB, whereas the MD of the measured VF is −7.7 dB. Consequently, standard clinical
VF progression detection techniques cannot be used to analyze the AE-fused data when
λ = 0, even though the AE-fused data retains sufficient information from both testing
modalities to reconstruct the input data (low reconstruction errors for both VF and RNFL
thickness data). When the training objective is to minimize the encoding loss without
considering reconstruction loss (Figure 4C, λ = 1), the fused data becomes so akin to the
input VF data that it fails to adequately represent information from the RNFL thickness
measurements. As a result, the detection performance remains the same as that of using
only measured VF data. When both reconstruction and encoding losses contribute to the
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detection performance (Figure 4B, λ = 0.6), the AE-fused data can be interpreted in the
same framework as the measured VF data while incorporating sufficient information from
structural OCT measurements to improve the detection of VF progression.

Bioengineering 2024, 11, x FOR PEER REVIEW 11 of 16 
 

is −13.7 dB, whereas the MD of the measured VF is −7.7 dB. Consequently, standard clin-
ical VF progression detection techniques cannot be used to analyze the AE-fused data 
when 𝜆 = 0, even though the AE-fused data retains sufficient information from both test-
ing modalities to reconstruct the input data (low reconstruction errors for both VF and 
RNFL thickness data). When the training objective is to minimize the encoding loss with-
out considering reconstruction loss (Figure 4C, 𝜆 = 1), the fused data becomes so akin to 
the input VF data that it fails to adequately represent information from the RNFL thick-
ness measurements. As a result, the detection performance remains the same as that of 
using only measured VF data. When both reconstruction and encoding losses contribute 
to the detection performance (Figure 4B, 𝜆 = 0.6), the AE-fused data can be interpreted in 
the same framework as the measured VF data while incorporating sufficient information 
from structural OCT measurements to improve the detection of VF progression. 

(A) 𝜆 = 0 

(B) 𝜆 = 0.6 

(C) 𝜆 = 1.0 

Figure 4. Examples of the autoencoder (AE) data fusion model trained with different 𝜆 selections 
in the loss function. When 𝜆 = 0 (panel A), the training objective of the AE data fusion model was 
to only minimize reconstruction loss. As such, the AE-fused data (the middle visual field [VF] plot) 
are so different from the input/measured VF (the left VF plot) that they cannot be interpreted and 
analyzed with clinical methods. When 𝜆 = 1 (panel C), the training objective was solely to mini-
mize the encoding loss without considering reconstruction loss. The AE-fused data (the middle VF 
plot) closely resembles the measured VF (the left VF plot) so that it barely contains additional 

Figure 4. Examples of the autoencoder (AE) data fusion model trained with different λ selections
in the loss function. When λ = 0 (panel A), the training objective of the AE data fusion model was
to only minimize reconstruction loss. As such, the AE-fused data (the middle visual field [VF] plot)
are so different from the input/measured VF (the left VF plot) that they cannot be interpreted and
analyzed with clinical methods. When λ = 1 (panel C), the training objective was solely to minimize
the encoding loss without considering reconstruction loss. The AE-fused data (the middle VF plot)
closely resembles the measured VF (the left VF plot) so that it barely contains additional information
from retinal nerve fiber layer thickness measurements. With λ = 0.6 (panel B), both reconstruction
and encoding losses contribute to the training of the AE data fusion model. The AE-fused data can be
interpreted with clinical knowledge in terms of the VF defect pattern and depth while incorporating
sufficient information from both structural and functional tests.

3.5. Sensitivity to Input Parameters

We carried out a sensitivity analysis to examine the contribution of various input
parameters to the performance of VF progression detection. When using both VF and
RNFL thickness data as the input to train the AE data fusion model, the detection specificity



Bioengineering 2024, 11, 250 12 of 16

with the initial two years of AE-fused data significantly outperformed that with measured
VF data alone (0.64 vs. 0.36, p < 0.001). Meanwhile, the detection sensitivity with the
AE-fused data containing both VF and RNFL thickness information showed no substantial
difference from that obtained using measured VF data (0.52 vs. 0.54, p = 0.178). Moreover,
in addition to the VF and RNFL thickness data, when incorporating the patient’s age
information into the AE data fusion model, the detection specificity of the AE-fused data
can be further improved from 0.64 to 0.70 (p < 0.001) while maintaining the sensitivity at
the same level (0.53 vs. 0.52, p = 0.313).

4. Discussion

In this study, we present a method to improve the detection of VF progression by
combining differential light sensitivity data from perimetry and RNFL thickness profile
data from OCT using an autoencoder data fusion (AEDF) model. Unlike previous methods
that rely on statistical or fixed rules for multimodality data integration [6,8,12], the AEDF
model learns the function-structure interrelations in glaucoma from patients’ perimetry
and OCT data. This data-driven approach offers more flexibility and accuracy in describing
nonlinear relationship between structural and functional measurements throughout the
course of glaucoma progression. Moreover, a key contribution of our approach is the
introduction of an encoding loss function that helps structure the fused data similar to the
input VF data, allowing for an easy and intuitive interpretation of the model’s results.

The overall VF progression detection performance (measured by the F1 score) when
using the initial two years of AE-fused data was 33% better than the clinical standard
method of using only VF data (p < 0.001). The improved detection performance was mainly
attributed to a significant increase of 94% in detection specificity. When compared with the
Bayesian linear regression model, VF progression detection sensitivity and specificity with
AE-fused data were enhanced by 51% and 27%, respectively, leading to 25% improvement
(p < 0.001) in the F1 score. Furthermore, the performance improvement with the AE-fused
data is robust to changes in the criteria used to determine VF progression and to the length
of the follow-up period.

The loss function employed in the training of the AE data fusion model comprises
reconstruction and encoding loss terms, with a weight factor (λ) that controls the relative
contributions of the two loss terms. As shown in Figure 4, λ can be used to change the
AE-fused data, i.e., the output of the encoder, by adjusting the effect of structural OCT
measurements on the VF data. With the optimal λ for VF progression detection (λ = 0.6),
the appearance of AE-fused data is similar to that of the measured VF data so that the
AE-fused data can be interpreted and analyzed by standard methods that are used with VF
measurements. At the same time, the combination of reconstruction and encoding losses
through λ assures that the AE-fused data incorporate representative features associated
with structural measurements from OCT (see Figure 2), which contributes to improved VF
progression detection.

The sensitivity analysis in the Section 3 showed that including the patient’s age in
the input of the AEDF model played a role in enhancing detection of VF progression.
This observation aligns with data showing that aging is a major risk factor for glaucoma
progression [28]. For that reason, it can be expected that VF progression detection could
be further improved by incorporating other parameters that are associated with glaucoma
into the AEDF model. Such inputs may include intraocular pressure, cup-to-disc ratio,
fundus images, or macular OCT measurements, etc. This extended multimodality data
integration can be easily realized by expanding the input to the AEDF model to include
these parameters, with minimal adjustments to the model’s structure. For instance, fundus
image data can be incorporated by reshaping the image to a vector and concatenating with
other data types as the input to the AEDF model. Furthermore, by modifying the target of
the encoding loss function, one can adapt the AEDF model for different data interpretation
and analysis purposes. For example, if the encoding loss function in this study was to
compute the difference between the encoding and RNFL thickness data during model
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training, the resulting AE-fused data would be similar in structure to that of the RNFL
thickness data while incorporating features associated with perimetric data. In this case,
the AE-fused data will be analyzed by standard clinical methods for interpreting RNFL
thickness data. Therefore, the unsupervised nature of the AE model and the flexibility in
the design of the encoding loss function can collectively make the AEDF model a promising
candidate for generalized data integration approach in glaucoma management.

It should be noted that to accommodate the relatively low-dimensional space of the
input data in this study (in contrast to image-based data), we designed the encoder and
decoder networks of the AEDF model with a lightweight, simple architecture, i.e., mul-
tilayer perceptron with two hidden layers. This approach enhances the robustness and
generalizability of the model by avoiding the capture of noise or irrelevant features in the
training data, i.e., overfitting, leading to improved performance when applied to unseen
data. For a different task with more complex data inputs, a comprehensive investigation of
the model architecture and the optimal set of weights for the loss function is imperative.
Additionally, in this study, we focused on utilizing the encoder component of the AEDF
model for compacted representations of data from VF and OCT tests. As the AE-fused
data contains sufficient information from both modalities, the decoder component of the
trained AEDF model can be used for simulation purposes, such as generating RNFL thick-
ness profile data based on the corresponding VF measurements. In this case, autoencoder
models that excel in generative tasks, such as variation autoencoder [29] and adversarial
autoencoder [30], may warrant further investigations.

Constructing the AE fused data in a structure that is similar to VF data provides an
intuitive understanding of how OCT data is combined and integrated into perimetric data.
The examples in Figure 2 demonstrate that the AEDF model can dynamically combine
information from VF and OCT tests in glaucoma patients that are at different stages of the
disease. This capacity is particularly important in the context of glaucoma management, as
measurements from functional and structural testing modalities may hold distinct clinical
significance at different stages. It is typically believed that RNFL thickness measurements
are more sensitive to subtle changes in the early stage of glaucoma, while VF measurements
have a broader dynamic range that can better support monitoring glaucoma progression in
moderate-to-advanced cases [3,4]. For the early-to-moderate glaucoma cases, the RNFL
thickness data provides the complementary information to improve the robustness of
VF measurements, e.g., to emphasize the depth of VF defects based on corresponding
structural damage (Figure 2A) or to remove artifacts in VF measurements (Figure 2B).
In advanced glaucoma cases where RNFL thickness data plateaued, the dynamic data
integration ability of the AE data fusion model reduces the impact of overly stabilized
RNFL thickness data on the AE-fused data. In comparison, the BLR model combines
structural and functional progression rates with hard-coded rules that are based only on
the uncertainty of the estimates. For eyes with moderate to severe loss (e.g., Figure 2C),
the posterior VF progression rate of the BLR model is likely underestimated due to low
variability in the plateaued RNFL thickness data. This might explain the lower sensitivity
to detect VF progression with data from the BLR model (Figure 3).

This study has several limitations. One of the main limitations is the absence of
a reliable and generalized definition of VF progression, especially in early or mild pro-
gression. In the study, we coped with this limitation by generating labels based on all
longitudinal VF measurements available for each eye, while performance was assessed
based on detections made using subsets of the longitudinal data. As VF data are subject
to measurements noise, the progression label derived from the entire VF series may be
suboptimal and, hence, may affect the performance evaluation. Furthermore, data used for
model training and evaluation in this study were sourced from a single glaucoma clinic.
As a result, performance evaluation was limited by the number of available longitudinal
VF and OCT data, especially for the progressing cases. Testing with data collected from a
single clinic with similar clinical management strategies, such as follow-up and treatments,
can also introduce bias in the evaluation of the AEDF model. Future evaluations with
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external datasets containing a greater number of longitudinal data would be essential to
comprehensively understanding the generalization of the AEDF model.

5. Conclusions

In this study, we developed an autoencoder data fusion model aimed at learning
compact encoding (the AE-fused data) from functional VF data and structural OCT data.
In the model training, we introduced an encoding loss to ensure that the AE-fused data
can be interpreted in a manner similar to the VF data. Comparisons with the clinical
standard method to detect VF progression and the Bayesian linear regression model that
integrates structure-functional data showed a significant improvement in the specificity of
VF progression detection when using AE-fused data. The unique capability of the AE data
fusion model to generate interpretable fused data holds the potential to improve its clinical
usability. The flexibility of the autoencoder model makes it as a promising candidate for a
generalized data integration model to aid in glaucoma management.
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Appendix A

Bayesian linear regression model:
The Bayesian linear regression (BLR) model is based on the work of Russell et al. [12].

In this study, the mean retinal nerve fiber layer thickness (mRNFLT) data from optical
coherence tomography (OCT), representing the structural changes, were utilized to de-
rive the prior distribution of the progression rates. The mean deviation (MD) data from
visual field (VF) tests, representing functional changes, were used for the likelihood of the
progression rates. Then, the posterior progression rates, i.e., the combination of structural
and functional changes, was derived through a weighted average of the structural and
functional progression rates. Note that the progression rate was represented by the slope of
the linear regression line.

Following Russell et al.’s method [12], before estimating the prior distribution of progres-
sion rates, the mRNFLT data (in µm) in our study were first converted into the same scale
as MD measurements (in dB). This transformation was achieved by fitting a Passing–Bablok
linear regression model [31] to MD and mRNFLT measurements. The resulting linear
model based on our data can be expressed as: MDRNFL = 0.241 × mRNFLT − 21.310,
where MDRNFL represents the MD value estimated by the corresponding mRNFLT data.

For computational simplicity, we employed the conjugate prior to derive the posterior
distribution of the progression rate [32]. Specifically, we assumed that MD progression

https://github.com/lcapacitor/glaucoma-vf-oct-data-fusion
https://github.com/lcapacitor/glaucoma-vf-oct-data-fusion
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rates follows Gaussian distribution, denoted as N
(
µ1, σ2

1
)
, where µ1 and σ2

0 are the mean
and variance parameters. Here, both µ1 and σ2

1 were derived by fitting an ordinary least
square linear regression (OLSLR) model to the measured longitudinal MD data for each eye,
where µ1 is the measured slope and σ2

1 is estimated by MSE/Sxx from the OLSLR model.
Specifically, MSE is the mean squared error (or average squared residual) of the OLSLR
model and can be derived from MSE = 1

n−2 ∑n
t=1(yt − ŷt)

2, where yt and ŷt represent the
measured MD value at time t and predicted MD from the OLSLR model at the same time t,
respectively, and n is the total number of MD measurements (visits) in this time series of
MD. Sxx is the sum of squares of x from the OLSLR model and can be calculated through
Sxx = ∑n

t=1(xt − x)2, where xt and x represent the patient’s age at visit t and mean age
over the n visits for this patient, respectively.

When further assuming that σ2
1 is a constant, the structural progression rates (i.e., progres-

sion rates of MDRNFL) follows Gaussian distribution, denoted as N
(
µ0, σ2

0
)
, where µ0 and

σ2
0 are the mean and variance parameters of the prior distribution. Likewise, µ0 and σ2

0
can be derived by fitting an OLSLR model to the longitudinal MDRNFL data for the same
eye, following the same method elaborated above. Therefore, the posterior distribution of
progression rate also follows Gaussian distribution, denoted as N

(
µ, σ2). The parameter µ

of the posterior distribution represents estimated progression rate that combines changes
in both structural and functional measurements. It can be analytically derived from a
weighted average of the functional progression rate (µ1) and the structural progression rate
(µ0), with the weights determined by the variances of these progression rate distributions
(Equation (A1)).

µ =
σ2

0
σ2

0 + σ2
1

µ1 +
σ2

1
σ2

0 + σ2
1

µ0 (A1)

In other words, whether functional or structural changes, the distribution with the
lower variance receives a higher weight in determining the posterior progression rate.
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