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Abstract: The penis is a complex organ with a development cycle from the fetal stage to puberty. In
addition, it may suffer from either congenital or acquired anomalies. Penile surgical reconstruction
has been the center of interest for many researchers but is still challenging due to the complexity of
its anatomy and functionality. In this review, penile anatomy, pathologies, and current treatments
are described, including surgical techniques and tissue engineering approaches. The self-assembly
technique currently applied is emphasized since it is considered promising for an adequate tissue-
engineered penile reconstructed substitute.

Keywords: tissue engineering; urology; penis

1. Introduction

The penis can be subject to various congenital conditions, e.g., hypospadias or acquired
pathologies, e.g., narrowing. Medical or surgical treatments are currently available but
should be improved to improve patients’ quality of care and life. In the most challenging
cases, a new technology, tissue engineering, could make a difference. It could be beneficial
to circumvent the lack of adequate tissue to graft and reduce potential comorbidities
associated with the donor site. Much progress has been made since the appearance of this
new technique, but much remains to be done. Currently, technologies have been developed
to meet the clinical needs corresponding to the different tissues making up the penis and
could ultimately lead to a complete reconstruction of this organ.

Penile development is a complex process starting during the fetal stage and pursuing
until puberty. This process involves many biological components, such as enzymes and
cytokines, which play an essential role in tissue development and maturation. Genetic and
environmental factors can affect normal penile development, leading to specific anomalies
and lack of functionality [1]. While some of these anomalies may only be aesthetic, some
patients experience reduced or suppressed organ functionality. The penile malfunctions
range from failed voiding to sexual and impaired fertility issues, which can also impact the
psychology and sociability of patients [2]. The affected children typically require surgical
treatment, which remains a tremendous aesthetic, functional, and anatomic challenge.

Furthermore, surgical techniques continuously evolve over the years, mainly due
to the high rate of complications and recurrences [3]. In addition, each surgery requires
a significant amount of adequate tissue, which could become problematic in cases of
recurrence since the same donor area can only be harvested once. Therefore, due to the
potential lack of available tissues to perform the surgeries, efforts have been made to think
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outside the box [4]. Whether cellular or acellular, many biomaterials have been tested to
perform surgeries, but the resulting recurrence rate still needs to be lowered [4].

The other common urethral disorder is its narrowing, called stenosis or stricture
when it affects the anterior urethra. Male urethral stenosis most often results from injury,
instruments, non-infectious inflammatory conditions of the urethra, hypospadias surgery,
and, finally, sexually transmitted diseases [5]. Urethral strictures result in more than 5000
inpatient visits yearly in the USA. Yearly office visits for urethral stricture numbered almost
5 million between 1992 and 2000 [6]. The total cost of urethral stenosis-related diseases
in the United States was approximately $300 million in 2010. The annual cost of health
spending is still increasing by more than 6000 USD per person after a diagnosis of urethral
stenosis [7]. Patients with urethral stricture also appear to have a higher rate of urinary
tract infection (41%) and incontinence (11%) [8].

In this review, we describe the penile anatomy, the different common penile patholo-
gies and anomalies, and the current surgical options. On the other hand, the ascending
impact of tissue engineering and its various applications will be discussed. However, any
cell therapy treatment and cosmetic surgeries will be excluded from this article.

2. Penile Anatomy

An overview of the normal penile anatomy will be given in this paragraph. In addition,
vascular and neural anatomy will be briefly discussed due to their critical roles in penile
function. Indeed, this anatomy must be considered during penile reconstruction. Otherwise,
dysfunction and recurrence may result in some patients.

The human penis is the male organ of urination and copulation and is composed of an
anterior and a posterior urethra (Figure 1A). It includes different tissues whose roles are
critical to maintaining their functionality. Two dorsolateral corpora cavernosa are located
side by side on the dorsal part of the penis (Figure 1B). Cylindrical in shape, they are part of
the erectile tissues. They become engorged with blood during the erection phase, allowing
the penis to stand up and maintain itself. The tunica albuginea is an extensible tissue rich
in elastin fibers, which envelope the corpora cavernosa. By constricting the deep dorsal
vein, blood cannot leave the penis, and the erection is maintained.
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The corpus spongiosum is located on the ventral side of the corpus cavernosum and is
part of the erectile tissues. It surrounds the urethra from the prostate to the urethral meatus,
which allows the urine and semen to be transported. The male urethra is divided into
four regions, internally lined by different waterproof epithelia that avoid contact of urine
with the neighboring tissues. The prostatic urethra is lined with transitional epithelium
(urothelium). The membranous urethra is a transition region between the urothelium and
pseudostratified columnar epithelium. The bulbous urethra and the pendulous urethra are
lined with pseudostratified columnar epithelium. The fossa navicularis, the distal portion
of the urethra, just proximal to the external urethral orifice (meatus), is lined with squamous
epithelium continuous with that of the glans [9]. This cellular organization is also found
in the oral mucosa. These cells lay on the basal lamina and lamina propria, which allows
innervation, vascularization, and exchanges between the epithelial cells and the underlying
tissues [10]. A muscular layer surrounds the urethra, allowing it to compensate for the
increase in pressure during the passage of urine and facilitate its excretion.

The penile vasculature comprises three arteries: cavernosal, dorsal, and bulbourethral.
They all arise from the internal iliac artery through the internal pudendal artery. The deep
dorsal artery enables glans spongiosum enlargement during erection. The cavernosal artery
allows corporal enlargement. Those three arteries communicate as a network through an
anastomosis near the glans. Only one deep dorsal vein above the tunica albuginea provides
the blood a way out. Blood exit is possible through drainage from the corpora cavernosa
with emissary veins and from the corpus spongiosum with circumflex veins [11].

Penile innervation is composed of dorsal, cavernosal, and perineal nerves. Dorsal
nerves transport sensation to the penile skin. The perineal nerves supply the ventral shaft
skin, the frenulum, and the bulbospongiosus muscle. Cavernosal nerves are believed to
exchange signal communication implicated in erectile function [12]. Due to this anatomic
specificity, correction of congenital/acquired penile malformation like curvature or stenosis
can result in nerve damage and dysfunction.

In the next part, the related common penile pathologies will be discussed.

3. Common Penile Pathologies, Anomalies, and Treatments

Pathologies affecting the urethra can be classified into two major groups: congenital or
acquired [13] (Figure 2). As previously discussed, penile development is a complex process
starting during the fetal stage and pursuing until puberty with many involved critical
factors. In addition, a significant proportion of genitourinary malformations affect the penis.
Congenital and acquired anomalies of the penis usually involve anatomic abnormalities and
aesthetic discomfort. In addition, surgical repair is needed when the function is impaired
or cosmetic correction is desired. Several excellent reviews have been written and can be
read with profit [14–20].

Urethral reconstruction has received much attention recently due to the recurrence of
urethral strictures after treatments. Various surgical techniques have been developed [41].
Urethral stricture can be treated by urethral dilation and urethrotomy. However, in long
urethral strictures, substituting urethroplasty with genital skin and buccal mucosa grafts is
the only option [42]. The current gold-standard therapeutic approach for complex urethral
strictures usually involves reconstruction with autologous tissue from the oral mucosa [43].
However, surgical procedures are associated with severe complications, such as fistulas,
urethral strictures, and dehiscence of the repair or recurrence of chordee [44,45]. Moreover,
there are multiple situations whereby buccal mucosa is inadequate or inappropriate for
utilization [46].

Penile tissue fibrosis can be treated using cell therapy: mesenchymal stem cells (MSCs)
have proven to be the most effective, with a plethora of preclinical data suggesting the
benefit of stem cells for use in penile fibrosis [47]. Stem cell therapy has a promising future
in pediatric urological conditions [48,49].



Bioengineering 2024, 11, 230 4 of 23

Bioengineering 2024, 11, x FOR PEER REVIEW 3 of 24 
 

The corpus spongiosum is located on the ventral side of the corpus cavernosum and 
is part of the erectile tissues. It surrounds the urethra from the prostate to the urethral 
meatus, which allows the urine and semen to be transported. The male urethra is divided 
into four regions, internally lined by different waterproof epithelia that avoid contact of 
urine with the neighboring tissues. The prostatic urethra is lined with transitional epithe-
lium (urothelium). The membranous urethra is a transition region between the urothelium 
and pseudostratified columnar epithelium. The bulbous urethra and the pendulous ure-
thra are lined with pseudostratified columnar epithelium. The fossa navicularis, the distal 
portion of the urethra, just proximal to the external urethral orifice (meatus), is lined with 
squamous epithelium continuous with that of the glans [9]. This cellular organization is 
also found in the oral mucosa. These cells lay on the basal lamina and lamina propria, 
which allows innervation, vascularization, and exchanges between the epithelial cells and 
the underlying tissues [10]. A muscular layer surrounds the urethra, allowing it to com-
pensate for the increase in pressure during the passage of urine and facilitate its excretion. 

The penile vasculature comprises three arteries: cavernosal, dorsal, and bulb-
ourethral. They all arise from the internal iliac artery through the internal pudendal artery. 
The deep dorsal artery enables glans spongiosum enlargement during erection. The cav-
ernosal artery allows corporal enlargement. Those three arteries communicate as a net-
work through an anastomosis near the glans. Only one deep dorsal vein above the tunica 
albuginea provides the blood a way out. Blood exit is possible through drainage from the 
corpora cavernosa with emissary veins and from the corpus spongiosum with circumflex 
veins [11]. 

Penile innervation is composed of dorsal, cavernosal, and perineal nerves. Dorsal 
nerves transport sensation to the penile skin. The perineal nerves supply the ventral shaft 
skin, the frenulum, and the bulbospongiosus muscle. Cavernosal nerves are believed to 
exchange signal communication implicated in erectile function [12]. Due to this anatomic 
specificity, correction of congenital/acquired penile malformation like curvature or steno-
sis can result in nerve damage and dysfunction. 

In the next part, the related common penile pathologies will be discussed. 

3. Common Penile Pathologies, Anomalies, and Treatments 
Pathologies affecting the urethra can be classified into two major groups: congenital 

or acquired [13] (Figure 2). As previously discussed, penile development is a complex 
process starting during the fetal stage and pursuing until puberty with many involved 
critical factors. In addition, a significant proportion of genitourinary malformations affect 
the penis. Congenital and acquired anomalies of the penis usually involve anatomic ab-
normalities and aesthetic discomfort. In addition, surgical repair is needed when the func-
tion is impaired or cosmetic correction is desired. Several excellent reviews have been 
written and can be read with profit [14–20]. 

 
Figure 2. Representation of the most common penile pathologies. The left/brown half is for
congenital penile anomalies, whereas the right/green half is for acquired penile pathologies. A larger
size of the circle indicates a more significant incidence in the population (without being proportional).
The references describing the pathologies are shown below. Congenital penile pathologies: hypospa-
dias [1,20–25], chordee [26], epispadias [27], phimosis [28–30], and micropenis [31,32]. Acquired
penile pathologies: Peyronie’s disease [33,34], stenosis [6,8], lymphoedema [35–37], priapism [36–40],
penile fracture [37], and buried penis [30].

Priapism treatment often uses an intracavernosal injection of a sympathomimetic
agent and shunt procedures that create a connection with the corpus cavernosa and a
neighboring structure [50]. A novel penoscrotal decompression technique has recently
been described. Early treatment with super-selective embolization can be required [51].
Surgical interventions have consisted primarily of penile revascularization surgery for
arterial insufficiency and penile venous surgery for corporoveno-occlusive dysfunction,
whatever the mechanism.

Penile vascular surgery for treating erectile dysfunction (ED) is still regarded cau-
tiously, but the surgical effectiveness remains debatable and unproven [52–54]. Further-
more, no complete restoration of erectile function is possible with the currently available
techniques [55].

As for Peyronie’s disease, allotransplantation and penile implants are emerging strate-
gies for treating all kinds of penile anomalies [17,56]. However, even if patients demon-
strated viable grafts and natural erection, some patients developed a urinary fistula and
graft rejections [57], which correlated with the results of the first penile transplantation
in the USA [58]. In addition to needing re-operations, penile transplantation requires
lifelong immunosuppression, exposure to malignancies and opportunistic infections for a
non-life-threatening disease [59].

Despite the use of a variety of tissues to correct penile pathologies, two severe limita-
tions of the currently used treatments exist: availability of a sufficient amount of adequate
tissues and post-graft complication. For example, we highlight the case of urethral re-
pair. Markiewicz et al. reviewed 1267 studies on the use of oral mucosa in reconstructive
surgery from 1966 to 2006. Oral mucosa-based urethroplasty has been used in 1353 cases
for urethral strictures and hypospadias/epispadias [15], with a success rate of 66.5% and
76.4% [60]. However, many complications are encountered. The removal of this tissue
has disadvantages in more than 80% of patients [61], such as pain, numbness, submucosal
scars, dry mouth, lesions [62], neurosensitive defects, discomfort [63], disorders of the
opening of the mouth (contracture), and risks of oral infections. In addition, compared to
the autologous urethral tissue, these substitutes have a limited barrier function for urine,
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a particularly toxic product. This can then lead to complications (strictures, failure of the
transplant, etc.) [64]. In addition, even if mucosa can be harvested from both cheeks, the
amount of tissue that can be harvested from a donor site is limited, which can be problem-
atic, especially in the case of prolonged urethral deficits. It should also be noted that the
mucosa cannot be harvested twice from the same site, further limiting surgical options in
the event of complications or recurrence of the pathology [65–67]. Donor site morbidity is
16 to 32% for buccal mucosa graft [68]. To overcome these difficulties, alternative methods
for urethral reconstruction are required. Tissue engineering can be a solution. Indeed,
using tissue-engineered grafts may prevent complications, thus reducing health costs and
improving the patients’ quality of life.

4. Tissue Engineering

Tissue engineering is an expanding scientific field that involves many scientific dis-
ciplines, such as cell biology, chemistry, physics, toxicology, mechanical and electrical
engineering, etc. Its main objective is reconstructing tissues or organs in vitro [69–72].
These substitutes can be used for clinical applications such as grafts or biological dressings.
They can be used to produce models for studying physiological or pathological biological
processes [73,74].

Its principle is based on the association of four elements (Figure 3): first, the cells
can present more or less stemness and come from different stages of development [75,76].
Nevertheless, for clinical applications, autologous cells should be favored. The ideal for
research models is to use cells from the animal and the target organ when available: horse
lung cells to study equine asthma [77] or cells from the human bladder to model bladder
cancers [78].
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The second element is the scaffolding, which is used to give shape to the tissue/organ
to be reconstructed but whose nature has significant implications; in particular, it provides
adequate mechanical resistance or signals promoting proliferation and differentiation of
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the cells, which will be used [79–82]. There is a vast variety of materials that can be used
and have been described [16,44].

The third element that enters the equation is the technique used to produce the scaf-
fold [16]. This can significantly influence the physicochemical parameters of the resulting
tissue, even with identical biomaterial. For example, the porosity of a scaffold produced
by electrospinning or moulding can be substantially different, just as the cohesion of other
materials can be improved depending on the technique used. Techniques can also be
combined to produce a result closer to expectations.

The fourth and final element we often underestimate is the culture media in which
the cells will be cultivated [83–87]. These media not only allow the cells to proliferate on
the surface or inside the material by providing it with signals, often in the form of growth
factors, but also allow the cells to differentiate to play their role, such as the formation of a
barrier to urine for epithelial cells [88,89] or the formation of a muscular structure to allow
contractions [90,91].

In this review, we will mainly discuss the materials used.

4.1. Urethroplasty
4.1.1. Synthetic Biomaterials

Non-degradable biomaterials: Non-degradable biomaterials such as silicone and poly-
tetrafluoroethylene (PTFE) have been tested for tissue reconstruction. Many complications
have been found, such as calcification, fistula formation, chronic hematuria, formation
of stones, and significant contraction up to 50% of the initial length. The success rate is
meagre, explaining these biomaterials’ fall out of favor [92,93].

Degradable biomaterials: Research then turned to degradable biomaterials, allowing
tissue growth while the scaffold resorbs over time in a controlled manner. Synthetic
biomaterial biodegradation duration generally varies from several days to months [94].
Incorporating cells into the scaffold improves the biocompatibility and maintenance of
the tissue because the cells contribute to the remodeling process. It is mainly due to the
synthesis of the components of the extracellular matrix, which are essential for the long-
term survival of the implanted construction. Indeed, proper synchronization between the
biodegradation of the scaffold and the production of cellular components is crucial for
the success of the transplant. In addition, the substitutes must match the replaced tissue’s
mechanical characteristics and allow its manipulation and suturing [95].

The most studied synthetic biomaterials are linear polyesters such as poly-lactic acid
(PLA), poly-glycolic acid (PGA), poly-lactic-co-glycolide (PLGA), and copolymers and
polycaprolactone (PCL) [96]. They have the advantage of being biocompatible 3D scaffolds
with low cost and malleable mechanical properties. Therefore, they allow rapid and
reproducible results with a low risk of contaminants, available every time (some being off
the shelf). In addition, they will enable the incorporation of substances such as growth
factors [94]. Despite this, these biomaterials have drawbacks, mainly the long-term effects
of matrix degradation products, which are little known and can, for example, exacerbate
inflammatory reactions. In addition, the environment is inadequate for the differentiation
and organization of epithelial cells, which can lead to non- or poorly functioning tissue,
allowing the passage of urine through the tissue and, therefore, the formation of stenosis
through inflammation and the graft [97,98].

4.1.2. Intelligent Biomaterials

“Intelligent” biomaterials have recently emerged, reversibly responding to temper-
ature, ionic strength, pH, or light [94,99,100]. Signaling molecules, such as extracellular
matrix components or growth factors, can be loaded onto these biomaterials. Delivery
can be triggered using external stimuli (e.g., pH, temperature, or light) or carried out as
the scaffolds are biodegraded [101]. These intelligent biomaterials are mainly studied
for the administration of drugs and medical device applications [94] but can be adapted
for urological use. Thermosensitive polymers represent the most significant part of these
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biomaterials. Depending on the temperature, the solubility of thermosensitive polymers
in aqueous solutions is modified. The most temperature-sensitive polymer in water is
poly (N-isopropylacrylamide) (PNIPAM) with a critical temperature of the solution lower
than 32 ◦C, which makes the polymer particularly applicable in biology [102]. Shape
Memory Polymers are another intelligent biomaterial first studied in vascular and bone
tissue engineering [103,104]. These materials were considered relevant in the context of
urinary stimuli. Indeed, these polymers have the distinction of existing in an original form
and being able to stay temporarily in another shape. The return to the original condition
occurs upon exposure to a stimulus, usually heat [105]. In the urethral context, it can stretch
during erection and return to its original form during detumescence, which gives it interest.
Other intelligent biomaterials are still in the early stages, such as acellular heparin-collagen
with growth factors [106] or the stress-induced rolling membrane [107].

4.1.3. Natural Biomaterials

Silk fibroin: Other natural polymers have been tested for urethral reconstruction,
particularly polymers derived from Bombys mori cocoons, such as silk fibroin [108,109],
previously used to make sutures. Their main advantage compared to other natural and
synthetic biomaterials is their excellent physical characteristics (elasticity and resistance to
tearing) [94]. Panilaitis et al. have shown that, in comparison to SIS, silk fibroin induces
fewer immunogenic and inflammatory responses, suggesting better biocompatibility com-
pared to conventional urological biomaterials [110]. Chung et al. demonstrated that using
a bilayered silk fibroin scaffold in rabbits allowed tissue regeneration like traditional SIS
matrices with reduced immunogenicity. However, this biomaterial comprises only two
elements: silk fibroin (75%) and sericin (25%), which remains far from the native tissue.

Furthermore, biodegradability is very long or even nonexistent [111]. Silk fibroin/keratin
films improved mechanical properties when blended with gelatin. After mixing with
calcium peroxide, an oxygen-generating substance, the films generated high oxygen levels,
promoting enhanced cellular growth and demonstrating antibacterial ability. A preclinical
trial showed the feasibility of applying this scaffold for repairing urinary tract defects.
Overall, this study suggests that the keratin/silk fibroin scaffold has the potential to be a
viable option for urinary tract tissue engineering, but further research is needed to fully
assess its safety and efficacy in vivo [112]. Recently, a bi-layer silk fibroin graft for tubular
urethroplasty in a porcine defect model was developed [113]; such a material could be
tested for urethroplasty soon.

Collagen: Collagen is also used to create scaffolds for tissue reconstruction. A study
completed in 2016 by Pinnagoda et al. showed increased burst pressure and weak suture re-
tention values when tubular acellular collagen scaffolds were used for urethral regeneration
in rabbit models. Collagen scaffolds showed good biocompatibility and gradual regen-
eration with time. No postoperative complications were observed in 60% of all animals.
However, stenosis and fistulae formation were seen in 40% of the animals (20% for each
of these complications) [114]. Several improvements have recently been performed using
these hydrogels, but further studies remain necessary to evaluate the potential of collagen
type I for urethral reconstruction [115]. Collagen type I scaffolds need to be cross-linked to
slow down enzymatic degradation and enhance their mechanical properties, but this could
cause the loss of their natural characteristics [116].

Decellularized matrices (SIS, BAM): On the other hand, so-called “natural” bioma-
terials have been studied in parallel with synthetic ones. They include animal matrices
or human cadaveric organs, which have been decellularized enzymatically, physically, or
chemically to obtain an acellular matrix whose mechanical properties and biochemical
environment are identical to native tissues. The main acellular matrices studied in vivo
for repairing penile tissues are the “Small Intestinal Submucosa” (SIS) and the “bladder
acellular matrix” (BAM) [117]. The SIS is mainly formed from the submucosa of the small
porcine intestine, where the mucous, serous, and muscular layers are mechanically removed
from the inner and outer surfaces of the intestinal wall to leave a 0.1 mm collagen-rich
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membrane [118,119]. In vivo, animal experiments and pilot studies in humans have shown
that this material can replace the urethra thanks to rapid cell ingrowth and significant
angiogenesis, comparable to skin and mucosal grafts [120–122]. Furthermore, these bioma-
terials are entirely biodegradable in four to eight weeks, can stretch under force, and have a
low tendency to tear [123]. Recently, the decellularized urethra has been evaluated in vitro
and proved to have the potential to be used for tissue engineering applications [124].

However, there exists a balance between a real immune risk due to the presence
of residues of biological elements in these tissues (DNA, prion) [125,126] and reduced
immunogenicity due to the high similarity of the decellularized matrix compared to the
native tissue [127]. Another limitation is the limited vascularization of these tissues, which
can induce necrosis of the implanted biomaterial. Furthermore, one of the significant
problems with acellular matrices, as shown by the experience in rabbits by Dorin et al.,
is that urothelial regeneration on the surface of the acellular graft is limited to 0.5 cm,
which compromises success in more complex cases, such as long urethral stenosis [128]. In
addition, this biomaterial does not allow mature tissue to fulfill its waterproof function.
It is, therefore, necessary, after urethral replacement, to carry out a period of “urinary
diversion” to allow the tissue to mature and become functional in preventing extravasation
of urine and early local irritation and, therefore, the risk of secondary inflammation and
scarring [129]. Other techniques implementing hydrophobic multilayer SIS to reduce
urine leakage have also been implemented, but these systems still need to satisfy all the
necessary constraints.

Despite the apparent benefits of SIS, the clinical results have been poor, with infections
being the most significant limitation [122,130]. The donor’s age and the intestine area from
which the SIS matrix is derived impact the regenerative potential, which has prevented
this biomaterial from being considered ideal for urethral repair [131]. Bladder Acellular
Matrix (BAM) is another example of a decellularized matrix that has successfully shown
regeneration of the urethra in vivo in rabbits [132,133]. Despite the rigorous and efficient
decellularization process, as for SIS, residual immunogenic components are found in BAM,
such as DNA, which can induce functional failures or even inflammatory reactions and,
therefore, rejection of transplants [134]. Another limitation of this type of biomaterial is the
significant variability from one batch to another, necessitating process improvement before
BAM can be applied in tissue engineering [94].

Despite the moderate success of degradable biomaterials in preclinical studies, the
transition in the patient remains a significant challenge today. Natural and synthetic
materials have been combined to produce hybrid biomaterials that better meet clinical
performance requirements. The properties targeted for tissue engineering applications are
mechanical resistance, cellular affinity to attract surrounding cells, porosity, biocompati-
bility, and biodegradability to renew the extracellular matrix. Current efforts are mainly
focused on determining the appropriate biomaterial and its synthesis for applications
in biology.

4.2. Tissue Engineering for Peyronie’s Disease Correction

To circumvent these inconveniences, natural and synthetic biomaterials have been
tested. Despite the advantages of polytetrafluoroethylene (PTFE) and polyethylene tereph-
thalate (PET) (cost, availability, low risk of contamination, etc.), severe fibrosis, inflam-
mation, impotence, and low satisfaction rate have been found and led to loss of interest
in them [135]. Ferretti et al. compared an acellular or cellularized PGA scaffold with
autologous fibroblast in rats for Peyronie’s disease. They showed that, at four months, a
significantly higher retraction was found in the acellular biomaterial than in the cellular-
ized one. Furthermore, erectile response to cavernous nerve stimulation was significantly
higher in the cellularized biomaterial [136]. Kershen et al. seeded smooth muscle and en-
dothelial cells onto biodegradable polymers and successfully implanted them into athymic
mice [137]. Despite progress, functional restoration of the corpora cavernosa with synthetic
biomaterials has been limited.
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Recently, a bi-layer silk fibroin graft has been used on a rabbit model as a substitute
for tunica albuginea in a corporoplasty experiment. The results seem satisfactory, with a
reduction of the expression of contractile proteins with a lower extent of fibrotic tissues,
contrary to what is observed when SIS or tunica vaginalis flaps were used [138].

Concerning the natural biomaterials, Knoll et al. tested SIS as a graft to correct penile
curvature on 148 patients with a follow-up of 6 to 96 months. Curvature recurrence ap-
peared in only 9% of patients, with a postoperative complication of only 5%. More than
87% of patients indicated having no erectile dysfunction [139]. However, other studies have
shown a much higher complication rate of 37%, including infection, curvature recurrence,
and hematoma [140]. The cadaveric pericardium has been tested in 11 patients with a
resolution of curvature in 81%, but long-term follow-up resulted in difficulties in main-
taining an erection [141]. Another study using pericardial graft in 81 men resulted in 75%
satisfaction with the same or better postoperative penile rigidity in 68% of patients [142].
Acceptable results have been obtained using cadaveric dura mater graft, but the report
indicated the risk of contracting Creutzfeld–Jacob Disease [143].

Cadaveric and xenograft materials are commercially available for Peyronie’s disease.
However, poor structural integrity outcomes of tunica albuginea were found, which added
fibrosis, inflammation, and contraction of the grafted area [144]. Allotransplantation [145]
and penile implants [146] are emerging concepts which are highly effective in restoring
penile functionalities, but life-long immunosuppression and considerable costs are the main
disadvantages. Finally, the application of commercially available hemostatic agents like
high-density collagen gel tubes has been tested in a rabbit model without suturing [147].
However, residual curvature has been found with weaker erections and resultant fibrosis.

4.3. Corpus Cavernosum Replacement Strategies

Excellent reviews have been published on this subject and can be referred to for more
information [17,148]. Many studies have been undertaken to reconstruct an adequate
substitute for the corpus cavernosum. Initial studies were initiated by Atala’s group,
who seeded human corporal endothelial cells (EC) and smooth muscle cells (SMC) on
biodegradable polyglycolic acid (PGA) scaffolds characterized by high tensile strength,
high melting point, and degradation properties. Although these scaffolds contributed to a
well-vascularized SMC and EC growth after implantation into mice, they could not mimic
the three-dimensional penile structures. Acellular matrices (ACM), similar to native tissues,
were prepared by decellularizing the extracellular matrix to improve the structure. Subse-
quently, the organization of SMC and endothelial cells increased, forming the vascularized
corpus cavernosum. However, the vascularization pattern differed from native human
tissue as this engineered corpus cavernosum was formed ex vivo before implantation. This
might harm cellular density and erectile function [17]. Chenyang Ji et al. demonstrated
that muscle-derived stem cells (MDSCs) seeded on acellular corporal collagen matrices
(ACCMs) could reconstitute a functional corpus tissue in vivo. However, different degrees
of fibrosis and necrosis were noticed due to a lack of capillaries and adequate nutrition for
the MDSCs. More advanced studies focused on promoting the formation of blood vessels
to improve MDSCs’ resistance to hypoxia. A lentiviral vector transducing method was
elaborated to create MDSCs expressing vascular endothelial growth factor (VEGF). These
cells showed better attachment and growth than untransfected cells, which indicates that
VEGF plays a vital role in developing a vascularized corpus cavernosum tissue in vivo and
promoting the development of MDSCs [149].

Another study by Geng An et al. was based on using three-dimensional (3D)-printed
hydrogel scaffolds with porous structures similar to those of penile cavernous tissue,
providing a suitable microenvironment for cell adhesion, growth, and migration. Heparin,
a polysaccharide with a good affinity for angiogenic factors such as VEGF, was added
to the 3D-printed hydrogel scaffolds. On the other hand, hypoxia-inducible factor-1α
(HIF- 1α)-overexpressed MDSCs were created by lentiviral transfection. HIF-1α-mutated
MDSCs promoted neovascularization since HIF-1α is an essential transcription activator for
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regulating vascular growth factors. Heparin-coated scaffolds seeded with HIF-1α-mutated
MDSCs were implanted into injured corpora cavernosa. As a result, angiogenesis induced
by HIF-1α and VEGF repaired the injured corpora cavernosa and restored penile erection
and ejaculation function in vivo [150].

4.4. Bioprinting

Three-dimensional bioprinting is a tissue reconstruction technique where the cells are
integrated into a cross-linkable hydrogel matrix called bioink to create 3D tissue equiva-
lent constructs in the desired pattern. Three-dimensional bioprinting requires essential
components such as 3D imaging, bioink, and a bioprinter [151].

The leading technologies used for deposition and patterning biological materials are
inkjet, microextrusion, and laser-assisted printing.

Inkjet bioprinting: This technique involves the deposition of tiny droplets of bioink,
a mixture of living cells and a biocompatible material, such as a hydrogel, using inkjet
printheads. The droplets are ejected from the printhead and deposited onto a substrate in
a precise pattern to create a 3D structure. This method is relatively inexpensive and can
produce high-resolution structures, but the high shear forces during droplet ejection can
damage the cells [152].

Microextrusion bioprinting: This technique uses a syringe or a pneumatic device to
extrude bioink through a nozzle onto a substrate, layer by layer. This technique can print
various cell types and materials, including viscous and high-density materials. However,
the resolution is limited, and the shear stress during the extrusion process can damage the
cells [152].

Laser-assisted bioprinting: This technique uses a laser to create a pressure wave that
ejects a droplet of bioink onto a substrate. This method allows for the precise deposition
of tiny droplets of bioink and can create complex structures with high spatial resolution.
However, the high cost of the equipment and the limited availability of suitable bioinks are
some of the challenges associated with this technique [152].

This technique remains challenging despite the benefits of 3D tissues with neovas-
cularization ability. The main challenges include culturing the printed construct with a
different supporting medium in a bioreactor or with any particular maturation setup. On
the other hand, nowadays, the highest possible printing resolution with a laser bioprinter
is 20 µm, while small capillaries of native tissues are 3 µm in diameter. In addition, the
complexity of the vascular networks has not yet been achieved in 3D bioprinting. Other
challenges are the requirement of a high number of cells, extensive research on optimal
bioink composition with good printing abilities, the shape fidelity, and the demand for
sophisticated advanced complementary bioprinting technologies with ensured environ-
ment and sterility maintenance. Bioprinting has several other difficulties, such as safety,
affordability, large-scale production for clinical translation, and ethical issues that include
the cell source and its processing procedures [151]. Bioprinting is not currently used for
penile reconstruction, but its application may be promising.

4.5. Acellularization of the Penis

Reconstruction for total penile defects is considered a unique challenge due to the
anatomic complexity of the penis. Decellularization helps maintain the structure and
functionality of the native organ and the extracellular matrix (ECM) architecture and limits
immunogenic responses. In addition, decellularized organ scaffolds provide biomechanical
support for cell adhesion, proliferation, and differentiation. Yu Tan et al. developed the
first protocol for decellularizing whole-organ human penile specimens for total penile
tissue engineering. The scaffold reported in Yu Tan et al.’s study represents the anatomical
complexity with an increased scaffold diameter due to the use of whole human organ spec-
imens with corpora and urethra rather than a single subunit. To overcome this challenge, a
hybrid decellularization scheme was applied, combining micro-arterial perfusion, urethral
tube perfusion, and standard external diffusion, followed by the recellularization of the
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scaffold with adipose-derived stem/stromal cells (ASCs). This scaffold is characterized by
a good ability to support cell attachment and growth. However, large-scale reseeding of the
entire scaffold may present a significant challenge. Furthermore, multiple cell lineages and
differentiation may be required to restore the complex cellular morphology of the penis.
Decellularizing the entire human penis is the initial step toward developing a successful
tissue-engineered human penile scaffold [153].

5. Tissue Engineering: The Self-Assembly Approach

In the last decades, a new tissue production method has been developed in LOEX,
Canada: the “self-assembly” [154]. This technique is based on the ability of fibroblast-
like cells to secrete and deposit their ECM to form cellularized sheets. The secretion of
collagen by cultured fibroblasts in a medium supplemented with ascorbate was initially
demonstrated by Sumner and Switzer [155], and the potential to form stroma by Senoo and
Hata [156] a few years later. These two studies are the basis for producing reconstructed
tissue with a scaffold free of any exogenous biomaterial. This technique has been suc-
cessfully applied to produce organs such as blood vessels and skin for severely burned
patients in the clinic [157]. Subsequently, other tissues, such as the cornea, were successfully
reconstructed in clinical trials [158]. Concerning the applications in the urology domain,
the self-assembly method allows the production of different substitutes, such as urethral
substitutes, which can be used for penile reconstruction. However, many other substitutes
can be produced, such as vaginal substitutes [159] and cancer models [160], but they will
not be described here.

5.1. Urethral Substitutes

Based on the skin and blood vessel models reconstructed at LOEX, the use of the
self-assembly technique has also been validated for the production of flat (Figure 4A) [161]
and tubular tissues (Figure 4B) [162].

The formation of a urothelium with adequate differentiation and a water-tightness
similar to the native tissue was then obtained by maturation either at the air/liquid interface
or by conditioning in a bioreactor [162].

Tissue was stimulated or not in a bioreactor. However, whatever the condition, all the
tissues, perfused or not, epithelialized or not, had sufficient mechanical strength for clinical
application (Figure 5) (Table 1) [163].

Table 1. Burst pressure of the tissue-engineered tubular genitourinary grafts compared to the native
porcine urethra.

Perfusion − − − + +
Native

porcine urethraUrothelial cells − − − − +

Weeks 2 3 4 3 + 1 3 + 1

Burst pressure
(mmHg) 803 1133 1801 1761 1703 418

Perfusion: − indicates no perfusion into bioreactor was performed; + indicates perfusion into bioreactor was
performed for the indicated time period in weeks. Urothelial cells: − indicates when no urothelial cells were
seeded into the tubular constructs; + indicates when urothelial cells were seeded into the tubular constructs.

These tissues have been implanted subcutaneously in mice and have shown excellent
transplant and survival rates [164]. Endothelialization facilitated early inosculation and
reperfusion, but its clinical benefit could not be demonstrated, probably due to the limited
thickness of the tissues. Subsequently, transplants were performed in rabbits. Despite some
technical challenges, these have been successful (Figure 6).
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Figure 4. Schematic protocol of urethral substitute production by the self-assembly method (flat
and tubular models). (A) Preparation of flat tissue (patch): The stromal cells are seeded on 6-well
plates containing a paper anchor used to limit contraction and to facilitate tissue manipulation. A
support stabilizes this anchoring. The cells are cultured in a medium supplemented with 50 µg/mL
of ascorbate. On day 28, the sheets are detached from the plastic, and three sheets are superimposed
to form a thicker tissue subjected to limited compression to allow the fusion of the cell sheets in
4 days. Then, the urothelial cells are seeded on the upper part of the construct and cultivated for
seven days in submerged condition. The constructions are then raised at the air/liquid interface
using a support for an additional 21 days to allow the epithelial cells to mature. (B) Diagram of the
“tubular” model production by the self-assembly technique. Classic tubular self-assembly technique.
The dermal fibroblasts are seeded in a cell culture plate covered with gelatin. They are grown for 28
days in the presence of ascorbate. The stromal sheet formed is tightly wound around a cylindrical
mandrel. The resulting construction is cultivated for four days to ensure the fusion of the sheets.
Once the fusion is complete, the mandrel can be removed, and the tubular structure can be perfused
to be seeded with urothelial cells. The tube is matured in a bioreactor.
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Figure 5. Production and characterization of a tubular urethra produced in the laboratory by tissue
engineering with dermal fibroblasts. (A) The macroscopic appearance of the tubular tissue was
reconstructed after rolling a stromal sheet around a mandrel. (B) After urothelial seeding, the tubular
tissue is cannulated and put into a bioreactor for maturation. (C) Histological characterization of the
tubular tissue after maturation (Masson’s trichrome staining): a well-differentiated urothelium is
visible with basal intermediate umbrella cells.
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Figure 6. Macroscopic appearance of the tissues produced. (A) The appearance of flat human
urothelial tissue after production in the laboratory. (B) A flat urothelial substitute implanted on the
rabbit urethra.

However, two significant unfavorable in vitro results were noted: stiffness or lack of
elasticity and keratin 14 (K14) expression in the epithelial layer, which should be absent
from a mature urothelium but restricted to progenitor cells [165]. The native empty urethra
is arranged as a star, the branches expanding as the pressure generated by the urine flow
increases during urination [166]. This allows maximum pressure to be absorbed. An overly
rigid urethral tube could cause functional obstruction with long-term harmful effects on the
bladder. Therefore, they focused on using mesenchymal cells extracted from the urinary
tract to rebuild the tissues [165]. However, this is a challenge because these mesenchymal
cells deposit significantly less extracellular matrix than dermal fibroblasts. A recent study
by Caneparo et al. showed the variation in the strength, the strain failure, and the elastic
modulus of the substitutes reconstructed with different percentages of dermal (DF) and
vesical fibroblasts (VF) [167]. The strength, as well as the strain failure, increased with the
rate of dermal fibroblasts included in the mix. At the same time, the elasticity, which is the
opposite of the elastic modulus, decreased. These results helped to identify the best cell
composition. Combining 80% VF and 20% DF gives the optimal tissue strength, resistance,
and elasticity (Figure 7) [167].
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Figure 7. Characterization of the mechanical properties of the substitutes produced with different
ratios of vesical or dermal fibroblasts. Each symbol represents the mean of measurements of one
substitute. The 100% VF refers to the condition where the stroma of the urethra substitute was
reconstructed using vesical fibroblasts (VF) only. The 90/10 is for a mix of 90% VF and 10% dermal
fibroblasts (DF), 80/20 is for a mix of 80% VF and 20% DF, 70/30 is for a mix of 70% VF and 30% DF,
and 100% DF is for the condition where the stroma of the urethral substitute was reconstructed using
only DF. All the substitutes were produced using the hybrid technique of assemblage. (A) Maximal
strength was measured using Instron ElectroPuls E1000 (in N). (B) Failure strain in (%). (C) Elastic
modulus (inverse of elasticity) (in MPa).
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The first set of experiments used DF to produce the stroma. In this context, K14, a
protein usually expressed only in specific cells of the basal layer, was expressed throughout
the urothelium. The expression of K14 could be attributed to the use of DF, which are
non-specific cells of the urinary organs, leading to non-specific signals for urothelial cells.
Studies at LOEX have shown the importance of reconstructing tissue with mesenchymal
cells from the target organ to obtain adequate differentiation under physiological (cornea or
bladder) [165,168] or pathological (psoriatic skin) conditions [169]. Bouhout et al. showed
that contrarily to the DF-derived matrix, which led to a urothelium with an abnormal
structure, the VF-derived matrix allowed the development of a urothelium that shared
the phenotype of the native tissue [165]. A hybrid tissue mixing both cell types showed
a limited level of urothelial maturation, intermediate between both previously observed
phenotypes. These observations indicated that VF-derived stroma supports the urothelial
development, while the DF and the 1:1 mix population matrices led to hyperproliferation
of the urothelial cells rather than their differentiation (Table 2).

Table 2. Evaluation of the urothelium maturation on stroma of different origins.

Native
Urothelial

Tissue

Reconstructed
Urothelial

Tissue
(VF-Matrix)

Reconstructed
Urothelial

Tissue
(VF:DF-Matrix)

Reconstructed
Urothelial

Tissue
(DF-Matrix)

Presence of cells +++ +++ +++ +

Differentiation
of cells +++ +++ +(+) −

(+++): presence and/or differentiation of the three urothelial cell layers; (+): presence of one urothelial cell layer;
(−): absence of differentiated cell layers.

Indeed, using urological cells has led to more elastic tissues and a well-differentiated
urothelium without the over-expression of K14 [165].

5.2. Tunic Albuginea Substitutes

As mentioned before, skin substitutes produced by the self-assembly technique are
already successfully applied to severely burned patients in the clinic [157]. In urology,
corpora cavernosa must correct the volume deficit to ensure the penile length and, therefore,
allow voiding in the standing position, permit sexual activity, and finally have a satisfactory
cosmetic appearance. To fulfill the demand for material for penile reconstruction in the case
of Peyronie’s disease, autologous tunica albuginea has been produced and tested using the
self-assembly method [170]. Imbeault et al. showed that the tissue-engineered endothelial-
ized tubular graft was mechanically sufficiently resistant for clinical use. Furthermore, its
structure was similar to the normal tunica albuginea. However, further functional testing
remains necessary.

6. Limitations and Perspectives

Because of a lack of penile tissue for surgeries, many tissue engineering strategies have
been set up (Table 3), with their advantages and inconveniences. Due to the high morbidity
rate in patients and the lack of durable long-term results, an autologous urethra produced
in vitro from a small biopsy may be the solution. Autologous cells would provide better
growth potential, vital for correcting congenital anomalies. The self-assembly technique
offers a living autologous tissue free of exogenous materials and their inconveniences.
Since the cells are autologous, fewer adverse events may be expected following the graft.
However, the preparation time of this tissue shall be taken into consideration. The re-
construction process is about three months, from the initial biopsy to cell culture and the
completely mature and functional tissue for the graft.

Given that most patients must wait months before being operated on and that these
operations are not threatening the patient’s life, the delay does not represent a significant
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inconvenience. To overcome the need to collect bladder cells from patients, induced pluripo-
tent stem cells (iPSCs) may, in the future, be differentiated from patient blood samples into
different cell types to reconstruct the desired tissue. Thus, the invasiveness of the operation
could be replaced by a simple blood sample. However, tumor and mis-differentiation must
be monitored at all differentiation steps [171]. Production costs must also be considered
because autologous tissue engineering production is much more expensive than a simple
acellular biomaterial. However, fewer complications are expected with greater patient
acceptability and less cost after implantation. Paying more to produce this tissue should
save some of the additional surgeries.

Table 3. The different types of tissues, materials, and methods applied for penile reconstruction.

Type Year Animal Outcome Reference

Tissues

Oral (buccal, lingual)
mucosa

1890
1992
1992

Human
Dog/Human

Human
+

[172]
[173]
[174]

Genital skin 1953
2008

Human
Human − [175]

[176]

Dermal grafts 1979
1995

Human
Human − [177]

[178]

Vein graft 1998 Human + [179]

Tunica vaginalis 1995 Human − [180]

Fascia 2022 Human + [181]

Materials

Synthetic * 2012
2004

In vitro
In vitro/mouse +/− [97]

[98]

Intelligent biomaterials: 2013
2015

In vitro
In vitro

+ [102]
[103]

Natural
Acellular matrices

-silk fibroin
-collagen

2007
2007
2013
2012
2015
2014
2018

Human
Human
Human
Rabbit

Rabbit
Rabbit

+/− [120]
[121]
[122]
[132]
[133]
[111]
[115]

Penile Decellularization 2019 In vitro + [145]

Self-assembly technique 2011
2013

Mouse
Mouse + [170]

[164]
In the outcome column, − is for negative outcome and + for positive outcome; −/+ are for outcome presenting
positive and negative aspects. Other tissue engineering techniques have been used to reconstruct other organs
and may be applied for penile reconstruction in the future, such as cell sheet production. The outcome in the table
represents an overview of the results of the different cited articles related to the same type of tissue, material, or
technique. The list presented above represents the trend in penile tissue engineering in the last decades. For a
more exhaustive list, see references [17,42,44,49,94,148,182]. * PLA, PGA, PLGA, PCL.

7. Conclusions

The penis is a complex organ whose reconstruction requires different techniques.
These techniques exist, but work has yet to be done so far to respond to the complexity of
the organ as a whole. Among the reconstruction strategies currently applied, self-assembly
is one of the most interesting.

In conclusion, patients’ quality of life presenting congenital or acquired penile anoma-
lies should be significantly improved with an autologous tissue free of exogenous biomate-
rials reconstructed by the self-assembly technique. Despite the few inconveniences of this
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technique, the tissue quality produced should allow patients to return to a potentially more
normal life.
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