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Abstract: The construction of medical knowledge graphs (MKGs) is steadily progressing from manual
to automatic methods, which inevitably introduce noise, which could impair the performance of
downstream healthcare applications. Existing error detection approaches depend on the topological
structure and external labels of entities in MKGs to improve their quality. Nevertheless, due to
the cost of manual annotation and imperfect automatic algorithms, precise entity labels in MKGs
cannot be readily obtained. To address these issues, we propose an approach named Enhancing
error detection on Medical knowledge graphs via intrinsic labEL (EMKGEL). Considering the ab-
sence of hyper-view KG, we establish a hyper-view KG and a triplet-level KG for implicit label
information and neighborhood information, respectively. Inspired by the success of graph attention
networks (GATs), we introduce the hyper-view GAT to incorporate label messages and neighborhood
information into representation learning. We leverage a confidence score that combines local and
global trustworthiness to estimate the triplets. To validate the effectiveness of our approach, we
conducted experiments on three publicly available MKGs, namely PharmKG-8k, DiseaseKG, and Di-
aKG. Compared with the baseline models, the Precision@K value improved by 0.7%, 6.1%, and 3.6%,
respectively, on these datasets. Furthermore, our method empirically showed that it significantly
outperformed the baseline on a general knowledge graph, Nell-995.

Keywords: medical knowledge graph; error detection; confidence score; graph attention network

1. Introduction

A knowledge graph (KG) consists of semantic edges and diverse entities, represented
as (h,r,t). KGs can be general, such as YAGO [1] and DBpedia [2], or domain-specific, such
as biomedical KG [3] and financial KG [4]. Medical KGs, in particular, exhibit unique
structures, contain abundant semantic information [5], and play a crucial role in various
healthcare applications, including disease diagnosis [6], drug analysis [7], clinical edu-
cation [8], and data quality management [9]. However, constructing a medical KG from
scratch can be a time-consuming and labor-intensive procedure [10]. Recently, there have
been studies that propose constructing medical KGs by either fusing existing KGs [11] or
extracting entities related to ICD-9 from Freebase [12]. These approaches aim to streamline
the process of constructing medical KGs by leveraging existing resources and extracting
relevant entities. However, these methods inevitably introduce noisy triplets due to hu-
man errors and imperfect algorithms. For example, the correct triplet (Bill Gates, found,
Microsoft) might be mistakenly identified as (Bill Gates, found, Google). This can lead to
substantial errors in downstream tasks and applications that rely on the accuracy of the
knowledge graph [13].

Traditional knowledge graph representation learning algorithms, such as TransE [14],
DistMult [15], and RotatE [16], assume the correctness of all triplets in the KG. However,
the absence of error detection mechanisms exposes downstream tasks to significant risks.
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Therefore, it is crucial to develop an error detection algorithm to ensure the reliability of a
medical KG.

As the errors present in KGs can be diverse and their nature may be unknown [17],
it is nontrivial to detect noisy triplets in KGs [18]. Recently, some studies have enabled
error-aware learning against the noisy triplets [19,20]. In particular, CKRL [19] estimates
the triplet with confidence through path and KG embedding. To classify the triplets directly
with trustworthiness, KGTtm [21] proposes a model that integrates entity, relationship,
and KG global-level information. The state-of-the-art error detection method, CAGED [22],
effectively combines KG embedding with contrastive learning. This approach estimates the
confidence of triplets both locally and globally, enabling the accurate detection of errors in
the KG. By utilizing the additional entities’ attribute information, AKAE [23] enhances the
error detection process and improves the accuracy of identifying and addressing nontrivial
errors in the KG.

While AKAE has shown promising results, obtaining external attribute information
for entities can be challenging. Therefore, we propose an approach that leverages the
topological structure of the graph and the rich potential entity information within MKGs to
extract intrinsic label information. This approach is more versatile and can be applied to
various medical KGs without relying on explicit attributes. To this end, we propose the
framework named Enhancing error detection on Medical knowledge graphs via intrinsic
labEL (EMKGEL). Our contributions are as follows:

• Noting the abundance of entities’ labels in medical KGs, we propose a novel method
that extracts the intrinsic label information of entities via a hyper-view KG. Further,
we establish the hyper-view KG ourselves due to its absence;

• Aiming to integrate the topological information and intrinsic label information, we
propose a hyper-view GAT consisting of a bi-LSTM layer for capturing local structural
messages and a modified graph attention mechanism for modeling neighborhood
information with potential labels’ messages;

• Ranking the triplet by confidence score, we conduct comprehensive experiments on
three medical KGs and a general KG and outperform other methods.

This research aims to make a valuable contribution to the advancement of medical
knowledge graphs within the open-source community. The proposed approach can be
effectively utilized for identifying errors in knowledge graph construction. By leveraging
this method, it is possible to reduce the time required for construction while simultaneously
improving the overall quality of the knowledge graph. In summary, the proposed method
represents a promising tool for error detection in knowledge graphs and has wide-ranging
implications for advancing the field.

2. Related Work

The related work of the error-detection research community can be divided into
three categories: knowledge graph representation learning, error-aware knowledge graph
embedding, and knowledge graph error detection.

2.1. Knowledge Graph Representation Learning

Numerous studies have been dedicated to the field of knowledge graph (KG) repre-
sentation learning, which has emerged as a crucial foundation for various downstream
tasks [24,25]. Based on the scoring function used and whether a global graph structure is
utilized, KG representation learning methods can be broadly categorized into three groups:
translation-based, semantic matching, and GNN-based models.

Translation-based models, exemplified by TransE [14], have garnered widespread
attention due to their pioneering work in transforming the KG into a continuous vector
space. However, TransE is not well-suited for handling 1-N, N-1, and N-N relations within
the knowledge graph. To tackle the issue, several variants of TransE are proposed, including
TransH [26], TransR [27], and TransD [28]. In particular, to fit the various relation patterns,
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including symmetry/antisymmetry, inversion, and composition, RotatE [16] projects the
entities and relations into complex vector space via rotation.

Semantic matching models employ a similarity-based scoring function to evaluate
the likelihood of the facts. One representative model in this category is RESCAL [29],
which utilizes a matrix of full rank to depict relations. Building upon this, DistMult [15]
transforms the relation matrix into a diagonal matrix. CompIEx [30] expands on DisMult
by incorporating complex space and effectively addressing both symmetry and asymme-
try concerns.

GNN-based models integrate neighborhood information to improve the performance
of the KG embedding, e.g., ConvKB [31] and CompGCN [32]. Specifically, ConvE [33]
utilizes 2D convolution to represent entities and relations. R-GCN [34] obtains the structural
information of multi-relation graphs through relation matrices and node neighbors, but
the parameters explode as the relations grow. These methods assign the same importance
to nodes’ neighbors, while the different nodes make different contributions. To tackle
the issue, KGAT [35] introduces an attention mechanism to learn the weight of nodes in
a neighborhood.

However, these methods ignore the noisy triplets in KGs, which may decrease the
quality of KG representation learning. Thus, it is urgent to develop an algorithm for
error-aware KG embedding or to detect errors in the KG.

2.2. Error-Aware Knowledge Graph Embedding

Error-aware KG embedding is end-to-end representation learning that learns the em-
bedding of entities and relations with noise. Aiming to detect possible errors, Dong [36]
constructed a knowledge vault by fusing existing KG embeddings with probability scores.
Recently, CKRL [19] offers a novel approach that incorporates the confidence score while
learning knowledge representations in the KG with noise. While CKRL has shown effective-
ness in noise detection by confidence scores, its utilization of uniform negative sampling
methods and a strict triple quality function can potentially lead to zero loss problems and
false detection. To address these challenges, NKRL [20] introduces the concept of negative
confidence and proposes a negative sampling method for training. In addition, TransT [37]
measures the confidence score via external entity type and description. These models gener-
ate confidence scores in representation learning to estimate the triplets, thereby enhancing
the robustness of KG embedding with noise.

2.3. Knowledge Graph Error Detection

Error detection has been a long-standing challenge for many years. Primarily, stud-
ies focused on rule-based methods [38], cluster-based methods [39], and distance-based
methods [40]. Among these methods, there have been several innovative works for error
detection. Undoubtedly, it is straightforward to rank triplets by their embedding score
function, e.g., TransE’s score function is −∥h + r − t∥, where the larger the score, the more
reliable the triplet. In addition, a classification-based method, KGClean [41], utilizes a novel
method called AL-detect to identify errors. Recently, Jia [21] proposed a triple trustwor-
thiness measurement model that combines intra-triplet, structural, and global inference
information. This approach enables the fusion of entity, relationship, and path-level in-
formation. The state-of-the-art method, CAGED [22], introduces the concept of a link
pattern for data augmentation and subsequently integrates KG embedding and contrastive
learning to combine local and global information. Based on this, AKAE [23] incorporates
the external entity attribute information.

3. Problem Statement

Given a knowledge graph G, we define G = (E ,R,S), where E ,R,S represent the
sets of entity, relations, and triplets, respectively. The major notations used in this paper
can be followed in Table 1
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Table 1. Major notations.

Notation Description

G the original knowledge graph
(h, r, t) a triplet with the head, relation, and tail
Ĝ the triplet-level KG constructed from G
G ′ the hyper-view KG constructed from G
Ht the set of the tail entities share the same (h, r)
x representation of the triplet
z representation learned from x
C(h, r, t) confidence score of the triplet (h, r, t)

Definition 1. Errors in KGs. Considering a triplet (h, r, t), there is an error if there is a mismatch
of the head, relation, or tail, represented as (h’, r’, t’). Two examples illustrate this. Firstly, the
triplet (Nanjing, is the capital of, China) incorrectly associates Nanjing as the capital of China,
whereas the correct head entity should be Beijing. Secondly, in the triplet (Jimmy Carter, is the son
of, Chip Carter), the relationship between the two individuals, Jimmy Carter and Chip Carter, is
inverted. In real-world knowledge graphs, there are no ground-truth datasets that include errors.
To simulate noisy triplets, we introduce errors by randomly replacing either the head or tail of the
original triplets. As a result, we obtain modified triplets with noise denoted as S′ = (h′, r′, t′). It is
important to note that entities and relations outside of the knowledge graph are not considered in
this process.

Definition 2. The triplet-level KG Ĝ. We consider a triplet (h, r, t) as a node, and we define a
relationship between two triplets that share either the head entity or the tail entity, e.g., there is a
link between (ei, rij, ej) and (ej, rjk, ek). We denote Ĝ = (S ,V , T ), where S represents the set of
triplets from the original knowledge graph G, V represents the edges connecting the triplets that
share entities, and T represents the set of new triplets introduced in the process. As illustrated in
Figure 1b, X1 and X3 share the entity Alzheimer’s disease, so they have a hidden connection.

(a) The original medical KG in hyper-view (b) The triple-level KG

Figure 1. The medical KG in hyper-view and triplet-level. (a) The hyper-view KG. * represents the
example template: entities are represented by yellow, while relations are denoted by green. Within
the hyper-view, potential label information is highlighted in black. Specifically, tail entities sharing
the same couple (Alzheimer’s disease psychosis, recommend) have a hidden potential label as food.
Head entities sharing the same couple (belong department, neurology) have a potential label as
disease. (b) The triplet-level KG. We use X1, X2, X3 to represent triplets. Triplets’ shared entities have
hidden connections. Aggregating the neighborhood triplets X2, X3 of the triplet X1, we reconstruct it
as Z1.
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Definition 3. The hyper-view KG G ′. For any given triplet (h, r, t) in G that shares the same
(h, r) pair, we define Ht = {ti|(h, r, ti) ∈ S} as the set of all tail entities associated with this
pair. Similarly, we define Hh = {hi|(hi, r, t) ∈ S} as the set of all head entities that share the
same relation r and tail t. As depicted in Figure 1a, the head entities at the top share the same
couple (belong department, Neurology). Entities such as cerebral infarction, NeuroLyme disease,
syringomyelia, and Alzheimer’s disease are likely to be labeled as diseases. Similarly, chestnut and
ginkgo are likely to be labeled as food items.

Definition 4. Confidence score [19]. To classify a triplet, we introduce an estimated score ranging
from 0 to 1. For a true triplet (h, r, t), the confidence score is expected to be close to 1, indicating a
high degree of confidence in its accuracy.

Unless otherwise specified, the boldface notation in the formulas represents vectors.

4. Methodology

Traditional methods for KG representation learning typically approach the problem by
modeling the KG as a heterogeneous graph and learning embeddings for entities (nodes)
and relations (edges) [14,26,27]. However, most algorithms struggle to handle the complex
relations between triplets. To tackle this issue, several studies [32–35] propose methods
that aggregate information from neighborhood nodes for latent messages. Furthermore,
some studies [23,37] explore the integration of external information, such as entities’ labels,
to enhance KG embedding. However, obtaining label information for entities in MKGs is
not always a straightforward process. Thus, this paper proposes a novel framework named
Enhancing error detection on Medical knowledge graphs via intrinsic labEL (EMKGEL).
Inspired by recent work [22,23], we construct a triplet-level KG in Definition 2 to capture
neighborhood information. In contrast to CAGED, which employs a hyper-parameter for
error filtering, our approach involves extracting potential label information at a hyper-
view level. We then integrate this information into the attention mechanisms within our
framework. Our intuition is that a triplet can acquire analogous label feature information
from the set associated with the same hyperedge. For example, the subclass words under
the same parent-class words often share similar semantic contexts.

As illustrated in Figure 2, our proposed EMKGEL consists of a multi-view KG, a
hyper-view GAT, and a joint confidence score. In our proposed approach, we first generate
a triplet-level KG and a hyper-view KG, as described in Definitions 2 and 3. We then
employ an attention mechanism to capture the intrinsic label information of entities in the
hyper-view KG. This information is subsequently incorporated into the triplets using the
hyper-view GAT to enhance the nodes. To train the model, we utilize a combination of KG
embedding loss and global triplet embedding loss. This joint training enables the model
to learn meaningful representations that capture both the structural relationships within
the KG and the semantic contexts of the triplets. Finally, we estimate triplets using a joint
confidence score based on the learned representations.

4.1. Hyper-View GAT for Representation Learning

Noisy triplets in KGs can have a detrimental effect on representation learning, thereby
jeopardizing downstream tasks. It is crucial to ensure the reliability of the encoder to
mitigate the impact of these errors. To address this challenge, CAGED introduces an error-
aware GNN that filters out errors. However, determining an optimal hyper-parameter for
error filtering is a complex task, making it challenging to apply CAGED to different KGs
effectively. In this paper, we present a novel method to extract intrinsic label information
from the hyper-view KG. We leverage this information to enhance the representation of
triplets by incorporating it into a hyper-view GAT. By combining local structural informa-
tion and neighborhood triplet messages, the hyper-view GAT effectively integrates multiple
sources of information. Following the integration process, we estimate the reliability of



Bioengineering 2024, 11, 225 6 of 17

each triplet by assigning a confidence score. This score serves as a measure of the triplet’s
quality, aiding in the interpretation and utilization of the KG data.

Figure 2. For training purposes, all triplets are generated with pairwise negative examples, denoted
by red. This involves randomly replacing the head entity, the relation, and the tail entity in each
triplet. (a) We construct a triplet-level KG and a hyper-view KG. (b) Enhanced by intrinsic label
information, triplet-level nodes learn the embedding from neighborhood messages. (c) After training
on a joint loss, we estimate the confidence of the combined local and global trustworthiness of triplets.

4.1.1. Local Structural Information Modeling

Applying a GAT [42] for learning emphasizes the capture of latent information from
neighborhood nodes. However, this approach can potentially weaken the inherent infor-
mation contained within the triplets, denoted as h −→ r −→ t. Taking inspiration from
CAGED, we utilize a bidirectional LSTM to acquire local representations that preserve the
specific structural information of the triplets within global information learning.

x = [xh; xr; xt] = bi − lstm(h, r, t). (1)

As shown in Equation (1), we initialize a triplet (h, r, t) and pass the resulting vector
(h, r, t) through the bi-LSTM layer. The output x represents the local triplet embedding,
which captures the structural information of the triplet. Subsequently, we utilize this local
embedding x as the input for the global modeling layer.

4.1.2. Intrinsic Label Information in Hyper-View KG

In the MKG, there is a wealth of untapped and exploitable unknown entity label
information available. To uncover the latent label information of entities without external
information, we construct a hyper-view KG that enriches each entity with diverse attributes
within the medical domain. For an embedding triplet x, the head entity h and the tail entity
t have corresponding sets, as defined in Definition 3. Taking the shared pair (h, r) as an
example, we can obtain a set Ht for the tail entity. Based on our assumption, the entities in
Ht likely share similar characteristics or properties, allowing us to infer potential labels or
attributes for the tail entity based on this set.

To capture the messages associated with potential labels, we employ an attention
mechanism,

qt,i = fatt(t,ti)
, (2)

qt,i indicates the coefficients across the original t and the i-th tail entity in Ht. fatt(·) denotes
a single layer feed-forward neural network.
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To reduce bias and ensure a fair comparison among the coefficients, we normalize
them using a Softmax function. By incorporating information from the entire set Ht, we
can capture the potential labels or attributes associated with Ht,

αt,i =
exp(qt,i)

∑Ht
j=1 exp(qt,j)

, (3)

t∗ =
|Ht |

∑
i=1

αt,i · ti. (4)

Similarly, we obtain the h∗ from the all head entities of Hh,

h∗ =
|Hh |

∑
i=1

αh,i · hi. (5)

To estimate the importance of the h∗i and t∗i , we employ the similarity calculation. The
hyper-view score hyperx is utilized to gauge the significance of neighboring nodes,

hyperx = sim((h, t), (h∗, t∗)), (6)

By considering the hyper-view score, we can determine the level of contribution that the
neighboring nodes have towards the representation and understanding of the target triplet.

4.1.3. Neighborhood Information Modeling

Relying solely on KG embeddings to estimate the confidence of a triplet is insufficient.
It is crucial to incorporate contextual information from neighboring triplets to enhance the
confidence estimation process. While previous methods such as R-GCN [34] and KGAT [35]
have shown effectiveness in leveraging neighborhood information, they may encounter a
decline in performance when neighboring triplets contain noisy or erroneous messages, as
highlighted in the work of CAGED [22]. To address this issue, CAGED introduces a hyper-
parameter that helps mitigate the impact of errors. Given the abundant availability of entity
label information in MKGs, we utilize hyper-view scores to enhance the neighborhood nodes.

Specifically, for a given anchor triplet x with m neighboring triplets x1, xj, . . . , xm, we
aggregate the information from these neighbors to update the representation of the anchor
triplet. The weights of anchor triplet x and neighboring triplets xj are calculated as follows:

ej = a(Wcx, Wcxj), (7)

where ej indicates the weight of xj to x. a indicates the attention function a : R′
d × R′

d −→ R,
Wc ∈ R′

d × R′
d −→ R is a trainable parameter matrix that projects triplet x into the same

vector space.
Then, we incorporate the hyper-view score to enhance the label information, as de-

picted in Equations (2)–(6). In detail, we make a dot-product between ej and hyperxj

in normalization,

αj =
exp(hyperxj · ej)

∑m
k=1 exp(hyperxk · ek)

, (8)

where αj indicates the normalized coefficient weight of the j-th triplet xj to anchor triplet x.
Finally, we obtain the reconstructed vector z for the original anchor triplet x. And the

σ(·) denotes the Sigmoid function,

z = σ(
m

∑
j=1

αjWcxj). (9)
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4.2. Joint Training Strategy

To capture the semantic and latent information, we introduce a training strategy to
integrate KG embedding loss and global embedding loss.

Based on the translation assumption, we utilize the TransE score function dlocal to fit
the local structural information,

dlocal = ∥h + r − t∥. (10)

For neighborhood information embedding , we use the dglobal to estimate the distance
between the anchor triplet x and reconstruct triplet z as follows:

dglobal = ∥x − z∥. (11)

To integrate the KG and global triplet embedding, we introduce the trade-off hyper-
parameter λ. In Section 5, we specifically investigate the effect of different values of λ. The
calculation is as follows:

djoint = dlocal + λ · dglobal . (12)

Subsequently, we leverage a margin-based ranking loss function for negative sampling
during the training process following the previous work [14],

L = ∑
(h,r,t)∈S

∑
(h′ ,r,t′)∈S′

[γ + djoint(h, r, t)− djoint(h′, r, t′)]+, (13)

where []+ equals max(0, x), λ is a hyper-parameter. S indicates the set of the original
triplets, and S′ indicates the set of the negative triplets that randomly replace the head and
tail entities. It is crucial to ensure that corrupted triplets are not in S and are non-repetitive.

4.3. Confidence Score

After training, we obtain the confidence score, as depicted in Equation (14):

C(h, r, t) = σ(λ · sim(x, z)− ∥h + r − t∥2
2), (14)

The σ(·) denotes the Sigmoid function. The function sim(·) denotes the similarity of the
original triplet x and the reconstructed triplet z. The confidence score ranges from 0 to 1,
with higher values indicating a stronger positive correlation for the triplet.

The learning process of our method is summarized in Algorithm 1.

Algorithm 1 Error detection on medical knowledge graphs via intrinsic label information

Input: Knowledge graph G with noise
Output: KG embeddings and confidence score

1: Initialize network parameters,
2: Construct a triplet-level and a hyper-view KG as per Definitions 2 and 3, respectively.
3: while not converged do
4: for each (h, r, t) ∈ S do
5: Modeling the local structural information of triplets as defined in Equation (1),
6: Extract the intrinsic label information in hyper-view and then compute the impor-

tance score of triplets as defined in Equation (6),
7: Acquire the representation in hyper-view GAT in Equation (9),
8: Compute the KG embedding distance in Equation (10) and global triplet embedding

distance in Equation (11). Combined with a trade-off parameter λ and obtain the
joint loss in Equation (13).

9: end while
10: Compute the confidence score as defined in Equation (14).
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5. Experiments and Discussion

In this section, we will provide detailed experimental settings. Through the parameter
analysis, ablation study, and case study, we validate the effectiveness of the proposed
method, EMKGEL.

5.1. Experimental Settings

In this section, we provide a detailed overview of the experimental settings, including
datasets, baseline methods, and evaluation metrics.

5.1.1. Benchmark Datasets

Similar to prior studies, such as [19,22,23], we adopt the approach of randomly re-
placing head and tail entities to generate noisy triplets. As depicted in Definition 1, we
introduce 5% noisy triplets into three medical real-world KGs and 5%, 10%, and 15% noisy
triplets into one general KG to explore the robustness of our method.

PharmKG-8k [11] is a multi-relational attribute biomedical knowledge graph com-
posed of more than 500,000 individual interconnections between genes, drugs, and diseases,
with 29 relation types over a vocabulary of 8000 disambiguated entities.

DiaKG is derived from 41 publicly published diabetes guidelines and consensus docu-
ments, covering the most extensive range of research topics and hot areas in recent years.

DiseaseKG is a knowledge graph built upon common disease information utilizing
the cnSchema framework.

Detailed information on the datasets is summarized in Table 2.

Table 2. The statistical information of datasets.

Datasets Entities Relations Triplets In-Degree

PharmKG-8k 7262 28 500,958 58.86
DiaKG 2658 15 4099 1.55
DiseaseKG 43,972 12 312,159 6.74
Nell-995 75,492 200 154,213 1.98

5.1.2. Baseline Methods

In our experiments, we introduce KG embedding baseline methods and error detection
baseline methods.

KG embedding: We compare them with the traditional representation learning meth-
ods, including TransE [14], DistMult [15], and RotatE [16]. We leverage the function
score as the confidence score after training. In TransE, we employ the Euclidean distance
−|h + r − t|2 as the confidence score.

Error detection: For KG error detection methods, we evaluate the proposed method
against state-of-the-art approaches, including CKRL [19], KGTtm [21], and CAGED [22].

5.1.3. Evaluation Metrics

Consistent with previous studies [22,23], we adopt the practice of ranking all triplets
based on their confidence score. Triplets with lower scores are considered potential candi-
dates for being noisy triplets. Precision@K and Recall@K metrics are utilized to estimate
the effectiveness. In detail, Precision@K denotes the TopK lowest confidence score triplets
among the TopK triplets. Recall@K denotes the TopK lowest confidence score triplets
among all triplets.

Precision@K =
|Errors Discovered in TopK Ranking list|

K
(15)

Recall@K =
|Errors Discovered in TopK Ranking list|

|Total Number of Errors in KG| (16)
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5.1.4. Implementation Details

We conduct experiments on GPU NVIDIA GeForce RTX 3090; the Python version is
3.8 and the Pytorch version is 1.11.0. Based on the average in-degree of the datasets, the
number of neighbors for each triplet in the four datasets is set to 59/2/7/2. The embedding
hidden size is set to 100, the same as the bi-LSTM hidden size. Default Xavier initialization
and an initial learning rate of 0.003 were used.

In our experiments, we explore different hyper-parameters to assess their impact on
the results. The trade-off parameter λ is set from 0.001 to 1000, while the margin parameter
γ is adjusted within the range of 0 to 1. To mitigate the impact of randomness introduced
by erroneous triplets, we average the experimental data across 10 random seeds ranging
from 0 to 9.

5.2. Results and Analysis

In this section, we conduct a comprehensive evaluation to assess the effectiveness
of our method across four datasets. Through thorough observation and analysis, we
demonstrate that our proposed method performs effectively in all four datasets. For
clarity, we highlight the optimal results in black and underline the second-best results.
Additionally, we indicate that Precision@K is equal to Recall@K when K equals ratios by
using an asterisk (*).

5.2.1. Main Results

As depicted in Table 3, the results demonstrate that (1) error detection methods
outperform traditional embedding methods on the three medical KGs, and (2) notably,
our proposed method, EMKGEL, outperforms all existing methods, delivering the best
performance.

Specifically, traditional embedding methods such as TransE and RotatE solely focus on
local structural information while neglecting global triplet embedding. Consequently, this
limited perspective can result in losing important messages from neighborhood triplets. To
tackle this issue, CAGED addresses the limitation by incorporating global triplet embedding
through contrastive learning. This integration enables CAGED to capture and leverage
the global context of triplets, detecting a higher number of errors in the KG. Different
from CAGED’s utilization of the uncertainty parameter µ for error filtering, our approach
takes a novel approach. Initially, we leveraged a hyper-view KG to extract potential
label information for entities. Subsequently, we estimated the importance of nodes by
assigning hyper-view scores, thereby enhancing their impact on neighboring nodes. In our
experiments, we observe that our method demonstrates improvements of 0.7%, 6.1%, and
3.6% on PharmKG-8k, DiseaseKG, and DiaKG, respectively.
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Table 3. Error detection results on three datasets with noisy ratio = 5%. Optimal results are highlighted in black, while the second-best results are underlined.
† denotes the result is reproduced by ourselves. * denotes the Precision@K is equal to Recall@K.

Datasets PharmKG-8k DiseaseKG DiaKG

K K = 1% K = 2% K = 3% K = 4% K = 5% * K = 1% K = 2% K = 3% K = 4% K = 5% * K = 1% K = 2% K = 3% K = 4% K = 5% *

Pr
ec

is
io

n@
K TransE [14] † 0.812 0.681 0.584 0.515 0.461 0.623 0.498 0.425 0.370 0.331 0.341 0.280 0.227 0.207 0.175

DistMult [15] † 0.802 0.722 0.664 0.607 0.547 0.754 0.636 0.533 0.458 0.402 0.439 0.304 0.252 0.219 0.200
RotatE [16] † 0.871 0.762 0.681 0.609 0.563 0.727 0.601 0.501 0.427 0.374 0.487 0.317 0.260 0.225 0.195
CAGED [22] † 0.958 0.917 0.845 0.761 0.674 0.936 0.870 0.776 0.687 0.611 0.562 0.459 0.400 0.371 0.326
EMKGEL(our) 0.963 0.923 0.852 0.763 0.679 0.962 0.899 0.813 0.727 0.648 0.596 0.487 0.418 0.378 0.338

R
ec

al
l@

K

TransE [14] † 0.162 0.272 0.350 0.411 0.461 0.124 0.199 0.255 0.296 0.331 0.068 0.112 0.136 0.165 0.175
DistMult [15] † 0.160 0.288 0.398 0.486 0.547 0.150 0.254 0.319 0.367 0.402 0.087 0.122 0.151 0.175 0.200
RotatE [16] † 0.174 0.304 0.408 0.487 0.563 0.142 0.241 0.301 0.342 0.374 0.097 0.126 0.156 0.180 0.195
CAGED [22] † 0.191 0.366 0.507 0.608 0.674 0.187 0.347 0.465 0.550 0.611 0.112 0.183 0.240 0.297 0.326
EMKGEL(our) 0.192 0.369 0.511 0.611 0.679 0.192 0.359 0.487 0.581 0.648 0.119 0.194 0.251 0.302 0.338
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Additionally, we introduce different ratios of 5%, 10%, and 15% on Nell-995 to observe
their effectiveness. As depicted in Table 4, our method consistently achieves the best results
across different cases, highlighting the robustness of EMKGEL.

Table 4. Error detection results on Nell-995 with different ratios. Optimal results are highlighted in
black, while the second-best results are underlined. † denotes the result is reproduced by ourselves.

Ratio 5% 10% 15%

K K = 5% K = 10% K = 15% K = 5% K = 10% K = 15% K = 5% K = 10% K = 15%

Precision@K

TransE [14] † 0.358 0.255 0.196 0.546 0.432 0.356 0.666 0.569 0.490
DistMult [15] † 0.286 0.235 0.205 0.489 0.421 0.375 0.605 0.540 0.494
RotatE [16] † 0.352 0.237 0.193 0.454 0.378 0.324 0.626 0.544 0.474
CKRL [22] 0.450 0.306 0.236 0.679 0.524 0.421 0.745 0.646 0.560
KGTtm [22] 0.481 0.320 0.242 0.713 0.527 0.437 0.788 0.673 0.576
CAGED [22] 0.516 0.325 0.251 0.799 0.585 0.458 0.823 0.729 0.599
EMKGEL(our) 0.542 0.344 0.264 0.807 0.606 0.488 0.842 0.732 0.626

Recall@K

TransE [14] † 0.358 0.511 0.589 0.273 0.432 0.534 0.222 0.379 0.490
DistMult [15] † 0.286 0.471 0.616 0.244 0.421 0.562 0.201 0.360 0.494
RotatE [16] † 0.352 0.474 0.579 0.227 0.378 0.487 0.208 0.363 0.474
CKRL [22] 0.450 0.612 0.708 0.340 0.524 0.632 0.248 0.431 0.560
KGTtm [22] 0.481 0.640 0.726 0.357 0.527 0.656 0.263 0.449 0.576
CAGED [22] 0.516 0.650 0.753 0.400 0.585 0.687 0.274 0.486 0.599
EMKGEL(our) 0.542 0.689 0.792 0.403 0.606 0.732 0.281 0.488 0.732

5.2.2. Ablation Study

To validate the individual components of our proposed method, we conduct compre-
hensive experiments. Firstly, we replace the bi-LSTM by simply concatenating the triplet
embedding to assess the impact of local structural information. As shown in Table 5, we can
observe that the variant employing only concatenation exhibits inferior performance due
to the absence of structural information. Secondly, we replace the hyper-view GAT with a
simple GAT. As indicated in Table 5, our hyper-view GAT outperforms the GAT, thereby
demonstrating the effectiveness of label information in enhancing the embeddings. Thirdly,
we proceed to eliminate the KG and triplet embedding losses individually. Upon analyzing
the results presented in Table 5, it becomes apparent that the model’s performance suffers
when either the KG or triplet embedding loss is removed. This observation suggests a
strong interdependence between KG embedding and triplet embedding, indicating that
these two components work collaboratively to enhance the model’s performance. Lastly,
we introduce a replacement for the TransE score function, as shown in Equation (10), by
adopting the RotatE score function. This modification aims to explore the flexibility of
different score functions and their impact on the model’s performance.

Table 5. Ablation study on Nell-995 with noisy Ratio = 5%. Optimal results are highlighted in black.

Precision@K Recall@K

K K = 1% K = 2% K = 3% K = 4% K = 5% K = 1% K = 2% K = 3% K = 4% K = 5%

EMKGEL 0.887 0.792 0.692 0.613 0.542 0.177 0.317 0.415 0.490 0.542
EMKGEL w/o bi-LSTM 0.793 0.711 0.621 0.549 0.492 0.158 0.284 0.373 0.439 0.492
EMKGEL w/o HyGAT 0.798 0.721 0.630 0.561 0.507 0.159 0.288 0.378 0.448 0.507
EMKGEL w/o local 0.866 0.759 0.658 0.574 0.507 0.173 0.303 0.394 0.459 0.507
EMKGEL w/o global 0.828 0.754 0.677 0.594 0.518 0.165 0.301 0.406 0.475 0.518
EMKGEL w RotatE 0.885 0.768 0.661 0.583 0.523 0.177 0.307 0.397 0.467 0.523
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5.2.3. Parameter Analysis

The λ is the trade-off parameter that balances the KG embedding (e.g., ∥h + r − t∥)
and global triplet embedding (e.g., ∥x − z∥). To investigate the impact of λ, we set it
from 0.001 to 1000. We conducted experiments on all four datasets and the evaluation on
Recall@K. Based on the findings depicted in Figure 3a, we observe that (1) PharmKG-8k,
DiaKG, and Nell-995 demonstrate their best performance when the value of λ is set to
10; (2) DiseaseKG achieves its optimal result when λ is set to 0.1; (3) at the outset, as λ
increases, the model’s performance shows improvement. However, once it reaches the
optimal value, a decline in performance is observed. This suggests that while enhancing
the impact of global embedding initially boosts performance, there is a point of diminishing
returns. Pushing the value of λ beyond this point does not yield the best performance for
the model.

(a) The impact of the parameter λ (b) The impact of the parameter γ

Figure 3. Impact of hyper-parameters on the four datasets.

The γ is the margin parameter. As shown in Figure 3b, the optimal result is γ = 0.5,
and the trends of the four datasets are essentially identical.

5.3. Case Study

To investigate how the hyper-score enhances error detection, we conducted a case
study on the anchor triplet (Diabetes ketoacidosis, Symptom, Polydipsia) of DiseaseKG. As
shown in Figure 4, we present the hyper-scores of neighbors. In our assumption, the hyper-
view GAT will enhance the triplets with high hyper-scores and reduce the impact of triplets
with low hyper-scores. Finally, we assume that the confidence score will significantly
differentiate between true triples and noisy triples.

Figure 4. Case study on DiseaseKG. The center triplet of subgraph is (Diabetes ketoacidosis, Symptom,
Polydipsia). The other triplets are neighbors of the anchor triplets, which share the same head entity
or tail entity, as defined in Definition 2. Detailed triplets are provided on the right side.

To confirm the results, we set the number of share(h, r)/share(r, t) of X1 to X5, and the
confidence score of each triplet, respectively.

As shown in Table 6, we observe that our proposed method outperforms CAGED.
In detail, CAGED cannot lower the confidence score on three noisy triplets, while ours
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does so and to a better degree. Furthermore, X2, X5, and X3 possess more intrinsic label
information, as indicated by their hyper-scores of {0.8993, 0.9103, 0.5371}, due to a high
number of share(h, r) and share(r, t). Hyper-view GAT enhances the representation of
X2, X5, and X3. Conversely, X1 and X4 contain less intrinsic information as they have
a low number of share(h, r) and share(r, t). Consequently, hyper-view GAT diminishes
the influence of X1 and X4. However, the confidence score of noisy triplet X3 (Diabetes
ketoacidosis, Medication, Shagliptin tablets) in both methods is ambiguous. In real-world
scenarios, it is not enough to prescribe medication based solely on simple triplet information;
it is also necessary to consider the actual situation. Therefore, this is a common issue with
existing methods based on knowledge graphs.

Table 6. The information of neighbors of the anchor triplet. The red color denotes bad case.

Triplet Number of Share(h, r) Number of Share(r, t)
Confidence Score

Grounded Our CAGED

X 66 9 True 0.8703 0.8549
X2 66 9 True 0.8301 0.7924
X5 66 11 True 0.9201 0.8773
X3 66 10 Noisy 0.6521 0.4891
X1 5 2 Noisy 0.2431 0.6312
X4 4 1 Noisy 0.1003 0.5455

To show a straightforward validation of our method, we present a visualization in
Figure 5. The y-axis represents the confidence scores assigned to the triplets. True triplets
are denoted by green nodes, while false triplets are represented by red nodes. In comparison
to CAGED in Figure 5b, our model in Figure 5a assigns lower confidence scores to noisy
triplets, approaching zero. This visualization serves as evidence of the effectiveness of our
model in real-world scenarios.

(a) Our method confidence score results (b) CAGED confidence score results

Figure 5. Scatter of confidence score on DiseaseKG.The red nodes denote noisy triplets and green
nodes denote true triplets.

6. Conclusions

In this paper, we propose a novel framework named Enhancing error detection on
Medical knowledge graphs via intrinsic labEL (EMKGEL). Firstly, we construct a hyper-
view KG and a triplet-level KG. The former aims to capture intrinsic label information,
and the latter focuses on neighboring information. Secondly, we introduce the hyper-view
GAT to incorporate the entity label information into the triplet. Then, we integrate KG
embedding and global triplet embedding in the training stage. In the end, we estimate each
triplet by their confidence score. The evaluation on three medical KGs and one general KG
demonstrates the effectiveness of EMKGEL. We believe that our method can be an effective
tool for error detection during KG construction.
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However, there remain some challenges that future work needs to address:

• Existing error detection methods [19,21–23] only take into account the entities and
relations already present in the knowledge graph, while error triplets could originate
from outside the dataset [43]. To address the limitation, combining textual informa-
tion from large language models with graph structure information is a promising
direction [44,45].

• The currently used max dataset size is approximately 500,000, and in the future, we
will consider conducting more experiments on large-scale graphs while maintaining
the effectiveness and reducing the training time.

• We will explore more meaningful downstream tasks, such as knowledge-based ques-
tion answering in the medical field.
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