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Abstract: Calcium phosphate-based synthetic bone is broadly used for the clinical treatment of bone
defects caused by trauma and bone tumors. Synthetic bone is easy to use; however, its effects depend
on the size and location of the bone defect. Many alternative treatment options are available, such
as joint arthroplasty, autologous bone grafting, and allogeneic bone grafting. Although various
biodegradable polymers are also being developed as synthetic bone material in scaffolds for regen-
erative medicine, the clinical application of commercial synthetic bone products with comparable
performance to that of calcium phosphate bioceramics have yet to be realized. This review discusses
the status quo of bone-regeneration therapy using artificial bone composed of calcium phosphate
bioceramics such as β-tricalcium phosphate (βTCP), carbonate apatite, and hydroxyapatite (HA),
in addition to the recent use of calcium phosphate bioceramics, biodegradable polymers, and their
composites. New research has introduced potential materials such as octacalcium phosphate (OCP),
biologically derived polymers, and synthetic biodegradable polymers. The performance of artificial
bone is intricately related to conditions such as the intrinsic material, degradability, composite mate-
rials, manufacturing method, structure, and signaling molecules such as growth factors and cells.
The development of new scaffold materials may offer more efficient bone regeneration.

Keywords: bone defect; bone regeneration; scaffold; calcium phosphate; biodegradable polymer

1. Introduction

The discovery of pluripotent cells such as induced pluripotent stem cells (iPS cells) has
led to extensive research in regenerative medicine [1,2]. However, organs do not comprise
of only one type of cell. For example, in the case of the heart, tissues such as myocardia,
blood vessels, cardiac membranes, nerves, valves, and tendinous cords exhibit complex
structures and functions that present many obstacles before heart regeneration can be
applied to clinical practice. Regenerative medicine cannot simply be realized by increasing
the number of cells in the target organ or tissue, but requires the proliferation of these cells
to form organs and tissues, for which scaffolding plays an important role [3].

When a bone defect occurs due to trauma or treatment of a bone tumor, there are vari-
ous treatment options that include joint arthroplasty, autologous bone grafting, allogeneic
bone grafting, synthetic bone grafting, and the induced membrane technique [4–15]. The
appropriate treatment strategy depends on the size and location of the bone defect and the
type of bone [16].
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Joint arthroplasty such as endoprosthetic replacement surgery is performed when the
bone defect is relatively large or occurs near the joint. Osteosarcoma is the most common
malignant bone tumor among adolescent patients and typically occurs near the joint [17],
and tumor endoprostheses are usually used to reconstruct the bone defect created by tumor
resection. Although joint arthroplasty can fill large defects, when artificial joint replacement
is performed on younger patients, there is a high risk for complications such as loosening or
implant failure due to its long-term postoperative course, potentially requiring an invasive
revision procedure [18].

Autologous bone grafting is a method of using one’s own bone to fill a defect. Since
the graft uses bone obtained from the same patient receiving the graft, the graft material
can be harvested relatively safely from a site with low donor-site morbidity, even if there is
a certain amount of bone defect that occurs at the donor site. The iliac crest and fibula are
often used as donor sites. There are no biocompatibility issues, as the graft uses bone from
the patient’s own body. However, there is a finite supply of bone that can be harvested
from the patient, and the donor site is damaged in order to harvest the bone for grafting,
which may cause problems such as bleeding, infection, and pain at the donor site [19–22].

Allogeneic bone grafting is a treatment method wherein the bones of a donor are heat-
treated, cryopreserved, and filled in the bone defect. The bones used are obtained from cadavers
and surplus bone tissues that are no longer needed in surgery such as artificial joint replacement.
Although there is an ample supply of bone in countries with well-developed bone bank services
for the preservation and utilization of cadaver bones [23–27], in countries like Japan where
human remains after cremation are buried, cultural and religious practices often prevent the
collection of donor bone from cadavers. Thus, the donation of allogeneic bone can be in short
supply at bone banks in these countries [28]. The resorptive and regenerative properties of
allogeneic bone is not as effective as that of autologous bone; however, it not only serves as
a scaffold, but also contains growth factors such as bone morphogenetic protein (BMP) that
remain after heat treatment and enable osteoinduction [29–31]. The commercialization of the
human demineralized bone matrix (DBM) has developed in recent years, and scaffolds that
retain the ability to induce bone using growth factors have become widely available [32–35].

Bone regeneration with synthetic bone is performed using synthetic bone made of
calcium phosphate bioceramics such as β-tricalcium phosphate (βTCP), carbonate apatite,
and hydroxyapatite. These synthetic bones form a porous body and act as a scaffold for
bone regeneration. Although the synthetic bone itself functions as a scaffold, it is incapable
of osteoinduction and is unsuitable for the treatment of large bone defects.

The induced membrane technique can be used to treat relatively large bone defects by
mixing synthetic bone with autologous bone [15,36]. However, because a membrane must
be induced for bone regeneration, a separate operation is required prior to the grafting
of synthetic and autologous bone. Since autologous bone is used, there is a limit to the
number of defects that can achieve regeneration.

As noted above, there are numerous treatment options for bone defects. Each treatment
option presents advantages and disadvantages, and there is still room for development
and research. In particular, treatment with synthetic bone is less invasive to patients,
and improvement in efficiency and expansion of indications for bone regeneration using
synthetic bone are strongly desired in bone-regeneration treatment. In this review, we
will introduce the current clinical use of artificial bones composed of calcium phosphate
bioceramics in addition to the recent research and development of artificial bones composed
of calcium phosphate bioceramics, biodegradable polymers, and their composites.

2. Clinical Application and New Basic Research on Synthetic Bone Composed of
Calcium Phosphate Bioceramics

Currently available synthetic bones used in clinical practice are mainly made of cal-
cium phosphate such as hydroxyapatite and βTCP. Granular and block-type synthetic
bones are porous [37] (Figure 1a). Osteoblasts and osteoclasts invade the pores and pro-
liferate, promote the resorption of the synthetic bone and subsequent osteogenesis, and
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allow a gradual replacement with the patient’s own bone. The bone defect caused by a
bone tumor is initially filled with synthetic bone, and the regeneration of autologous bone
can ultimately be expected. The treatment is mainly used for cancellous bone defects when
the cortical bone remains intact. Autologous bone may be used in combination for large
defects and bone defects near the articular surface.
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modified from a study by Yoshikawa et al. Reproduced with permission from The Royal Society, 
2009 [37]. (c) Photograph of synthetic bone made of a HA/collagen composite (left). The synthetic 
bone becomes soft when it contains water. Images are modified from a study by Sotome et al. [11]. 

Figure 2a is a plain radiography image of a patient with a large aneurysmal bone cyst 
(ABC) in the tibia. Since the bone defect is close to the articular surface, a layer of autolo-
gous iliac cortical bone graft is placed under the subchondral bone in the deep layer of the 
articular surface after curettage of the tumor, and block-shaped and granular βTCP syn-
thetic bones are filled underneath the autologous graft. The defect is fixated using a tita-
nium alloy plate and screws for reinforcement (Figure 2b,c). Five years after the operation, 
the autologous iliac bone graft demonstrates osseous integration with the subchondral 
bone, and the syn-thetic bone is replaced with the autologous bone; however, residual 
synthetic bone is still visible in the center (Figure 2d). 

The HA/collagen sponge composite is marketed as a synthetic bone for the treatment 
of bone defects. The composite combines both the osteoconductivity of HA and rapid deg-
radation of collagen to enable a quick replacement with autologous bone [11,38]. However, 
the initial mechanical strength of material is weak when used as a synthetic bone, and 

Figure 1. Synthetic bone made of hydroxyapatite (HA). (a) Photograph of synthetic bone made of
HA. There are block-shaped, cylindrical, and granular products, which are used according to the
size and shape of the bone defect. (b) Scanning electron microscopy (SEM) image of synthetic bone
made of HA. The synthetic bone forms a porous body with micrometer-sized pores. Images are
modified from a study by Yoshikawa et al. Reproduced with permission from The Royal Society,
2009 [37]. (c) Photograph of synthetic bone made of a HA/collagen composite (left). The synthetic
bone becomes soft when it contains water. Images are modified from a study by Sotome et al. [11].

Figure 2a is a plain radiography image of a patient with a large aneurysmal bone
cyst (ABC) in the tibia. Since the bone defect is close to the articular surface, a layer of
autologous iliac cortical bone graft is placed under the subchondral bone in the deep
layer of the articular surface after curettage of the tumor, and block-shaped and granular
βTCP synthetic bones are filled underneath the autologous graft. The defect is fixated
using a titanium alloy plate and screws for reinforcement (Figure 2b,c). Five years after
the operation, the autologous iliac bone graft demonstrates osseous integration with the
subchondral bone, and the syn-thetic bone is replaced with the autologous bone; however,
residual synthetic bone is still visible in the center (Figure 2d).

The HA/collagen sponge composite is marketed as a synthetic bone for the treatment
of bone defects. The composite combines both the osteoconductivity of HA and rapid
degradation of collagen to enable a quick replacement with autologous bone [11,38]. How-
ever, the initial mechanical strength of material is weak when used as a synthetic bone, and
inflammatory reactions including exudation, redness of surgical wounds, and swelling may
potentially occur in bones near the superficial layer such as finger bones [11]. Therefore, the
implantation site is limited, and careful monitoring is required for postoperative recovery.
When the scaffold is infiltrated with blood or tissue fluid in the body, the scaffold becomes
soft enough to fill the void tightly according to the shape of the bone defect (Figure 1a).
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Figure 2. A case with a tibial aneurysmal bone cyst (ABC). (a) Preoperative plain radiography im-
age. Radiotransparency is observed from the epiphysis to the epiphysis of the tibia. There is a patho-
logical fracture at the tumor site, and the fixation is performed with a cast. (b) Intraoperative pho-
tograph following tumor curettage. After curettage of the tumor, autologous iliac bone is grafted 
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of βTCP and reinforced with plates and screws. (c) Plain radiography immediately after surgery. It 
is observed that the bone defect where the tumor curettage was performed is filled with block-

Figure 2. A case with a tibial aneurysmal bone cyst (ABC). (a) Preoperative plain radiography image.
Radiotransparency is observed from the epiphysis to the epiphysis of the tibia. There is a pathological
fracture at the tumor site, and the fixation is performed with a cast. (b) Intraoperative photograph
following tumor curettage. After curettage of the tumor, autologous iliac bone is grafted just below
the articular surface, and most of the remaining space is filled with synthetic bone made of βTCP and
reinforced with plates and screws. (c) Plain radiography immediately after surgery. It is observed that
the bone defect where the tumor curettage was performed is filled with block-shaped and granular
synthetic bones. (d) Plain radiography at 5 years after surgery. The autologous iliac graft just below
the articular surface which shows bony union. The synthetic bone has been replaced with autologous
bone, but some of the large block-shaped synthetic bone remains. No tumor recurrence is observed.
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Figure 3 shows a patient with ABC of the humerus that recurred after two surgeries
(curettage, βTCP synthetic bone grafting). For the third surgery, synthetic bone made of
a HA/collagen composite was filled after curettage (Figure 3a–e). Five years after the
operation, no tumor recurrence was observed, and regeneration of the autologous bone
was observed; however, a growth disorder of the humerus occurred due to the effects
of surgery during childhood, and the affected humerus became shorter compared to the
unaffected side (Figure 3g,h). Although synthetic bone made of a HA/collagen composite
provides good intraoperative handling, its high radiolucency is a disadvantage that makes
postoperative radiologic confirmation difficult with plain radiography.
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Figure 3. A case of ABC of the humerus. (a) A diagnosis of a simple bone cyst was made by a previous
doctor, and decompression was performed with a cannulated screw made of hydroxyapatite, but the
tumor did not shrink and a radiotransparency was observed. (b) The tumor was curattaged at our
hospital and filled with granular βTCP synthetic bone. (c) Plain radiography at 1 year after synthetic
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bone filled with βTCP. The synthetic bone has been resorbed and the tumor has recurred. (d) CT
image at the time of tumor recurrence. Two recurrent tumors are found at the metaphysis and at
the diaphysis. (e) Plain radiography after reoperation at our hospital. After tumor curettage, the
synthetic bone made of collagen/HA composite was filled. The synthetic bone made of the collagen-
HA composite has high radiotransparency and is less visible compared to the βTCP synthetic bone.
(f) Plain radiography at 1 year after reoperation. The autologous bone is regenerating. (g) Plain
radiography at 5 years after reoperation. No recurrence is observed. (h) CT image at 5 years after
reoperation. A shadow of regenerated cancellous bone is observed at the site where there was a bone
defect due to the tumor. Deformity remains at the metaphyseal end of the humerus.

Carbonate apatite is an inorganic component of bone tissue. Unlike hydroxyapatite, it
is not sintered at high temperatures; thus, it has low crystallinity and is quickly absorbed
and replaced in the biological environment with bone tissue. In animal experiments, Fu-
jisawa et al. [39] and Mano et al. [40] showed that artificial bone composed of carbonate
apatite replaces autologous bone more efficiently than artificial bone composed of hy-
droxyapatite. There have been advancements in the clinical application of artificial bones
composed of carbonate apatite, especially in the dental field. As an example, artificial
bones made of granular carbonate apatite are currently used for periodontal regenerative
therapy [41,42].

In the treatment of bone defects with synthetic bones, the presence of residual cortical
bone is desirable. However, if the induced membrane technique is used, even a circumferen-
tial defect can be regenerated. The surgical procedure of the induced membrane technique
is carried out in two steps. In the first step, the bone defect is filled with bone cement that
acts as a spacer to close the wound. A periosteal-like tissue is subsequently formed around
the spacer. A second surgery is performed 1–2 months later, in which the spacer is removed,
and a mixture of autologous and granular synthetic bone are mixed and filled into the bone
defect in its place [15]. The treatment of large bone defects is made possible by forming an
induced membrane and mixing autologous and synthetic bone. Although we performed
extracorporeal irradiation to kill malignant tumor cells in the femur and re-implanted the
bone for cases with malignant femoral tumors [43], the irradiated bone showed a poor bony
union rate, and bony union was sometimes not achieved. Following bone reconstruction
with the extracorporeal irradiation and the re-implantation technique for patients who
exhibited nonunion or intramedullary nail failure, the femur was regenerated using the
induced membrane technique. The spacer was removed during the second operation, filled
with synthetic and iliac bone graft, and new bone was regenerated in the femoral bone
defect and fixated with an intramedullary nail and an osteosynthesis plate. In addition,
good bone formation was achieved with the induced membrane technique even in cases
with a large bone defect that occurred due to a benign bone tumor of the tibia and extensive
damage to the cortical bone that resulted from tumor curettage (Figure 4).

Synthetic bone made of calcium phosphate, which has already been used in clinical
applications, is a convenient and powerful scaffold for bone-regeneration therapy. However,
there is still room for improvement, as there are limitations in terms of the site and size
of bone defects that are suitable for treatment, a potential need for the combined use of
autologous bone grafts, a possible need for multiple surgeries, and a delay in weight-
bearing ambulation for cases of the lower extremities.

In recent years, considerable attention has been focused on octacalcium phosphate
(OCP) as a new calcium phosphate material for artificial bone. OCP is believed to be a
precursor of hydroxyapatite in bone tissue and is a substance observed during the growth
stage of hydroxyapatite crystals [44]. OCP encourages bone formation by promoting
the differentiation of osteoblasts while also inducing the formation of osteoclasts, which
allows the material to be rapidly absorbed. OCP provides better osteoconductivity than
conventional artificial bone made of calcium phosphate [45]. However, OCP alone has
poor shaping and handling properties; therefore, a body of research has weighed in on the
development of composites with other materials.
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Figure 4. A case with chondromyxoid fibroma. (a) Preoperative plain radiography. A bone defect has
occurred at the tumor site proximal to the lateral tibia. (b) Preoperative CT image. Due to the tumor,
bone defects including the outer cortical bone are observed. (c) Preoperative 3D CT image. Bone
defects at the tumor site are observed as depressions. (d) Simple X-ray image immediately after the
1st stage operation with induced membrane technique. The bone defect is filled with bone cement.
(e) CT image immediately after the 1st stage operation. (f) Six weeks after the first surgery, the second
surgery is performed. Plain radiography after second surgery. Bone cement is removed and filled
with a mixture of granular βTCP synthetic bone and autologous iliac cancellous bone. (g) Plain
radiography at 3 years after surgery. Resorption of synthetic bone is progressing, and autologous
bone is being regenerated. (h) CT image at 3 years after surgery. Autologous bone, including the
cortical bone, is regenerating. Some synthetic bone remains inside.

3. Research and Development of Biodegradable Polymers

In regenerative medicine, biodegradable polymers are used as scaffolds that are grad-
ually replaced with the patient’s own tissues, in addition to their roles as carriers of growth
factors and cells. Langer and Vacanti succeeded in seeding bovine articular chondrocytes
onto a scaffold composed of polyglycolic acid-polylactic acid in the shape of a human
auricle and transplanting it subcutaneously into the dorsum of an immunocompromised
mouse [46,47]. The scaffold is envisaged to play a role in regenerative medicine that is as
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important as pluripotent cells that can be engrafted in tissues [48]. Factors that influence the
performance of a scaffold in regenerative medicine include its material (bio/tissue affinity,
chemical properties), composite, three-dimensional structure, added cells, and signaling
molecules. The following sections will describe each factor.

3.1. Material of the Polymer

Bio-derivative polymers exhibit exceptional biosafety and are being studied as poten-
tial biomaterials [49]. Collagen is abundantly present in the living body as a component of
bone and in soft tissues including bone, cartilage, ligaments, and tendons. In bone, more
than 90% of the matrix proteins are composed of collagen. When bone is formed, calcium
phosphate is deposited on osteoblast-produced collagen fibers to create a tough bone ma-
trix. [50]. Since collagen natively plays an important role as an extracellular matrix for hard
and fibrous tissues of the human body, extensive research has been conducted for its use as
a scaffold in regenerative medicine, including evaluative studies for the myocardium [51],
bladder [52], and ligament [53]. Bone-tissue regeneration is being studied clinically in
animal models. Carstens et al. [54] described the use of collagen as a scaffold to regenerate
non-weight-bearing bones, including the maxilla and mandible.

Gelatin is a triple-helix structure derived from denatured and decomposed polypep-
tide chains of collagen fibers. Although the most common applications of gelatin are
for culinary and cosmetic usage, the material is also used in the medical field such as
capsules for pharmaceuticals, as well as as a hemostatic agent [55] and an embolic sub-
stance for arterial embolization [56]. Gelatin is also being studied as a scaffold in regen-
erative medicine. Yokota et al. [57] created a scaffold from a gelatin sponge coated in
poly(D,L-lactic-co-glycolic acid) as a carrier for recombinant human bone morphogenetic
protein (rhBMP)-2 and implanted the scaffold in the dorsal subcutaneous tissue of a rat
to induce ectopic bone formation. Rohanizadeh et al. [58] reported the possible use of a
gelatin sponge, a commercially available hemostatic agent, as a scaffold. They cultured
human MG-63 osteoblast-like cells on a gelatin sponge and observed their cell number,
alkaline phosphatase (ALP) activity, and cell invasion into the pores of the sponge.

Although collagen is a gold standard for scaffolds made of animal-based polymers in
regenerative medicine, various other materials have been considered for use as a scaffold,
such as cellulose obtained from plant polysaccharides [59], chitosan derived from the
exoskeleton of crustaceans such as shrimp and crab [60,61], and hyaluronic acid [62,63],
which is also a component of articular cartilage and articular fluid.

Natural polymers are used in foods and cosmetics and are considered biomaterials
with high biocompatibility. In basic research, many reports describe the feasibility of
using natural polymers as a scaffold in bone regenerative medicine due to their high
biocompatibility and rapid degradability. However, there are concerns about risks such as
immune reactions due to disease transfer and xenogenicity [64,65]. Clinical applications of
natural polymers should warrant caution, as there have been reports of allergies due to
injections and foods, inflammation, and pulmonary complications [66–68].

A biodegradable synthetic polymer is capable of being hydrolyzed and absorbed
in vivo. The use of synthetic polymers as scaffolds for bone regeneration is being investi-
gated. We developed and evaluated the performance of a scaffold using polylactic acid-p-
dioxanone-polyethylene glycol block copolymer (PLA-DX-PEG), which is a biodegradable
polymer, as a carrier of rhBMP-2 [69] (Figure 5a). We succeeded in inducing the formation of
ectopic bone under the dorsal fascia of mice using this scaffold (Figure 5a–d). This scaffold
was also able to repair a critical-sized bone defect in the rabbit ulna [48] (Figure 5e). Other
common synthetic polymers that have been evaluated as materials for scaffolds include
poly-L-lactic acid (PLA), polycaprolactone (PCL), polylactic-co-glycolic acid (PLGA), and
poly (vinyl alcohol) (PVA).
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Figure 5. (a) Structural formula of polylactic acid-p-dioxanone-polyethylene glycol block copolymer
(PLA-DX-PEG). (b) Photograph of PLA-DX-PEG hydrogel. (c) Ectopic bone formed under the dorsal
fascia of mice by adding rhBMP-2 to the PLA-DX-PEG scaffold. (d) Dissolution curve of PLA-DX-
PEG polymer. The polymer was immersed in PBS at 37 ◦C and weighed. The weight was gradually
reduced over 10 days and completely dissolved within 20 days. Images are modified from a study by
Saito et al. [69]. (e) rhBMP-2 was added to the PLA-DX-PEG scaffold to treat a critical-sized bone
defect in the rabbit ulna. Approximately 3 months after the operation, the bone defect was repaired.
Images are modified from a study by Aoki et al. [48].

Although the PLA-DX-PEG we previously studied is a copolymer of PLA and PEG,
PLA itself is also being evaluated as a scaffold. PLA is a biodegradable polymer widely
used in food trays and agricultural films. Zhang et al. [70] created a collagen/PLA scaffold
in which collagen was combined with the layer of nanofiber of PLA. From the bone marrow-
derived mesenchymal stem cells (BMSCs) cultured onto this scaffold, a gene expression
of osteocalcin (OCN), which is a bone formation marker, was observed stronger than that
of the BMSCs cultured onto collagen scaffolds. They also filled the osteochondral defects
created in the femur of rabbits with the collagen/PLA scaffold, and an evaluation of the
scaffold using the Visual Histological Assessment Scale of the International Cartilage Repair
Society [71] demonstrated better regeneration of the subchondral bone than the group filled
with a scaffold made of collagen alone.

PCL is a thermoplastic with a low melting point and a polymer of ε-polycaprolactone [72]
with exceptional biocompatibility [73]. Wang et al. [74] added nanosilicates to PCL to prepare
scaffolds comprising nanofibers and cultured MC3T3-E1 cells, which are osteoblast cell lines.
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On this scaffold, the cell viability and ALP activity of MC3T3-E1 cells increased according to
the amount of nanosilicates.

Yang et al. [75] created and evaluated a scaffold consisting of nanofibers in which
nanosilicates were combined with PLGA. They cultured osteoblast-like cells (SaOS-2 cells)
on this scaffold and assessed their differentiation into bone using Alizarin Red S staining
and ALP activity. As a result, it was shown that nanosilicate/PLGA scaffold promoted the
better differentiation of SaOS-2 cells into bone compared to a scaffold made of PLGA alone.

PVA is highly hydrophilic and easily dissolves in vivo [76]. Kim et al. conducted an
experiment in which MG-63 osteoblast-like cells were cultured on implants formed using
3D printing using a composite of gelatin and PVA [77]. They showed that ALP activity
and calcium deposition with MG-63 cells on gelatin/PVA scaffolds were highest when the
weight ratio of gelatin to PVA was 1:1.

Biodegradable polymers in bone tissue scaffolds should ideally be completely replaced
by autologous bone by being dissolved and absorbed in vivo. Rohanizadeh et al. pro-
posed a gelatin sponge scaffold with a PLGA coating that reduced its degradation rate
and proliferation of MG-63 osteoblast-like cells on the implant; however, the decreased
degradation rate was not due to the material alone. Changes in the shape of the implant
surface and the ease with which MG-63 osteoblast-like cells adhered to the PLGA coated
on the surface were also suggested to affect degradation [58]. Hsieh et al. [78] created
a scaffold that combined PVA with curdlan, which is also used as a food additive, and
evaluated its degradability with the degrading enzymes lipase and lysozyme. The results
showed that the degradation rate of the PVA scaffold did not have a dose-dependent effect
on the amount of curdlan added, and the results differed depending on the type of enzyme.
The balance between the rate of degradation and bone formation is important in scaffolds.
The optimal rate of degradation for each material needs to be demonstrated with in vivo
testing under varying conditions.

A summary of the literature discussed in this section is shown in Table 1.

Table 1. Representative biodegradable polymers.

Author, Year Natural or Synthetic Polymer Characteristics

Castens et al., 2005 [54] Natural Collagen Used to repair porcine mandibular bone defect
Yokota et al., 2001 [57] Natural Gelatin Coated in poly(D,L-lactic-co-glycolic acid)

Rohanizadeh et al., 2008 [58] Natural Gelatin Used to culture human osteoblast-like cells
Chakraborty et al., 2001 [59] Natural Cellulose Non-woven nanofibrous scaffolds made by electrospinnig

Sharifi et al., 2018 [60] Natural Chitosan Composite with PCL
Liu et al., 2018 [61] Natural Chitosan Composite with HA
Yan et al., 2018 [62] Natural Hyaluronic acid Used as carrier for BMP-2 to form ectopic bone in rat

Paidikondala et al., 2019 [63] Natural Hyaluronic acid Composite with hydrazone
Saito et al., 2001 [69] Synthetic PLA-DX-PEG Used to form ectopic bone in dorsum of mouse
Aoki et al., 2020 [48] Synthetic PLA-DX-PEG Used to repair ulnar segmental bone defect of rabbit

Zhang et al., 2013 [70] Synthetic PLA Composite with collagen
Wang et al., 2018 [74] Synthetic PCL Composite with nanosilicate
Yang et al., 2018 [75] Synthetic PLGA Composite with nanosilicate
Kim et al., 2018 [77] Synthetic PVA 3D-printed scaffold

Hsieh et al., 2018 [78] Synthetic PVA Used to evaluate biodegradation of 3D scaffolds

PCL: polycaprolactone, HA: hydroxyapatite, BMP: bone morphogenetic protein, PLA-DX-PEG: poly lactic acid-
p-dioxanone-polyethylene glycol block copolymer, PLA: poly-L-lactic acid, PLGA: polylactic-co-glycolic acid,
PVA: poly (vinyl alcohol).

3.2. Biodegradable Polymer and Calcium Phosphate Bioceramics Composites

To take advantage of both the bioabsorbability of biodegradable polymers and the
osteoconductivity of calcium phosphate bioceramics, composites of these materials have
been created and experimentally evaluated.

Venugopal et al. [79] created a composite of Type I collagen and HA, on which human
fetal osteoblast cells were cultured. In Alizarin Red S staining for assessing calcification [80],
cultures on this HA–collagen composite scaffold showed more vivid staining compared to
the HA-free collagen fiber scaffold [79]. Yeo et al. [81] created a three-dimensional porous
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composite of βTCP and polycaprolactone (PCL), which was filled with collagen nanofibers
to form scaffolds. The MTT (3- (4,5-dimethylthiazol-2-yl) -2, 5-diphenyl tetrazolium bro-
mide) assay [82], used to assess the cell proliferation of the human MG-63 osteoblast-like
cell, demonstrated a higher cell proliferation in this scaffold compared to the βTCP/PCL
composite scaffold without collagen nanofibers. Kane et al. [83] evaluated the effects of HA
concentration, HA shape (powder-like or fibrous), and scaffold porosity in HA/collagen
scaffolds. They reported that the compressive modulus of the scaffold increased as the
vol% of HA increased for scaffolds with 85% porosity. Regarding the shape of the HA
particle, when the HA content was 20 to 60 vol%, the compressive modulus was higher
in the fibrous HA particle, but at 80 vol%, the compressive modulus was higher in the
powder-like HA particle. When the porosity of the scaffold was set to 90%, the compressive
modulus of both powder-like and fibrous HA particles decreased significantly.

Enayati et al. [84] developed a PVA/HA scaffold that combines PVA with nanoparticles
of HA. They cultured MG63 cells on a PVA/HA scaffold and evaluated their effect on
bone formation using Alizarin Red S staining and ALP activity. As a result, the PVA/HA
scaffold promoted better differentiation of MG63 cells into osteoblasts than the scaffold
with scaffold with alone. Although PVA is a substance with exceptional biocompatibility,
PVA itself is bio-inert [85], and it is speculated that the additional effect of HA nanoparticles
promoted differentiation into osteoblasts.

Hamai et al. created a composite of gelatin and OCP to produce gelatin/OCP gran-
ules, which were subsequently hardened with gelatin on a disc to create an implant. We
conducted an experiment to repair critical-sized calvarial defects in rats using an implant of
the same morphology with OCP granules solidified without gelatin and that with gelatin
as a control [86]. As a result, implants made from gelatin/OCP granules showed more
active new bone formation in the rat calvarial defects, higher orientation of apatite, and
higher quality bone regeneration. They suggested that gelatin/OCP promotes hydrolysis
and is involved in the improvement of osteogenic properties.

Ruckh et al. created a HA/PCL scaffold and evaluated bone formation markers in
rat marrow stromal cells [87]. They created scaffolds containing 1wt% and 10wt% of HA,
respectively, and compared their osteogenic properties with a PCL scaffold that did not
contain HA. The ALP activity increased dose-dependently with HA content, but the gene
expression of Type I collagen and osteopontin (OPN) decreased as HA content increased.
Changes in the HA content of composites affected the response of bone formation markers;
however, it is necessary to evaluate each type of scaffold to determine what effect it
has on actual bone formation. Various other composites have been developed in recent
years, including collagen/β-TCP [88], collagen/OCP [89], PLA/HA [90], PLA/β-TCP [91],
PLA/OCP [92], and PLA/PCL/HA [93].

Combining biodegradable polymers with calcium phosphate bioceramics enables
the creation of scaffolds that take advantage of the strengths of each material. Many
combinations of scaffolds have been studied, and the results showed promising bone
regeneration that was superior to that of single-material scaffolds. For polymer composites,
the type of material, compositing method, and three-dimensional structure are factors
related to bone regeneration. However, there are numerous combinations, and the ideal
makeup and conditions of composites for bone formation remain unclear.

A summary of the literature discussed in this section is shown in Table 2.

Table 2. Composite of biodegradable polymer and calcium phosphate bioceramics.

Author, Year Biodegradable
Polymer

Calcium
Phosphate Characteristics

Venugopal et al., 2008 [79] Collagen HA Used to evaluate calcification caused by human fetal osteoblast cells
Yeo et al., 2011 [81] PCL, collagen βTCP Used to culture human osteoblast-like cells

Kane et al., 2015 [83] Collagen HA Used to evaluate the compressive modulus of the scaffold
Enayati et al., 2018 [84] PVA HA Used to culture human osteoblast-like cells
Hamai et al., 2022 [86] Gelatin OCP Used to repair critical-sized calvarial defect of rat
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Table 2. Cont.

Author, Year Biodegradable
Polymer

Calcium
Phosphate Characteristics

Ruckh et al., 2012 [87] PCL HA Used to evaluate osteogenic potential according to HA content
Mohseni et al., 2018 [88] Collagen βTCP Used to repair ulnar segmental bone defect of rabbit
Suzuki et al., 2020 [89] Collagen OCP Used to compare HA and βTCP

Li et al., 2023 [90] PLA HA Used to evaluate osteogenic potential of rat BMSCs
Zarei et al., 2024 [92] PLA OCP Composite with Ti6Al4V to evaluate compressive strength

Hassanajili et al., 2019 [93] PLA, PCL HA Used to evaluate porosity and compressive modulus with blending
ratio of each material

HA: hydroxyapatite, PCL: polycaprolactone, TCP: tricalcium phosphate, PVA: poly (vinyl alcohol), OCP: octacal-
cium phosphate, PLA: poly-L-lactic acid.

3.3. Three-Dimensional Structure of Synthetic Bonessc

For bone-regeneration scaffolds, not only the material but also the three-dimensional
structure is an important factor, and various forms of scaffolds are being investigated.

Like the PLA-DX-PEG scaffold we used, there are other hydrogel scaffolds. We were
able to combine rhBMP-2 with a PLA-DX-PEG scaffold to form ectopic bone on the dorsum
of mice and regenerate bone in critical-sized bone defects of rabbit ulna [48]. Other scaffolds
reported in the literature include gelatin hydrogel [94] and gelatin and chitosan composite
hydrogel [95].

A sponge-like scaffold can be made by freeze-drying the hydrogel material (Figure 6a).
Takeda et al. [96] created a sponge-like implant from a collagen/rhBMP-2 composite and
reconstructed rat collagenellae (ossicles). Takahashi et al. [97] cultivated rat mesenchymal
stem cells (MSCs) on a gelatin/β-TCP composite sponge and demonstrated using scanning
electron microscopy (SEM) that MSCs invaded and adhered to the pores of the sponge
(Figure 6b). By making the scaffold a porous body, cells are more likely to enter, and
a superior tissue regeneration is observed compared to those in the form of a dense,
compacted body.

Fiber-shaped implants can also serve as good scaffolds by controlling their three-
dimensional structures [98]. Electrospinning is a method of fiber production that charges
and ejects a polymer solution through a nozzle under a high-voltage electric field to produce
nano-sized fibers [99]. Lee et al. [100] created a collagen fiber and PCL composite with
a diameter of approximately 350 nm. By hardening collagen nanofiber with exceptional
cell adhesion and proliferation using PCL, it was possible to increase the mechanical
strength of the scaffold. They cultured MG63 cells on this scaffold and demonstrated
better cell proliferation using MTT assay compared to a scaffold made of PCL alone. Both
the collagen/PLA composite scaffold described by Zhang et al. [70] and the PVA/HA
composite scaffold described by Enayati et al. [84] are fibrous scaffolds produced through
electrospinning (Figure 6c).

By creating a scaffold using 3D printing, it has become possible to control its fine
structure. The PLGA/HA/chitosan scaffolds described by Deng et al. [101] were made
using 3D printing, and their pore size was approximately 430 µm. Zhang et al. [102] made
a PTG implant in which graphene oxide (GO) was combined with PLGA and βTCP using
3D-printing technology. This scaffold was a lattice-structure implant with a pore size of
400 ± 50 µm (Figure 6d,e). MSCs of rats were cultured onto this scaffold, and increased gene
expression of bone-formation markers ALP, OCN, and osteopontin (OPN) were observed.
They also used this scaffold to repair critical-sized cranial defects in rats [102].

A summary of the literature discussed in this section is shown in Table 3.

Table 3. Three-dimensional structure of scaffolds.

Author, Year Materials Structure

Saito et al., 2001 [69] PLA-DX-PEG Hydrogel
Aoki et al., 2020 [48] PLA-DX-PEG Hydrogel

Hokugo et al., 2005 [94] Gelatin Hydrogel
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Table 3. Cont.

Author, Year Materials Structure

Re et al., 2019 [95] Chitosan Hydrogel
Takeda et al., 2005 [96] Collagen Sponge made by freeze-drying

Takahashi et al., 2005 [97] Gelatin/βTCP Sponge made by freeze-drying

Lee et al., 2011 [100] Collagen Collagen nanofiber made by electrospinning,
hardened with PCL

Enayati et al., 2018 [84] PVA/HA Fiber made by electrospinning
Deng et al., 2019 [101] PLGA/HA/chitosan 3D printing
Zhang et al., 2019 [102] PLGA/βTCP/GO 3D printing

PLA-DX-PEG: poly lactic acid-p-dioxanone-polyethylene glycol block copolymer, TCP: tricalcium phosphate,
PCL: polycaprolactone, PVA: poly (vinyl alcohol), HA: hydroxyapatite, PLGA: polylactic-co-glycolic acid,
GO: graphene oxide.
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Figure 6. Three-dimensional structure of biodegradable polymer. (a) Scanning electron microscopy
(SEM) image of a scaffold prepared through freeze-drying Type I collagen; (b) SEM image of a
gelatin/β-TCP composite scaffold. Image is modified from a study by Takahashi et al. Reproduced
with permission from Elsevier, 2005 [97]; (c) SEM image of a PVA/HA composite scaffold created
using the electrospinning method. Image is modified from a study by Enayati et al. Reproduced
with permission from John Wiley and Sons, 2018 [85]; (d) photograph of a PLGA/βTCP/GO (PTG)
composite scaffold created using 3D printing; (e) SEM image of a PTG composite scaffold. Images are
modified from a study by Zhang et al. [102].

3.4. Cells and Signaling Molecules

Calcium phosphate bioceramic scaffolds (TCP, HA) are osteoconductive and are cur-
rently used clinically in the treatment of bone defects. Relatively small bone defects can be
repaired by simply filling voids with this scaffold. However, there is a limit to the size of
bone defects that can be treated with this scaffold alone.

Unlike calcium phosphate-based scaffolds that are osteoconductive, biodegradable
polymers are not osteoconductive. Therefore, it is necessary to improve the efficiency of
bone regeneration by adding signaling molecules and cells to these scaffolds in order to
increase their osteoconductivity.
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Among the signaling molecules that promote bone formation, BMP-2 is the most
commonly used. BMP-2 induces bone formation and has been put to practical use in the
treatment of fractures and bone defects. In order for BMP-2 to act efficiently in fractures and
bone defects, it is important for scaffolds to act as a carrier and drug delivery system (DDS)
for BMP-2. In the in vitro test of the PLGA/HA/chitosan scaffold reported by Deng et al.
described in the previous section, when BMP-2 is added to PLGA/HA/chitosan scaffold
and immersed in a culture medium, the scaffold takes more than 2 weeks to disintegrate
and to gradually release the BMP-2 over a month period or more. In an in vivo study,
Deng et al. [101] reported that this scaffold successfully repaired a bone defect created in a
rabbit mandible.

Other signaling molecules such as BMP-6 and BMP-7, which are part of the BMP family,
and vascular endothelial growth factor (VEGF), which is an angiogenesis factor/tissue
growth factor, are expected to be used in clinical applications [103,104].

In the body, when scaffolds are placed on the affected area, bone-forming cells from
surrounding tissues enter the scaffold and proliferate to form bone. However, to repair
a large bone defect, it can be expected that replacement with new bone will be acceler-
ated by engrafting cells in a scaffold in advance. The cells combined with scaffolds are
expected to produce the aforementioned signaling molecules and to differentiate into target
organs/tissues to be regenerated. In recent years, many studies have been conducted using
iPS cells. iPS cells can be produced by introducing several types of genes called Yamanaka
factors into somatic cells collected from the skin and demonstrate pluripotency that allows
them to differentiate into any cell. Since they can be differentiated into various cells, they
are expected to be applied clinically in regenerative medicine, treatment of intractable
diseases, and cancer treatment. In bone regeneration, iPS cells are also being investigated
as cells to be added to scaffolds.

The cells seeded on scaffolds for bone regeneration do not need to have pluripotency
like iPS cells, and it is sufficient if they differentiate into bone tissue. Therefore, considerable
research on BMSC, which is a progenitor cell of osteoblasts, has been conducted [105,106].
BMSC from a patient can be relatively easily obtained in abundance from the iliac bone
marrow of the patient with minimal invasiveness. BMSC can be differentiated into osteoblast
progenitor cells by culturing in a bone-forming medium containing β-glycerophosphate and
dexamethasone. Studies are being conducted to promote bone formation by culturing BMSC
on scaffolds and differentiating it into osteoblast progenitor cells. One research report has
recently described the addition of BMSC to a scaffold made of chitosan/HA and PCL/PLA
composites [107].

A therapeutic method of adding platelet-rich plasma (PRP) to scaffolds is also being
investigated. PRP can be easily obtained by centrifuging the patient’s peripheral blood.
PRP contains growth factors such as VEGF, insulin-like growth factor (IGF), platelet-derived
growth factor (PDGF), and transforming growth factor beta (TGF-β). These growth factors
are not expected to act as cells that differentiate into tissues but are rather expected to
be used as a DDS for patient-derived signaling molecules [61,108]. Cheng et al. [109]
treated critical-sized cranial bone defects in rats with a silk fibroin/PCL composite scaffold
augmented with PRP.

A summary of the literature discussed in this section is shown in Table 4.

Table 4. Cells and signaling molecules used in bone-regeneration therapy.

Author, Year Materials Structure

Deng et al., 2019 [101] PLGA/HA/chitosan BMP-2
Das et al., 2016 [103] PLAGA BMP-6, VEGF

Berner et al., 2012 [104] PCL BMP-7, PRP
Liu et al., 2013 [61] Chitosan/HA BMSC

Cheng et al., 2018 [109] Silk fibroin/PCL PRP
PLGA: polylactic-co-glycolic acid, HA: hydroxyapatite, BMP: bone morphogenetic protein, PLAGA: poly(lactic-
co-glycolic acid), VEGF: vascular endothelial growth factor, PCL: polycaprolactone, BMSC: bone marrow-derived
mesenchymal stem cell, PRP: platelet-rich plasma.
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4. Conclusions

The performance of biodegradable scaffold in bone regeneration is associated with its
material, three-dimensional structure, and added cells and signaling molecules; however,
there are innumerable combinations that can yield varying results (Figure 7). Synthetic
bone made of calcium phosphate bioceramics has already been used clinically in human
patients. Although synthetic bone made of calcium phosphate bioceramics is a convenient
therapeutic device, there are some disadvantages such as the time it takes to be replaced
with bone, the inability to perform early loading in weight-bearing bone, limitation to the
size of bone defects that can be treated, and the need to harvest autologous bone when the
defect is large.
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Various research endeavors on synthetic bones made of biodegradable polymers have
been conducted, but their performance is still inferior to that of calcium phosphate bio-
ceramic material, which has osteoconductivity. Synthetic bone made of a HA/collagen
composite—a composite of collagen, a biodegradable polymer, and HA, a calcium phos-
phate bioceramic—is one successful example. By clarifying the optimum combination
of material properties, structural characteristics, and cells and signaling molecules, the
development of an ideal scaffold with high bone-regeneration efficiency can be expected in
future studies.
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