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Abstract: Four to five muscle synergies account for children’s locomotion and appear to be consistent
across alterations in speed and slopes. Backpack carriage induces alterations in gait kinematics in
healthy children, raising questions regarding the clinical consequences related to orthopedic and neu-
rological diseases and ergonomics. However, to support clinical decisions and characterize backpack
carriage, muscle synergies can help with understanding the alterations induced in this condition
at the motor control level. In this study, we investigated how children adjust the recruitment of
motor patterns during locomotion, when greater muscular demands are required (backpack carriage).
Twenty healthy male children underwent an instrumental gait analysis and muscle synergies extrac-
tion during three walking conditions: self-selected, fast and load conditions. In the fast condition, a
reduction in the number of synergies (three to four) was needed for reconstructing the EMG signal
with the same accuracy as in the other conditions (three to five). Synergies were grouped in only
four clusters in the fast condition, while five clusters were needed for the self-selected condition.
The right number of clusters was not clearly identified in the load condition. Speed and backpack
carriage altered nearly every spatial–temporal parameter of gait, whereas kinematic alterations
reflected mainly hip and pelvis adaptations. Although the synergistic patterns were consistent across
conditions, indicating a similar motor pattern in different conditions, the fast condition required
fewer synergies for reconstructing the EMG signal with the same level of accuracy.

Keywords: muscle synergies; locomotion; backpack carriage; gait analysis; children

1. Introduction

In recent decades, a growing interest has developed in understanding how backpack
carriage could influence the locomotion of schoolchildren, as it could be considered to be
a day-to-day challenging motor condition. Locomotion is a fundamental motor task that
requires fine cyclic movements and the coordination of a vast number of variables due
to the redundant degrees of freedom (DOFs) within the musculoskeletal system [1]. The
central nervous system (CNS) simplifies motor control by sending motor commands that
activate groups of muscles, known as synergies, that co-activate together with coordinated
weighting coefficients [2,3].
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Previous studies have reported that four to five muscle synergies are required during
normal walking, and that they describe more than 90% of the variances in muscle activity
during locomotion in healthy people [4–6]. Similarly, four synergies have been found in
children’s locomotion, with slight differences in the muscular peak of activation that are
dependent on the subjects’ ages [7]. Different walking conditions have been analyzed
to assess the consistency of muscle synergies [5,8]. Specifically, temporal recruitment of
synergies is altered with perturbed walking and different speeds in line with changes in the
duration of gait cycle phases (i.e., stance and swing time percentage). Differently, spatial
synergies appear to be similar under different environmental conditions [9,10]. Therefore,
in accordance with the literature, it is possible to state that spatial synergies are robust
among multiple walking conditions, but they are recruited with different timings and by
different physiological structures [11]. These results reinforce the idea that the CNS relies
on muscle synergies to simplify the need for motor control, allowing few descending motor
pathways to achieve different motor actions [12].

Even in children, muscle synergies appear to be consistent regardless of the differences
in gait kinematics [13]: higher slopes and faster speed cause increased pelvic tilt and
increased hip and knee angles during early stance and late swing phases, and similar
synergies are activated. The authors stated that the consistency of muscle synergies across
walking conditions reveals that synergies are not simply a response to biomechanical
constraints but also have a neurological origin, potentially suggesting that the CNS could
preserve a synergistic pattern among biomechanical conditions [14].

An interesting analysis would be to evaluate if and how children adjust their recruit-
ment of motor patterns during locomotion when greater muscular demands are required,
as with backpackcarriage. Many studies have investigated the effects of backpack carriage
on spatial–temporal parameters and reported a reduction in cadence, walking speed and
swing phase, while stance and double support phase increased, mostly over 10% of body
weight [15–17]. One study reported no changes in spatial–temporal gait asymmetry [18],
whereas backpack walking did not influence spatial–temporal parameters [19]. However, a
2-D video analysis was used, and this may have simplified gait evaluation.

Variations in children’s gait kinematics at different speeds have been widely inves-
tigated [20,21], as well as the influence of backpack carriage on gait kinetics and ground
reaction forces [13]. The backpack carriage generally caused increased trunk and hip
flexion for counterbalancing the extra load on the back, limited pelvic rotation increased
pelvic tilt for supporting the weight from the spine to the lower limbs, and an increased
peak knee flexion during walking [22,23]. The forward inclination of the trunk shifts the
center of mass anteriorly, making it difficult to maintain balance. Moreover, a greater
anterior–posterior displacement of the center of pressure (CoP) during backpack carriage
has been reported [24]. Interestingly, postural sway during backpack carriage has been
poorly explored. Pau and colleagues [25] were interested in determining the impact of a
backpack on balance in healthy children and reported how heavy loads increased the sway
area and the CoP path length. These differences tended to decrease at older ages, probably
due to the maturation of balance.

In this work, we hypothesize that kinematic alterations, in line with diminished bal-
ance, could impact the coordination of body segments during locomotion [26]. However,
few studies have investigated the effects of backpack carriage on coordinated muscle activa-
tions during gait. In adults, it has been shown that the muscle activity of the quadriceps and
gastrocnemii increased in response to walking with load [27,28]. One study investigated
the influence of backpack carriage in children, focusing only on the trunk muscles, and
found that their activity increased with increasing load [29].

To date, few studies have investigated changes in lower limb muscle activity and in
muscle synergy patterns in children during backpack carriage. It has been shown that
backpack carriage modifies both biomechanics and spatiotemporal gait parameters. In
fact, backpack carriage is responsible for postural compensations in the trunk and lower
limbs [30] that could lead to orthopedic diseases, especially in children. Indeed, back-
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pack load has been demonstrated as being related to low back pain, which children and
adolescents suffer from and that can have consequences for chronic lower back pain in
adulthood [31,32]. Muscle synergy analysis provides an innovative way to describe how
muscles coordinate their activations during locomotion, and it is also a valuable tool for
assessing ergonomics [9]. Although muscles synergies during human walking have been
extensively examined, an insight into their activation profiles and a detailed characteriza-
tion of their functionality, along with changes in kinematic variables, has not been properly
investigated. In this way, our understanding of the physiological mechanisms of compensa-
tions and spatiotemporal changes can be deepened, and markers of the risks of developing
musculoskeletal disease can be identified. Therefore, the aim of this study was to use gait
analysis and muscle synergy extraction to evaluate how fast speed and backpack carriage,
common conditions of everyday life, may affect gait and muscle synergies in children.

2. Materials and Methods

This observational study was carried out at the Movement Analysis Laboratory of the
Humanitas Research Hospital (Rozzano, Milan, Italy), in cooperation with the Italian Coun-
cil of National Research (CNR, Milan, Italy). All participants signed a written informed
consent before the experiment, which was conducted in accordance with the Declaration of
Helsinki. The study was reviewed and approved by the Humanitas Ethical Committee.

2.1. Experimental Protocol

Twenty male child participants were enrolled in the Humanitas Research Hospital
between February and October 2022. Participants with no musculoskeletal diseases were
recruited, all aged between 8 and 12 years old. Children reporting pain, traumatic injuries,
musculoskeletal or nervous system diseases were excluded.

Participants underwent a single evaluation session, which consisted of a three-dimensional
gait analysis. Each recording session included three experimental conditions, preceded by
a short adaptation phase to familiarize them with the task to be executed.

In the first experimental condition, the subject had to walk barefoot on a 5 m walkway
at a normal, self-selected speed, (self-selected condition). In the second experimental
condition, children had to walk at a fast speed (fast condition). Lastly, children were
required to walk at a normal speed while carrying a backpack loaded with 12.5% of their
body weight (load condition), in accordance with guidelines to prevent overloading [33,34].
The protocol had a duration of about 1 h per subject, including the sensor dressing phase.

2.2. Kinematic Analysis

Kinematic data during walking were obtained through an 8-camera optoelectronic
system (Vicon 8 TVC system, Oxford, UK), synchronized with a 45 × 50 cm force platform
(AMTI 100 MHz, Advanced Medical Technologies, Watertown, MA, USA). Before the trials,
anthropometric measures were collected. Sixteen reflective markers were positioned on
the anterosuperior and posterior-superior iliac spine, 1/3 of the lower lateral surface of
the thigh, the lateral epicondyle of the femur,1/3 proximal of the tibia, lateral malleolus,
the head of the second metatarsal and calcaneus, all in accordance with the Helen Hayes
marker set and implemented in Vicon motion capture systems as the Plug-in-Gait model
(PiG). The assessments were always conducted by the same two physiotherapists with
experience in gait analysis. Raw marker data were low-pass filtered at 6 Hz, and force
platform data were filtered at 40 Hz using a fourth-order phase-corrected Butterworth filter.

Subsequently, the data were processed using Matlab 2022. The gait cycle was defined
as the period from heel contact to the subsequent heel contact on the ground. The heel-
strike event was identified via the force plate data, and the subsequent step cycles were
calculated using the Vicon autocorrelation pipeline before and confirmed by visual check
of the vertical position of the marker on the heel [35]. To compare different gait cycles, each
of them was resampled to a final length of 101 points. Spatial–temporal parameters, such
as cadence (steps/min), walking speed (m/s), stride time (s), foot off (% gait cycle) and
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stride length (m), were calculated. Moreover, kinematic parameters of the pelvis, knee, hip,
and ankle in the sagittal plane were extracted and expressed as a percentage of the gait
cycle. Kinematic variables were extracted from the gait cycle on the force plate and the
subsequent two gait cycles of each of the five trials in the three conditions, and then the
data were averaged for each subject.

2.3. EMG Analysis, Synergy Extraction and Synergy Clustering

Children were instrumented with 16 s-EMG electrodes (Cometa, Milan, Italy), 8 per
side, positioned according to the SENIAM guidelines [36] on the following muscles: Tibialias
Anterior (TA), Gastrocnemius Lateralis (GL), Gastrocnemius Medialis (GM), Rectus Femoris
(RF), Semitendinosus (ST), Biceps Femoris (BF), Adductor Magnus (ADD), Gluteus Maximus
(GI). EMG data were synchronized with the kinematic data and collected simultaneously.

For this study, EMG data from a selection of barefoot gait cycles were analyzed. EMG
data from both sides (right and left) were included for the recruited individuals. EMG data
were sampled at 1000 Hz, bandpass filtered between 20 and 450 Hz, rectified, and then
low-pass filtered at 10 Hz to achieve the envelope for each muscle. To facilitate comparisons
between participants, EMG data from each muscle were normalized to their peak value
and resampled at 101 samples per stride.

For each subject and experimental condition, the aligned, filtered and normalized
EMG envelopes were arranged to generate the pooled matrix data to be given as input
to the synergy extraction algorithm. Thus, for each subject, and for each of the three
experimental modalities (self-selected, fast, and load), all movements for each trial and
condition were grouped together to be used as input for synergy extraction. Five to seven
gait cycles were used for each subject in each experimental condition.

Each EMG pooled matrix had dimensionality [(nsamples) × ntasks] × [nmuscles], concate-
nating together data from the repetitions of strides for each experimental condition [29]. In
detail, this involved ntasks = 5–7 (number of strides), nmuscles = 8 and nsamples = 101. Then,
spatial synergies were extracted using the non-negative matrix factorization (NMF) algo-
rithm [30]. The NMF decomposed the EMG data matrix into the product of two matrices,
the first one representing time-invariant synergies (wi), and the second one representing
time-varying activation coefficients for each synergy (ci), as in Equation (1):

EMG(t) = ∑N
i=1 ci(t)wi (1)

where, for each of the recorded muscles, EMG(t) represents the EMG data at time t and N is
the total number of extracted spatial synergies (Figure 1) [37].
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where, for each of the recorded muscles, EMG(t) represents the EMG data at time t and N 
is the total number of extracted spatial synergies (Figure 1) [37]. 

 
Figure 1. A scheme of the EMG workflow: (a) EMG signals are filtered, rectified and normalized. All
the repetitions are concatenated; (b) the reconstruction R2 is computed and the number of synergies
achieving at least R2 = 0.90 is selected; (c) synergies are extracted. Rep indicates the number of the
strides considered for the analysis.
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Thus, for each decomposition, each spatial synergy was coupled with a set of n
coefficients (dimensionality n equal to the total number of time samples of all included
movements ntasks×nsamples), and each set had dimensionality N equal to the number of
extracted synergies.

The number of extracted synergies (order of the factorization), r, given as input to the
NMF algorithm, was chosen increasingly from 1 to 8 (the maximum number of muscles
in each leg). For each r, the NMF algorithm was applied 100 times to avoid local minima,
while the repetition accounting for the highest fraction of the total variation of the signal
explained by the synergy reconstruction was chosen as the factorization of order r.

The number of synergies, N, was then chosen as the minimum r explaining at least 90%
of the data variation, quantified by the reconstruction R2 defined as 1—SSE/SST, where
SSE is the sum of the squared residuals and SST is the sum of the squared differences with
the mean EMG vector [38].

The structure of synergies (i.e., the relative weights of muscles in each synergy of W)
was compared using a K-means cluster analysis. The NMF algorithm estimates synergies
that can describe variance in muscle activity for each individual, but we aimed at a robust
method to compare the structure of synergies across individuals. To determine common
synergies between individuals, we used a K-means cluster analysis, which identifies
clusters of synergies that are similar across individuals and returns the average weights of
common synergies. For a given number of synergies, K-means cluster analysis identifies
n clusters that minimize the sum over all clusters of the squared Euclidean distance from
each individual’s synergies [39]. The outputs of the analysis were the cluster centroids,
representing the average weights of common synergies across individuals. We used the
K-means cluster analysis to identify the average synergies for the individuals in each of
the experimental conditions (self-selected, fast and load). Since there is not an unequivocal
criterion for the choice of the optimal number of clusters, the clustering procedure was
repeated, setting the number of clusters from 1 to 6 clusters in order to compute the
precision curve in function of the number of clusters. We quantified the most suitable
number of mean clusters to extract for each condition by selecting a predefined threshold
for the increase in similarity of the synergies belonging to the same cluster (intra-cluster
similarity) when increasing clustering order. When the appropriate number of clusters
was reached, we expected that the maximum uniformity of the elements in the clusters
was almost reached; increasing the clustering order would minimally affect clustering
precision, indicating that no more clusters were needed. This process allowed us to select
the correct number of clusters to appropriately describe the number of mean synergies
available for each of the experimental conditions (self-selected, fast, load) and characterize
the dimensionality of the control. The number of clusters was chosen as the highest number
that gives an increase in the mean intra-cluster similarity (computed as the similarity of the
synergies belonging to the same cluster) > 0.025.

2.4. Outcome Measures and Statistics

Statistical analysis was performed using IBM SPSS Statistics version 28.0.1. The level
of significance was set at α = 0.05. Spatial–temporal and kinematic measurements were
checked for normality using the Shapiro–Wilk test. Subsequently, data were analyzed
using a one-way analysis of variance (ANOVA) for repeated measures. In cases of sig-
nificant interactions, between-condition differences were detected using Bonferroni post
hoc analysis.

When comparing the number of extracted synergies between self-selected, fast and
load conditions, the data were not normally distributed. Thus, we employed a non-
parametric Kruskal–Wallis test. A post hoc test was used for multiple comparisons across
the different modes. The intra-cluster similarity of the spatial synergies (a measure of
synergy consistency across participants) was computed as the scalar product between
all the pairs of synergies in the cluster, while the intra-cluster similarity of the temporal
coefficients was computed as the correlation coefficient between all the pairs of temporal
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coefficients in the cluster. The intra-cluster similarity of the spatial synergies and of the
temporal recruitment in self-selected, fast and load modes were compared with the Kruskal–
Wallis test and a post-hoc test was used for multiple comparisons. For all the tests, the
significance level was α = 0.05. Finally, the clusters of each condition were matched
with the clusters of the other conditions, and inter-condition similarity was computed
between the matched clusters. As for the intra-cluster similarity, inter-condition similarity
was computed as the scalar product between matched mean spatial synergies and as the
correlation coefficient between the corresponding mean temporal coefficients.

3. Results

Twenty healthy young male children with no neurological or orthopedic pathologies
participated in the study (Table 1).

Table 1. Baseline characteristics of the study participants (n = 20). Data are shown as mean and
standard deviation (SD).

Healthy Children

Age (y) 8.7 ± 1.1
Weight (kg) 29.6 ± 7.2
Height (cm) 133.3 ± 9.5

Backpack Load (kg) 3.5 ± 0.7

3.1. Spatial–Temporal and Kinematic Parameters

Most of the spatial–temporal parameters showed significant differences when compar-
ing the three conditions (Table 2). As expected, walking speed and cadence were greater
in the fast condition when compared to the self-selected and load ones, whereas stride
time was significantly reduced (Self-Selected vs. Fast: MD: 0.23, p < 0.001, CI95: 0.16, 0.30;
Load vs. Fast: MD: 0.17, p < 0.001, CI95: 0.08, 0.25). Moreover, a post hoc analysis revealed
greater stride length in the fast condition both when compared to the self-selected (MD:
0.16, p < 0.001, CI95: 0.09, 0.23) and load (MD: 0.14, p < 0.001, CI95: 0.09, 0.19) conditions.

Table 2. Results of spatial–temporal parameters of gait for self-selected, fast and load walking
conditions. Data are shown as mean and standard deviation.

Self-Selected Fast Load p-Value

Cadence (steps/min) 119.3 ± 10.7 154.3 ± 16.3 ** 127.7 ± 13.1 *# <0.001
Walking speed (m/s) 1.1 ± 0.1 1.6 ± 0.2 ** 1.2 ± 0.2 *# 0.004

Stride time (s) 1.0 ± 0.1 0.8 ± 0.1 ** 1.0 ± 0.1 # <0.001
Foot off (%) 58.7 ± 1.6 57.5 ± 2.3 58.1 ± 1.5 0.333

Stride Length (m) 1.1 ± 0.1 1.3 ± 0.1 ** 1.1 ± 0.1 # <0.001

* p < 0.05 when compared to self-selected; ** p < 0.001 when compared to self-selected; # p < 0.001 when compared
to fast.

Increasing the load and fast speed mainly caused variations at the proximal joints,
whereas, at the level of the knee joint, variations appeared mostly while walking at faster
speed when compared to self-selected locomotion and backpack carriage (Figure 2).

All knee peak angles increased in favor of the fast condition: children required greater
knee flexion at initial contact when compared to the self-selected (MD: 9.53, p < 0.001,
CI95: 5.00, 14.05) and load (MD: 10.32, p < 0.001, CI95: 6.07, 14.56) conditions, as well as an
incremented knee extension (Fast vs. Self-Selected: MD: −3.51, p < 0.001, CI95: −5.49, −1.54;
Fast vs. Load: MD: −2.99, p < 0.001, CI95: −4.13, −1.84) at stance in the fast condition.
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Most of the differences were found at the level of hip and pelvis peak angles. Specif-
ically, children required a greater hip flexion angle at initial contact both while walking
at fast speed (Hip: MD: 11.01 p < 0.001 CI95: 6.30, 15.72) and while carrying a backpack
(Hip: MD: 5.15, p < 0.001, CI95: 2.86, 7.45). Moreover, the fast condition required greater hip
flexion during swing both when compared to self-selected (MD: 7.35, p < 0.001, CI95: 4.62,
10.09) and load (MD: 3.62, p: 0.017, CI95: 0.56, 6.69) conditions, as well as an incremented
hip angle at swing observed during backpack carriage (MD: 3.73, p < 0.001, CI95: 1.52, 5.94).
Overall, walking at fast speed required a significantly greater hip range of motion at stance
when compared to self-selected (MD: 12.59, p < 0.001, CI95: 7.72, 17.95) and load (MD:
9.06, p < 0.001, CI95: 4.39, 13.72) conditions, succeeded by greater values during backpack
carriage with respect to the self-selected condition (MD: 3.53, p: 0.025, CI95: 0.38, 6.68).

At the level of the pelvis, major differences were found regarding the maximum
pelvic tilt angle: children walked with less anterior pelvic tilt at self-selected speed when
compared to backpack carriage (MD: −4.95, p < 0.001, CI95: −7.81, −2.09) and fast walking
(MD: −5.54, p < 0.001, CI95: −7.78, −3.31).

No substantial variations were found at the level of the ankle, except for a greater peak
dorsiflexion angle in the fast condition when compared to self-selected (MD: 4.27, p: <0.001,
CI95: 1.88, 6.67) and load (MD: 5.88, p: <0.001, CI95: 2.36, 9.40) conditions.

3.2. Synergy Analysis
3.2.1. Number of Extracted Synergies

The reconstruction R2 curves for all the participants in each condition are portrayed in
Figure 3. The number of extracted synergies was chosen as the minimum number needed
to explain at least 90% of the data variation [40].

The number of extracted synergies ranged from three to five in the self-selected and
load conditions and from three to four in the fast condition. The mean number of extracted
synergies was significantly more reduced in the fast condition than in the load condition
(Table 3).

Table 3. Comparison of the number of synergies across conditions. The table reports the mean and
standard deviation across participants of the number of extracted synergies with R2 > 0.90. Standard
deviations are indicated in brackets. Statistical tests are reported, and significant p are shown in bold.
S = Self-Selected, F = Fast, L = Load.

Self-Selected
Mean

Fast
Mean

Load
Mean

S vs. F
p

S vs. L
p

F vs. L
p

Number of
synergies 3.81 (0.52) 3.62 (0.49) 3.95 (0.40) 0.23 0.42 0.01
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3.2.2. Synergy Clustering

After synergy extraction, for each of the experimental conditions, we quantified the
mean synergies via K-means clustering. In Figure 4, we showed the intra-cluster similarity
achieved in the self-selected, fast and load conditions when increasing the number of
clusters from one to six. The chosen number of clusters for the self-selected condition
was five, since the increase in intra-cluster similarity was 0.047 between four and five
clusters and 0.016 between five and six clusters, and therefore below the defined similarity
threshold (adding more clusters led to no substantial improvement in synergy grouping).
Four clusters were identified for the fast condition, as the increase in intra-cluster similarity
between four and five clusters was 0.010. For the load condition, the right number of
clusters was not clearly identified because the increase in intra-cluster similarity between
four and five clusters was 0.024, just slightly below the predefined threshold. Therefore, we
reported the results for both the four and five clusters.

Clusters found in the self-selected conditions represented the main features of human
walking (Figure 5). In the fast condition, four clusters were found and matched with the first
four synergies of the self-selected condition (Figure 6). In the load condition, solutions with
both four and five clusters were analyzed and matched with the other walking conditions
(Figure 7). Each cluster can be associated with a biomechanical functionality within the
gait cycle, depending on the muscles recruited and the timings of activation. W1 (spatial
synergy 1) was characterized by the strong activation of GL and GM, and it was activated in
the late stance. W2 recruits mainly the TA and the RF, and it was activated at the beginning
of the stance and during the swing phase, contributing to knee extension at swing (RF)
and to the correct foot positioning at heel strike (TA). W3 was characterized by a strong
activation of ADD during double support phases. W4 appears to represent the activation
of the hamstrings (ST and BF) with a small contribution of TA and GI at the beginning
and end of the gait cycle, whereas W5 recruits the RF, the GI and, to a lesser extent, the
hamstrings and the ADD at the beginning of the stance.
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Figure 5. Composition (synergy structure, left column) and temporal coefficients (right column)
for matched synergies for the identified clusters, in the self-selected condition. Synergies represent
the activation level of each muscle, while the temporal coefficients indicate the timings of each
synergy during the gait cycle. Bold black bars are the mean synergy of the cluster, while the gray
bars represent all the synergies belonging to the cluster. Bold black lines represent the mean temporal
coefficient of the cluster, while the gray lines represent all the temporal coefficients belonging to
the cluster.
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Figure 6. Composition (synergy structure, left column) and temporal coefficients (right column) for
matched synergies for the identified clusters in the fast condition. Synergies represent the activation
level of each muscle, while the temporal coefficients indicate the timings of each synergy during the
gait cycle. Bold black bars represent the mean synergy of the cluster, while the gray bars represent
all the synergies belonging to the cluster. Bold black lines are the mean temporal coefficient of the
cluster, while the gray lines represent all the temporal coefficients belonging to the cluster.
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Figure 7. Composition (synergy structure, left column) and temporal coefficients (right column) for
matched synergies for the identified clusters in the load condition in two cases: four clusters (upper
panel) and five clusters (lower panel). Synergies represent the activation level of each muscle, while
the temporal coefficients indicate the timings of each synergy during the gait cycle. Bold black bars
represent the mean synergy of the cluster, while the gray bars represent all the synergies belonging
to the cluster. Bold black lines are the mean temporal coefficient of the cluster, while the gray lines
represent all the temporal coefficients belonging to the cluster.
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3.2.3. Comparison between Conditions

Intra-cluster similarity is >0.76 for the spatial synergies, indicating strong synergy
consistency between participants (Table 4). Intra-cluster similarity was higher than the
random similarity obtained by randomly pairing synergies (0.41 for self-selected, 0.42 for
fast, 0.39 for load). W1 was the most consistent and recognizable synergy that was shared
across participants. Synergies and temporal coefficients were more consistent in the fast
condition than in the self-selected and load conditions in W2 and W4 (p < 0.001) and
less consistent in W1 (p < 0.001). W2 and W4 were more consistent in the self-selected
condition than in the load condition (p < 0.001). The inter-condition similarity indicated
that both spatial and temporal patterns were preserved in all the conditions. In particular,
W1 showed the greatest similarity across all the conditions. Spatial synergies were more
similar between the self-selected and fast conditions, while the temporal coefficients were
more similar between self-selected and load conditions.

Table 4. Mean intra-cluster similarity (upper panel) and inter-condition similarity (lower panel) are
reported for each cluster and for both spatial synergies and temporal coefficients, considering four
clusters for the load condition. The mean intra-cluster similarity is the mean similarity computed with
all the possible pairings of synergies (or temporal coefficients) belonging to that cluster. Standard
deviations are reported in brackets. The inter-condition similarity is computed as the similarity
between matched clusters of different conditions. S = Self-Selected, F = Fast, L = Load.

Mean Intra-Cluster Similarity
Spatial Synergies Temporal Coefficients

Self-Selected Fast Load Self-Selected Fast Load

W1 0.95 (0.04) 0.93 (0.04) 0.95 (0.04) 0.86 (0.14) 0.80 (0.22) 0.88 (0.12)
W2 0.84 (0.10) 0.88 (0.10) 0.76 (0.18) 0.54 (0.29) 0.59 (0.32) 0.41 (0.33)
W3 0.84 (0.12) 0.86 (0.10) 0.83 (0.15) 0.52 (0.33) 0.56 (0.28) 0.43 (0.36)
W4 0.88 (0.09) 0.89 (0.10) 0.81 (0.15) 0.72 (0.22) 0.74 (0.23) 0.59 (0.33)
W5 0.87 (0.09) - - 0.82 (0.13) - -

Inter-Condition Similarity
Spatial Synergies Temporal Coefficients

S vs. F S vs. L F vs. L S vs. F S vs. L F vs. L

W1 0.93 0.95 0.94 0.97 0.99 0.98
W2 0.86 0.80 0.82 0.78 0.98 0.70
W3 0.84 0.83 0.84 0.95 0.91 0.98
W4 0.87 0.84 0.85 0.95 0.99 0.97

Intra-cluster similarity increased for both spatial synergies (>0.80) and temporal coeffi-
cients (>0.44), as one cluster was added in the load condition (Table 5). However, synergies
and temporal coefficients were more consistent in the fast condition than in the load con-
dition in W2 and W4 (p < 0.001), and less consistent in W1 (p < 0.001). W4 and W5 were
more consistent in the self-selected condition than in the load condition (p < 0.001). The
inter-condition similarity indicated that both spatial and temporal patterns were preserved
in all the conditions, and inter-condition similarity increased with five clusters. W1 showed
the greatest similarity across all the conditions. Spatial synergies were more similar be-
tween self-selected and fast conditions, while the temporal coefficients were more similar
between self-selected and load conditions.
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Table 5. Mean intra-cluster similarity (upper panel) and inter-condition similarity (lower panel) are
reported for each cluster and for both spatial synergies and temporal coefficients, considering five
clusters for the load condition. The mean intra-cluster similarity is the mean similarity computed with
all the possible pairings of synergies (or temporal coefficients) belonging to that cluster. Standard
deviations are reported in brackets. The inter-condition similarity is computed as the similarity
between matched clusters of different conditions. S = Self-Selected, F = Fast, L = Load.

Mean Intra-Cluster Similarity
Spatial Synergies Temporal Coefficients

Self-Selected Fast Load Self-Selected Fast Load

W1 0.95 (0.04) 0.93 (0.04) 0.95 (0.04) 0.86 (0.14) 0.80 (0.22) 0.88 (0.12)
W2 0.84 (0.10) 0.88 (0.10) 0.84 (0.10) 0.54 (0.29) 0.59 (0.32) 0.56 (0.26)
W3 0.84 (0.12) 0.86 (0.10) 0.85 (0.13) 0.52 (0.33) 0.56 (0.28) 0.44 (0.36)
W4 0.88 (0.09) 0.89 (0.10) 0.86 (0.11) 0.72 (0.22) 0.74 (0.23) 0.62 (0.32)
W5 0.87 (0.09) - 0.80 (0.12) 0.82 (0.13) - 0.54 (0.31)

Inter-Condition Similarity
Spatial Synergies Temporal Coefficients

S vs. F S vs. L F vs. L S vs. F S vs. L F vs. L

W1 0.93 0.95 0.94 0.97 0.99 0.98
W2 0.86 0.84 0.84 0.78 0.99 0.74
W3 0.84 0.84 0.85 0.95 0.93 0.98
W4 0.87 0.87 0.87 0.95 0.99 0.98
W5 - 0.80 - - 0.89 -

4. Discussion

Backpack carriage in children is a common daily condition that has demonstrably
induced changes in the biomechanics of the trunk and lower limbs [30], appearing to
lead to orthopedic diseases in children [31]. Although the impact of backpack carriage
on children’s locomotion has been previously investigated [15–19], little is known about
how lower limb muscles coordinate their activations during locomotion when an extra
load is added. The aim of this study was to examine the effect of three walking conditions
on muscle synergies in young healthy children during barefoot walking. We analyzed
barefoot walking in order to use the Vicon inverse kinematic routines with more precision
with respect to any other non-barefoot condition. In this way, these results could be used
in future work as reference data for the evaluation of disability in children, as their motor
capabilities can be evaluated more correctly in barefoot conditions. Results showed that a
lesser number of synergies was required in the fast condition for reconstructing the EMG
envelope with the same level of accuracy. Moreover, fewer clusters were needed to group
synergies across participants in the fast condition with respect to the self-selected one,
while the number of clusters for the load condition was not clearly defined. In general,
synergies in the fast condition showed greater consistency than those in the self-selected
and load conditions, indicating that walking speed influenced the variability of synergies
across children and that high speed tends to uniform muscular patterns.

Walking speed affected nearly every aspect of the spatial–temporal and kinematic
gait variables, whereas the results from backpack carriage partially aligned with previous
studies. A heavy load caused a significant but limited increase in speed, with no differences
in stride length when compared to the self-selected condition. However, effects on walking
speed have not been consistent between studies: Chow and colleagues [16] reported a
decrease in gait speed, whereas no significant changes were observed in other studies [23].
These findings could hinder different behavioral responses to an external load, possibly
due to children’s locomotion maturity, but further research is needed. It should be noted
that, to maintain almost the same walking speed, when pelvic rotation is limited due to
backpack carriage, children might prefer to increase hip excursion in the sagittal plane
(i.e., greater step length) or increment step frequency, as our results highlight [41].
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Muscular patterns and temporal activations were consistent across conditions, show-
ing great similarities, and it is possible to speculate about their specific functions in the
gait cycle. W1 was the most consistent synergy across conditions and showed the lowest
variability. This synergy was active in counteracting the external dorsiflexion moment
acting on the ankle from mid-stance until pre-swing, as well as during the push-off phase,
providing the propulsion of the center of mass with the GL and GM [42]. W2 contributed to
the weight acceptance at loading response by activating the TA, to prevent the foot slap and
the RF, to control the external flexion moment acting on the knee. Moreover, W2 appeared
to contribute to leg reposition during pre-swing and swing (i.e., rectus femoris), while TA
appears to be essential during mid swing in ensuring foot clearance.

W3 appeared to provide mediolateral stability in the double support phases of the gait
cycle, assisting in postural control during the mediolateral transfer of body weight with the
activation of the ADD. Moreover, the contribution of the tibialis anterior to W3 is essential
in the loading response phase, helping to control the pronation movements acting at the
level of the subtalar joint. W4 appears to have a role in preventing the advancement of body
segments and decelerating the leg during the terminal swing, activating the hamstrings
and, to a lesser extent, the GI. Moreover, the ST, BF and GI roles during double limb support
are to avoid the forward movement of the trunk and pelvis, which would be provoked by
their inertial moment at the contact of the foot [43].

Finally, W5 appears to be related to body support and weight acceptance both at
the beginning and end of the gait cycle. This synergy occurred in the same phase of the
gait cycle as W4, and it was present only when five clusters were considered. It appears
to be a merged synergy that encapsulates muscle contributions from W2 and W4. In
the self-selected condition, W5 was expressed by RF and GI, whereas backpack carriage
also required ST and BF contributions. Rectus femoris and gluteus are fundamental to
controlling knee and hip flexion at loading response, provoked by the vertical component
of the body inertial moment when the foot stops on the ground at the beginning of the gait
cycle. In line with previous studies, reporting an increase in a stance and a double support
time [17], the role of W5 might be a means of effectively managing the load during gait.

Regarding the kinematics, in line with synergistic findings, children appeared to
commonly perform proximal adaptations to handle different walking conditions. Both
backpack carriage and fast speed, indeed, likely caused an increased pelvic anteversion
during the gait cycle, along with greater hip flexion angles. This adaptation in the fast
condition can be assumed to be necessary in accomplishing a longer stride (as a consequence
of faster speed), whereas during backpack carriage it might be a postural adjustment to
counteract the extra loading on the back [22,23].

Kinematic results showed a greater knee flexion angle at stance while walking at fast
speed [21]. One could speculate that the RF contribution should be greater in the fast condi-
tion; however, the emergence of W5 may not be required during the fast condition because
of the reduction in the duration of stance (as a function of speed) and the higher muscle
co-contraction required at increased velocity [44]. This is in line with previous studies in
which, by increasing the speed of locomotion, fewer muscular synergies were extracted and
the original EMG signal could be reconstructed more efficiently [45]. Moreover, walking
faster requires greater horizontal forces to forward the propulsion of the center of mass [46].
Along with a reduction in the stance phase in line with speed increase [44], we expect a
greater contribution of muscles acting to decelerate the trunk and lower limbs [46] rather
than a contribution of muscles acting to prevent shock absorption and leg stability [47].
Although this aspect could explain the disappearance of W5 in the fast condition, we did
not focus on the center of mass displacement, and thus additional investigations are needed
to support this hypothesis.

Another interesting aspect was the decreased variability across participants at fast
speed, indicating that faster walking speed tends to uniformize the muscular patterns
thanks to greater and more defined muscle activity [44]. This probably occurs since fast
walking is executed mainly in feed-forward control, activating more stereotyped muscle
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synergies [48]. In contrast, normal walking, especially load walking, may involve feedback
circuitry slightly increasing the control variability. Backpack carriage, indeed, increased
the mean number of intra-subjects-extracted synergies with respect to the fast condition,
but the effect on the variability is not clear. In fact, in the load condition, more synergies
were needed for reconstructing the EMG signal with the same level of accuracy as the
fast one, but the number of clusters needed to group the synergies did not increase. The
effect of variability in the load condition deserved to be punctuated: though walking speed
slightly differed between self-selected and load conditions, it resulted in being significantly
greater. However, no randomization in the three walking paradigms was undertaken,
and this might have impacted the walking speed results. Thus, the emergence of a not-
predominant W5 during backpack carriage might be related to inter-subject differences
in speed, which could have altered synergy expression, as stated before. As previously
stated, backpack influence on walking speed is not clear, and these discrepancies might
hide different behavioral responses to backpack carriage. From this point of view, it could
be speculated that the presence of a non-defined number of clusters to group synergies in
the load condition might be related not only to differences in speed but to different coor-
dination actions of muscles during gait. An interesting analysis would be differentiating
backpack carriage over different age groups of children to better understand to what extent
locomotion maturity affects backpack carriage.

In line with the muscular pattern, walking with a backpack required increased hip
flexion during the entire gait cycle to shift forward the center of gravity [19,38] to counter-
balance the extension moment caused by backpack carriage. Moreover, a load greater than
10% BW induced significant changes in pelvic anteversion, in line with what was stated
by Devroey and colleagues [39], whose studies aimed at investigating changes in trunk
posture related to backpack weight and position. To this extent, W5 contribution of ST
and BF in the load condition might be necessary to better control the forward inclination
of the trunk and pelvis in order to better manage balance at loading response. Similar
synergistic patterns were found in Bejerano et al. [34] in which four patterns, related to
weight acceptance, push-off, trunk balance and leg deceleration, were identified in both
linear and rectilinear walking trajectories. W1 is required to provide propulsion during
the push-off phase, whereas W2 contributes mainly to repositioning the lower limb during
the gait cycle. To this extent, W4 and W5 contributions could respectively be related to the
control of the horizontal inertial moment acting on the lower limb (i.e., leg deceleration
during swing and hip extension) and to counteracting the vertical forces acting during the
weight acceptance phase. An interesting aspect to note is how children adopt a muscle
coordination pattern similar to the self-selected condition, although backpack load induced
alterations in the kinematics aspects of gait, along with increased postural instability.

There are several consequences related to the results of this work. First, our work
may be a first step towards understanding the ergonomics of backpack carriage in terms
of alteration of motor control. Even though our kinematic findings are in line with pre-
vious literature, we could not find any study investigating muscle synergies in backpack
carriage. Our study showed that, in terms of motor control, the backpack carriage is a
“middle” condition between normal walking and fast walking in terms of the number
and composition of synergies. It is well established that muscle synergies are altered in
children suffering from cerebral palsy [49]. Our findings can be used as reference data
to evaluate muscle synergies in patients with cerebral palsy across many applications,
including when considering the evaluation of the effects of surgical interventions, altered
walking conditions (including assisted devices, orthosis, backpack carriage and others),
or to analyze how they affect motor control. Previous studies have reported how changes
in speed and a support base reduction during walking significantly alter the number of
extracted synergies in cerebral palsy, but not in typically developed children [50]. To this
extent, the role of external load on cerebral palsy could be further analyzed, as well as its
implications for muscle coordination. This will help in designing proper rehabilitation
courses and calibrating the best therapeutic approaches. Third, the data gathered in this
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experiment will also be used to improve the application of algorithms for interpreting
motor control by applying the novel mixed-matrix factorization [51] to connect neural
variables (i.e., muscle synergies) with task variables (i.e., kinematics and kinetics) in the
hope of providing novel instruments for assessing pathological gait.

This work has some limitations. At first, it should be remarked that the use of 16 EMG
channels (eight per limb) while being in line with the standard used in reference articles
in the literature [52] is still limiting considering the large number of muscles in the lower
limbs. Previous works have warned about the use of a restricted number of channels,
suggesting that some modules might be missed or misinterpreted [53,54]. Future work
should also investigate kinematics and muscle synergies at the trunk level.

Secondly, other methodological approaches (including synergy extraction algorithms
and EMG normalization) could be considered to compare results. Other EMG normalization
methods could be considered, including normalizing to the average amplitude for each
channel, normalizing to achieve unit variance, normalizing each stride by the maximum
EMG, or other methods. The method of normalization used in this study was selected
based on a recent review [55] that revealed that it is the most commonly used method for
analyzing data in cerebral palsy experimental trials. Moreover, some studies focused on
the effects of the normalization and concluded that no main effect of normalization was
found when EMG data were either not normalized, normalized to their own maximum, or
normalized to the pre-treatment maximum [56,57]. The application of the protocol used in
this study regarding neurological patients’ performances might benefit from fine-tuned
recordings for the matching of the reference database to the peculiar features of motor
impairment (e.g., reduced range of motion, jerky movements, lack of repeatability), which
were not investigated in this study. The extracted synergies might be evaluated in the light
of novel concepts, such as kinematic–muscular synergies [51], to directly relate muscle
activations to kinematic outputs.

Moreover, exploring the influence of different backpack weights on muscle synergies
across different age groups could enhance our understanding of how the central nervous
system adapts muscle coordination in more challenging conditions. Additionally, the cohort
of enrolled children in this study is limited in number, comprising solely male subjects.
Future work may include a wider cohort of participants that is uniformly distributed
between genders.

5. Conclusions

In this study, we investigated the effects of walking speed and backpack carriage
on the extraction of muscle synergies. Our results showed that fewer synergies were
required in the fast condition for reconstructing the EMG signal with the same level of
accuracy. Moreover, fewer clusters were needed to group synergies across participants
in the fast condition with respect to the self-selected and load conditions. In general,
synergies in all the conditions showed strong intra-cluster similarities and could be related
to biomechanical phases of the gait cycle. Both spatial synergies and temporal coefficients
were consistent across different conditions, showing that the same basic motor patterns
characterize the motor control in each condition. However, it seems that walking synergies
are also dependent on the biomechanical request. Our results could be used as a benchmark
of muscle synergies extracted from children walking under different conditions.
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Abbreviations

DOFs degrees of freedom
CNS central nervous system
CoP center of pressure
PiG plug-in-gait
EMG electromyography
TA tibialis anterior
GL gastrocnemius lateralis
GM gastrocnemius medialis
RF rectus femoris
ST semitendinosus
BF biceps femoris
ADD Adductor magnus
GI Gluteus maximus
NMF non-negative matrix factorization
SSE sum of the squared residuals
SST sum of the squared differences
ANOVA analysis of variance
MD mean difference
CI95 confidence interval 95%
W1-W5 synergy clusters
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