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Abstract: Volumetric representation is a technique used to express 3D objects in various fields, such as
medical applications. On the other hand, tomography images for reconstructing volumetric data have
limited utilization because they contain personal information. Existing GAN-based medical image
generation techniques can produce virtual tomographic images for volume reconstruction while
preserving the patient’s privacy. Nevertheless, these images often do not consider vertical correlations
between the adjacent slices, leading to erroneous results in 3D reconstruction. Furthermore, while
volume generation techniques have been introduced, they often focus on surface modeling, making it
challenging to represent the internal anatomical features accurately. This paper proposes volumetric
imitation GAN (VI-GAN), which imitates a human anatomical model to generate volumetric data.
The primary goal of this model is to capture the attributes and 3D structure, including the external
shape, internal slices, and the relationship between the vertical slices of the human anatomical model.
The proposed network consists of a generator for feature extraction and up-sampling based on a
3D U-Net and ResNet structure and a 3D-convolution-based LFFB (local feature fusion block). In
addition, a discriminator utilizes 3D convolution to evaluate the authenticity of the generated volume
compared to the ground truth. VI-GAN also devises reconstruction loss, including feature and
similarity losses, to converge the generated volumetric data into a human anatomical model. In
this experiment, the CT data of 234 people were used to assess the reliability of the results. When
using volume evaluation metrics to measure similarity, VI-GAN generated a volume that realistically
represented the human anatomical model compared to existing volume generation methods.

Keywords: GAN; imitation; 3D reconstruction; volumetric representation; human body; deep learning

1. Introduction

Volumetric representation [1,2] is a popular technique to express 3D objects, such
as surface modeling [3,4]. Volumetric data are generated mainly by reconstructing from
tomographic images, such as computed tomography (CT) and magnetic resonance imaging
(MRI) [5,6]. On the other hand, it is challenging to adopt tomographic images for purposes
other than medical, such as diagnosis and surgery, because they contain personal infor-
mation. GAN-based medical image generation techniques [7,8] can produce anatomically
meaningful virtual tomographic images applicable to volume reconstruction. On the other
hand, the image generation process does not consider the relationship between the adjacent
slices of a volume because these methods account for 2D correlations exclusively. This can
lead to erroneous results when reconstructing volumes from generated images, particularly
when maintaining the 3D structural coherence between adjacent slices. While techniques
have been proposed to generate 3D volumes [9,10], these approaches have been limited
to generating surface representations and have failed to capture the internal characteris-
tics. Consequently, a volume generation method is needed to reflect the entire 3D human
anatomical model, including its internal portion.

This paper introduces the volumetric imitation GAN (VI-GAN), a novel approach
that aims to imitate human anatomical models to generate volumetric data. The primary
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goal of this approach is to generate 3D models that faithfully capture the attributes and 3D
structure (external shape, internal slice, and the relationship between vertical slices) within
the human anatomical model. The proposed network comprises two main components: a
generator to obtain the volumetric data and a discriminator to evaluate the authenticity
between the generated volume and the ground truth. The generator performs feature ex-
traction and up-sampling to produce a volume based on the 3D U-Net [11] and ResNet [12]
structures. Moreover, the initial feature extraction process from the input image set uses
a 3D-convolution-based LFFB (local feature fusion block) [13] to incorporate features at
various scales. On the other hand, the discriminator uses 3D convolution to extract the
authenticity of the generated volume and ground truth. Using the proposed network
structure makes it possible to account for vertical correlations in the volume generation
process compared to existing 2D image generation techniques. Moreover, it provides a
more realistic representation compared to previous methods focused solely on surface
generation because it can faithfully intimate the internal features of the anatomical model.
The volume comprises 3D data with higher dimensions than the image, so converging in a
specific shape is difficult. Therefore, if the basic distance loss alone is applied to generate
the volume, it barely converges in the form of a human anatomical model [14]. Thus,
the proposed method devises a reconstruction loss so VI-GAN can generate the volume
converging to the human anatomical model. Reconstruction loss includes feature loss
and similarity loss. Feature loss is calculated using an overlapping region between the
generated volume and the ground truth. Similarity loss is also calculated as an internal
similarity based on a structural similarity index map (SSIM) [15].

The spine data from the Digital Korean dataset [16] provided by the Korean Insti-
tute of Science and Technology Information (KISTI) and the liver data from CT volumes
with multiple organ segmentations (CT-ORG) [17] were applied during the experiment
to validate the proposed technique. Evaluation metrics, such as F1-score, dice coefficient,
peak signal-to-noise ratio (PSNR), and universal image quality index (UQI), were used to
measure the resemblance between the generated volume and the human anatomical model.
The VI-GAN outperformed existing methods by producing volumes closely representing
the human anatomical model.

The volumetric data generated by the VI-GAN included the external shape and internal
structure of the human anatomical model. Therefore, it can be used in various fields,
such as diagnosis [18,19] and surgical simulation [20,21]. VI-GAN can produce a 3D
human anatomical model that can enhance training efficiency and immersion for medical
professionals. Moreover, virtual tomographic images can be produced by decomposing the
volumetric data generated by the VI-GAN. Compared to existing medical image generation
methods, these images have fewer errors in the relationship between neighboring slices.
The tomographic images produced by the VI-GAN can enhance the capabilities of medical
professionals to distinguish diseases effectively during the diagnostic process.

The contributions of this paper are as follows. (1) This paper proposes a VI-GAN
to create 3D volumetric data that capture the attributes and 3D structure of a human
anatomical model (external shape, internal slice, and vertical slice relationships). (2) This
paper introduces reconstruction loss that encompasses feature loss and similarity loss to
enhance the convergence rate of VI-GAN in volume generation. The feature loss measures
the overlapping regions, while the similarity loss quantifies the resemblance between the
generated volume and ground truth.

2. Related Works

Several studies have proposed generating the surface of a human anatomical model in
the volume format from tomographic images. Balashova et al. [9] proposed a method to
reconstruct the surface of the liver using a single X-ray image. They used mask data
and images in the training process to generate liver data closer to the ground truth.
Henzler et al. [22] generated the surface of animal bones using multiple X-ray images.
Their study combined the volumes generated from images of multiple viewpoints. It
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allowed the production of a high-quality volume with a complete reconstruction of the
parts that could be obscured easily from a single viewpoint. Kasten et al. [10] devised a
network to reconstruct knee bones from bi-planar X-ray images. Their study synthesized
the volumes produced by duplicating axial, coronal, and sagittal images in the z-axis di-
rection in the training process. On the other hand, the generated data could not preserve
the characteristics of the entire portion of that model because these methods generated
only the surface of the human anatomical model. Furthermore, many of these studies have
been proposed in the form of CNNs. The proposed technique requires generating virtual
volume data. Hence, applying a GAN specialized for generation is necessary.

Several studies have proposed producing 2D medical data using GANs. These studies
have focused mainly on the synthesis and reconstruction of images. Synthesis techniques
include changing the style and modality [23,24] and adding characteristics, such as nodules
and tumors [25]. Reconstruction techniques cover the super-resolution [26] process. Among
these techniques, medical image generation [7,27] can produce the virtual tomographic im-
ages required for volume reconstruction. Chuquicusma et al. [28] and Frid-Adar et al. [29]
proposed techniques for generating images representing lung modules and liver lesions
using a deep convolution GAN (DCGAN). Beer et al. [8] devised a method for generating
tomographic images through the progressive growing of GAN (PGGAN) [30] to express
skin lesions realistically. These methods generated tomographic images to improve the
classification and segmentation performance during the training process. Nevertheless,
these medical image generation techniques considered only the 2D correlation within
the image. Therefore, erroneous results can be obtained when reconstructing volumes
from these generated images because the vertical correlation with the adjacent slices is not
considered. Hence, the volume generation technique using a GAN should be proposed to
prevent such erroneous results.

Some studies adopted the GAN structure for volume generation by expanding various
image generation techniques into 3D space. Wu et al. [31] proposed 3D-GAN and 3D
variational autoencoder GAN (3D-VAE-GAN) structures to produce the surface of an object
as a volume using a single 2D image. Smith et al. [32] applied the Wasserstein distance
to 3D-GAN structures, which improved the volume quality. Volume-based GANs are
applied in the medical field, such as classification [33], segmentation [34], denoising [35],
and detection [36]. Vox2Vox [37] is one of the volume-based GAN techniques used in the
medical field for segmenting brain tumors. Nevertheless, few studies have applied GAN
structures in volume generation, particularly for human anatomical models. Thus, it is
essential to devise a method for generating volume data similar to a human anatomical
model using a GAN.

3. Methods
3.1. Training Process

Figure 1 presents the overall network structure and components of the VI-GAN. The
VI-GAN aims to generate volumetric data similar to the human anatomical model. This
generation process is achieved using the volume generator G, which incorporates a 3D-
convolution-based LFFB (local feature fusion block) [13], denoted as the 3D LFFB. The
discriminator D is used to assess the authenticity of the generated volume and the ground
truth. In addition, the VI-GAN devises reconstruction loss, including distance, feature, and
similarity losses, to converge the generated volumes as a human anatomical model.

The proposed method should reconstruct all the voxels in the generated volume
similar to the corresponding voxels in the ground truth volume. The difference between
any two corresponding values should be close to zero. Equation (1) represents the training
objective for a volumetric dataset. V represents the ground truth volume given during
training, and V̂ denotes the corresponding generated volume. V[m] and V̂[m] are the mth
voxel of the ground truth volume V and generated volume V̂, respectively. l, w, and h
represent x, y, and z-axis resolutions of the volume, respectively.
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Figure 1. Overall proposed framework and components of VI-GAN. The blue cubes represent features
extracted by the generator, while the green cubes depict features extracted by the discriminator.
(a) Overview of the proposed network structure for generating a volume. (b,c) Detailed structure
of the volume generator and discriminator. Three dots means repeating the preceding refining and
concatenation process in the same manner. (d) 3D local feature fusion block (3D LFFB) that initially
extracts the features from an image set before the volume generator.

∀m
∣∣V[m]− V̂[m]

∣∣ ≈ 0

0 ≤ m ≤ l × w × h, ∀m(V[m], V̂[m] ∈ Rl×w×h)
(1)

Volume generator G produces a volume using the input image set IG. The structure of
G is represented in Figure 1b using Equation (2). Xk represents the intermediate result in
the kth layer. The input image set is reconstructed into a volume via each f layer. In the
overall volume generation process, the network structures based on 3D U-Net [11] and
ResNet [12] are categorized into the encoding, refining, and decoding parts. The encoding,
refining, and decoding parts comprise f down

k , f mid
k , and f up

k layers, respectively. The final
layer is formed as the f

′
layer; k is the index of those layers. θG

k is the learning parameter
of the kth layer in the generator. Before passing to the f layers, 3D LFFB is performed to
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extract the essential features of the image set. Figure 1d presents the network structure of
3D LFFB.

f down
k is the convolution layer that extracts the features from the input through down-

sampling. f mid
k is the convolution layer that refines features using the ResNet architecture.

f up
k is the deconvolution layer that reconstructs a volume from features by up-sampling.

The final layer f
′

is a convolution layer that generates a volume V̂ in which all voxel values
are normalized from 0.0 to 1.0. The kernel sizes of all layers are 4× 4× 4, and the stride sets
were assigned for f down

k , f up
k , and f

′
as two and f mid

k as one. nG indicates the total number
of layers of the generator; d, r, and u are the layer indices of the encoding, refining, and
decoding parts, respectively.

X0 = IG, Xd = f down
d−1 (Xd−1; θG

d−1), Xr = f mid
r−1 (Xr−1; θG

r−1),

Xu = f up
u−1(Xu−1; θG

u−1) V̂ = f
′
(XnG−1; θG

nG−1),

0 < d < r < u < nG

(2)

Volume discriminator D distinguishes the authenticity between the generated and
ground truth volume. The structure of D is represented in Figure 1c with Equation (3). ID is
the input volume. Yk represents the intermediate result in the kth layer. The probability
p indicating the authenticity of the input volume is calculated through each g layer. θD

k is
the learning parameter of the kth layer in the discriminator. gk is a convolution layer that
extracts the features from ID by down-sampling. The final layer, g

′
, is a fully connected

layer to generate a probability normalized from 0.0 to 1.0. The kernel sizes and stride sets
of all layers are 4 × 4 × 4 and 2, respectively. nD represents the total number of layers in
the discriminator.

Y0 = ID, Yk = gk−1(Yk−1; θD
k−1),

p = g
′
(YnD−1; θD

nD−1), 0 < k < nD
(3)

3.2. Loss Function

The loss function of the generator and discriminator was designed, as shown in
Equation (4). LG and LD are the generator and discriminator loss, respectively, of the
ground truth volumes V, generated volumes V̂, and the input image set of the generator
IG. Lrecon is the reconstruction loss, and α is a constant weight assigned to Lrecon.

LG = Ex∼IG,v̂∼V̂∥D(x, v̂)− 1∥2
2 + αLrecon

LD = Ex∼IG,v∼V,v̂∼V̂[∥D(x, v)− 1∥2
2 + ∥D(x, v̂)∥2

2]
(4)

The reconstruction loss Lrecon calculates the discrepancy between the generated and the
ground truth volumes. Reconstruction loss consists of the distance, feature, and similarity
loss. Among these losses, the distance loss Ldist is defined using Equation (5). The L1 loss
is used for the distance loss.

Ldist = Ev∼V,v̂∼V̂∥v − v̂∥1 (5)

The voxel values in the generated volume indicate the predicted density of the corre-
sponding area of the human anatomical model. The ground truth volume contains many
undefined parts outside the human anatomical model, represented by low-value voxels.
Therefore, many voxels in the ground truth volume have low values. The proposed method
should reconstruct the entire part of the human anatomical model. Nevertheless, when only
the distance loss is used in the regularization term, all voxels are averaged to minimize the
distance loss. This process reduces the value of the high-value voxels [14]. The generated
volume barely converges with the target model because the shape and characteristics of the
human anatomical model are composed mainly of a high-value area. This paper proposes
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a reconstruction loss that consists of distance loss with feature loss and similarity loss to
solve this problem.

Feature loss represents how many high-value voxels overlap between two volumes.
Feature loss can be used to emphasize and preferentially reconstruct high-value voxels
during the volume-reconstruction process. Feature loss Lf is expressed as Equation (6).
This loss uses Nr number of thresholds; ts is the sth threshold; m is the voxel index in the
volume; l, w, and h are the x, y, and z-axis resolutions of the volume, respectively. I(·) is the
indicator function.

Lf = 1 − Ev∼V,v̂∼V̂

[
Nr

∑
s

∑l×w×h
m I(v[m] ≥ ts)I(v̂[m] ≥ ts)

∑l×w×h
m I(I(v[m] ≥ ts) + I(v̂[m] ≥ ts))

]
0 ≤ ts ≤ 1

(6)

Feature loss can be used to generate the characteristics of a human anatomical model,
composed mainly of drastic changes in density. Such characteristics are often represented
primarily by a high value. The high-value area within the human anatomical model
can be fully reconstructed in the output volume by assigning feature loss during the
training process.

Similarity loss Lsim reflects the difference in image quality of each internal image slice
between the generated and ground truth volumes, which is defined in Equation (7). The
SSIM, SSIM(·, ·) [15], measures the difference in image quality. Similarity loss computes
the difference in volume quality calculated based on the SSIM between the internal image
slices in the generated and ground truth volume for all z-values. S(·, k) is the selector that
extracts the kth slice in the volume, and h is the resolution in the z-axis direction of the
volume. Using the similarity loss, the internal voxel values can be reconstructed like those
of the ground truth volume.

Lsim = 1 − Ev∼V,v̂∼V̂{
1
h

h

∑
k=0

SSIM(S(v, k), S(v̂, k))} (7)

The final reconstruction loss is represented as Equation (8).

Lrecon = Ldist + Lf + Lsim (8)

3.3. Experimental Setting

This study used CT images of the spine (fifth lumbar vertebra and right hip bone) from
the Digital Korean dataset provided by the KISTI [16] and the liver from CT-ORG [17]. The
CT data for 94 people for the spine and 140 people for the liver were used. Among them,
the CT data of the following were applied: 70% for training, 20% for testing, and 10% for
validation. A total of 3117 slices for the fifth lumbar vertebra (average of 33 slices per
person), 4579 slices for the right hip bone (average of 49 slices per person), and 19,314 slices
for the liver (average of 483 slices per person) were used to generate volumetric data for
training. NVIDIA GeForce RTX 3090 Ti with 24,268 MB GPU memory was applied for
training. The Adam optimizer [38] was used with a learning rate of 2 × 10−4. The dropout
rates of the middle-ware network blocks in Figure 1b were set to 0.2. The constant α was
set to 33.0 when implementing Equation (4).

4. Results

The generated volumes were evaluated using a confusion matrix [39]. Each voxel in
the generated volume was classified as positive if it had a high value and negative if it
had a low value. In addition, each voxel in the ground truth volume was also categorized
as true if it had a high value and false if it had a low value. The states of the voxels were
judged by a comparison with the threshold value, whether each voxel value was high
or low. Equation (9) expresses the TP (true positive), FP (false positive), and FN (false
negative) used for the evaluation metric. t is the threshold; v is the ground truth volume;
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v̂ is the corresponding generated volume; l, w, and h are the x, y, and z-axis resolutions
of the volume, respectively. The thresholds were used to evaluate how well the voxels
that formulate a shape and internal characteristics of a human anatomical model were
reconstructed. TP, FP, and FN were used to calculate the precision, recall, F1-score, and
Dice coefficient [40].

TP =
1

l × w × h

l×w×h

∑
m=0

I(v[m] > t)I(v̂[m] > t)

FP =
1

l × w × h

l×w×h

∑
m=0

I(v[m] ≤ t)I(v̂[m] > t)

FN =
1

l × w × h

l×w×h

∑
m=0

I(v[m] ≤ t)I(v̂[m] ≤ t)

(9)

Figure 2 compares the generated volumes between the proposed VI-GAN and existing
methods. The quality of the generated volume was evaluated using three criteria: volumet-
ric shape, thresholding result, and internal image slice. The volumetric shape describes
how accurately the generated volume represents the external shape of the ground truth
volume. The thresholding result describes the internal structure that represents how much
high-value voxels overlap between generated and ground truth volume. The internal image
slice expresses how similar the internal area is between the generated and ground truth
volume. The value of each voxel is a floating point between 0.0 and 1.0. The positions with
a lower or higher voxel value are blue or red, respectively. The thresholds were determined
for thresholding results by analyzing the voxel value distributions within the ground truth
volumes. Specifically, thresholds of 0.4, 0.3, and 0.28 were applied to the fifth lumbar
vertebra, right hip bone, and liver, respectively. For the fifth lumber vertebra and right hip
bone, the Q3 (third quantile, 75% of data points) [41] values were adopted as thresholds to
emphasize the rigid areas within the skeletal system. For the liver, the Q1 (first quantile,
25% of data points) values were used as thresholds to visualize the soft tissue density. For
the internal image slice, the slice position is the center of the volume. The slices correspond
to the xy plane exactly, the xy plane leaning at −45◦, and the yz plane in the cases of the fifth
lumbar vertebra, right hip bone, and liver, respectively. All slices in the CT volume were
used as input data in Pix2Vox. The real CT volume was applied as input for the end-to-end
CNN instead of the synthesized volume.

In the Pix2Vox and end-to-end CNN model, the volumetric shape had an ambiguous
form that cannot express the human anatomical model in detail. In addition, the high-
value voxels were scattered and could not typically converge to the shape of the human
anatomical model. The generated volumes of the Vox2Vox model converged more to the
human anatomical model than those of the Pix2Vox and end-to-end CNN models. The
volumetric shapes and internal slices depicted as the form of the liver and bone represent
this convergence. In the case of the fifth lumber vertebra and right hip bone, however, the
high-value voxels in some areas of the volume were not fully reconstructed, which could not
make the shape of the human anatomical model clear. In the case of the liver, the volumetric
shape did not resemble the ground truth volume, and the organ shape did not appear
in the center, which is the correct position for the internal slice. The VI-GAN generated
a volumetric shape, high-value voxels, and internal parts that were more similar to the
ground truth volume than the other methods. In conclusion, in a qualitative comparison,
the VI-GAN generated volume data that are more similar to the human anatomical model
than other existing methods.
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Figure 2. Qualitative comparison of the generated volumes in the proposed VI-GAN and existing
method. The (a) fifth lumber vertebra, (b) right hip bone, and (c) liver volume data are represented.
The images consist of a volumetric shape (top row), thresholding result (center row), and internal
image slice (bottom row). The volumes generated by the Pix2Vox [42] (first column), end-to-end
CNN [10] (second column), Vox2Vox [37] (third column), and VI-GAN (fourth column) models
were compared.
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Table 1 lists the quality measurement of the generated volume between the proposed
VI-GAN and other existing methods. The quality was calculated using evaluation factors
to measure the disparity between the generated and ground truth volume. The intersection
over union (IoU), F1-score (F1), and Dice coefficient (DC) [43] represent the rate of over-
lapping voxels between thresholded results. The threshold values for calculating the IoU,
F1, and DC metrics were 2.5, 1.9, and 2.8, respectively, corresponding to the fifth lumbar
vertebra, right hip bone, and liver. These values represent the Q1 (25% of data points) value
of the voxel distribution. The L1 error (L1) describes the voxel-wise difference between vol-
umes. The peak signal-to-noise ratio (PSNR) [15], universal quality index (UQI) [44], visual
saliency-induced index (VSI) [45], and structural similarity index map (SSIM) showed the
similarity between the generated and ground truth volumes calculated using all slices.

A comparison of the VI-GAN with Pix2Vox and end-to-end CNN revealed that the
VI-GAN had the highest result for all evaluation factors in all cases (the fifth lumber
vertebra, right hip bone, and liver). As a result, the proposed method produces a volume
that closely resembles the ground truth, displaying a higher rate of overlap among high-
value voxels compared to Pix2Vox and end-to-end CNN. A comparison of the VI-GAN with
Vox2Vox using the IoU, F1-score, and Dice coefficient showed that the VI-GAN produced
better results in all cases than Vox2Vox. When comparing the metrics of L1, PSNR, UQI,
VSI, and SSIM, it is difficult to definitively conclude whether the VI-GAN or Vox2Vox
exhibited superior performance on similarity. Furthermore, the disparities in results were
relatively minor in most cases. Based on these findings, the volumes produced by Vox2Vox
and the VI-GAN showed similar degrees of resemblance to the ground truth. In summary,
as listed in Table 1, the VI-GAN effectively generated a volume by accurately capturing
high-value voxels compared to other methods while preserving the similarity to the human
anatomical model.

Table 1. Quality comparison between the volumes of proposed VI-GAN and existing methods using
the evaluation factors. The best results are represented in bold.

Method
Fifth Lumber Vertebra Right Hip Bone Liver

IoU DC F1 L1 IoU DC F1 L1 IoU DC F1 L1

Pix2Vox 0.501 0.670 0.662 0.121 0.381 0.553 0.551 0.131 0.264 0.488 0.402 0.139

End-to-end CNN 0.524 0.681 0.686 0.121 0.372 0.544 0.541 0.114 0.231 0.484 0.346 0.155

Vox2Vox 0.596 0.743 0.742 0.096 0.457 0.628 0.626 0.075 0.393 0.612 0.555 0.053

VI-GAN 0.712 0.832 0.831 0.102 0.865 0.929 0.927 0.075 0.552 0.741 0.685 0.056

Method
Fifth Lumber Vertebra Right Hip Bone Liver

PSNR UQI VSI SSIM PSNR UQI VSI SSIM PSNR UQI VSI SSIM

Pix2Vox 16.226 0.839 0.827 0.329 15.764 0.729 0.829 0.279 15.486 0.884 0.831 0.284

End-to-end CNN 16.573 0.849 0.836 0.244 16.676 0.817 0.872 0.613 14.804 0.839 0.776 0.409

Vox2Vox 18.249 0.876 0.875 0.483 24.615 0.817 0.872 0.613 20.942 0.900 0.880 0.652

VI-GAN 18.189 0.883 0.874 0.505 24.518 0.816 0.865 0.600 26.661 0.886 0.874 0.669

Figure 3 presents the assessment results using the intersection over union, F1-score,
and Dice coefficient across various threshold values. The objective of this experiment was
to evaluate the accuracy in reconstructing high-value voxels, which holds significance in
accurately representing the essential information within the volume. This information
encompasses the overall appearance of soft tissue or rigid structures within the skeletal
system. Furthermore, achieving precise reconstructions of high-value voxels is challenging
because of the limited occurrence of such areas in the ground truth volume. The thresholds
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were selected within the range of Q1 (25% of data points) to Q3 (75% of data points),
corresponding to 25%, 37.5%, 50%, 62.5%, and 75% within the voxel distribution. In this
experiment, the following thresholds were applied: 0.2500, 0.2875, 0.3250, 0.3625, and
0.4000 for the fifth lumbar vertebra; 0.1900, 0.2175, 0.2450, 0.2725, and 0.3000 for the right
hip bone; and 0.2800, 0.3250, 0.3700, 0.4150, and 0.4600 for the liver. Figure 3 shows a con-
sistent trend across all methods in most cases; the results of the evaluation factor tended to
decrease as the threshold value increased. This trend shows the difficulty of reconstructing
high-value voxels within the volume accurately. Furthermore, the proposed VI-GAN con-
sistently achieved superior results in most cases. Consequently, the VI-GAN demonstrated
higher performance in reconstructing high-value voxels than the existing methods.

Figure 3. Quality comparison between the volumes of the proposed VI-GAN and existing methods
across a range of thresholds.



Bioengineering 2024, 11, 163 11 of 13

5. Conclusions

This paper proposed a VI-GAN for generating a volumetric model to describe the
human anatomical model using a GAN-based volume generator and discriminator with 3D
LFFB. This paper also proposed reconstruction loss, including feature loss and similarity
loss, to reconstruct high-value areas and describe the essential characteristics of the model
accurately. The experimental result showed that the generated volume of the VI-GAN
represents the shape, high-value areas, and internal part better than the other existing
methods evaluated. Furthermore, the experimental results with varying threshold values
showed that the VI-GAN accurately generates high-value areas compared to existing
methods. Based on these results, VI-GANs may enhance the availability of medical data
and improve the training efficiency of medical professionals by generating high-quality
volumetric data.
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