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Abstract: Medical imaging can be a critical tool for triaging casualties in trauma situations. In remote
or military medicine scenarios, triage is essential for identifying how to use limited resources or
prioritize evacuation for the most serious cases. Ultrasound imaging, while portable and often
available near the point of injury, can only be used for triage if images are properly acquired,
interpreted, and objectively triage scored. Here, we detail how AI segmentation models can be
used for improving image interpretation and objective triage evaluation for a medical application
focused on foreign bodies embedded in tissues at variable distances from critical neurovascular
features. Ultrasound images previously collected in a tissue phantom with or without neurovascular
features were labeled with ground truth masks. These image sets were used to train two different
segmentation AI frameworks: YOLOv7 and U-Net segmentation models. Overall, both approaches
were successful in identifying shrapnel in the image set, with U-Net outperforming YOLOv7 for
single-class segmentation. Both segmentation models were also evaluated with a more complex
image set containing shrapnel, artery, vein, and nerve features. YOLOv7 obtained higher precision
scores across multiple classes whereas U-Net achieved higher recall scores. Using each AI model, a
triage distance metric was adapted to measure the proximity of shrapnel to the nearest neurovascular
feature, with U-Net more closely mirroring the triage distances measured from ground truth labels.
Overall, the segmentation AI models were successful in detecting shrapnel in ultrasound images and
could allow for improved injury triage in emergency medicine scenarios.

Keywords: artificial intelligence; segmentation; triage; ultrasound imaging; shrapnel; foreign body;
emergency medicine

1. Introduction

It is critical in emergency medicine situations to adequately triage casualties to deter-
mine how to prioritize limited resources. This is amplified in remote or military medicine,
where resources and medical evacuation resources are scarce. Future battlefields will likely
involve more contested airspace, further limiting the opportunity for casualty evacua-
tion [1,2]. Medical imaging-based triage is often limited to ultrasound imaging in remote
austere environments due to its small size and portability compared to other medical imag-
ing approaches [3]. Ultrasound imaging can allow for the detection of injuries or illnesses
such as shrapnel or foreign bodies embedded in tissue [4], COVID-19 lung pathologies [5],
pneumothorax, hemothorax, or abdominal hemorrhage [6], which all may be critical to
detect during casualty triage.

There are, however, a few challenges with ultrasound-based triage. First, proper
image acquisition requires extensive training for the proper positioning of the ultrasound
transducer so that a suitable image is acquired. Multiple approaches have been taken to
improve ultrasound image acquisition, which include improved standards and protocols,
augmented reality overlays while scanning [7], and using robotics to automate image
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acquisition [8]. Second, image interpretation requires a skilled radiographer to interpret
the ultrasound image and make a diagnosis. This type of professional may often not be
available in remote or military environments. Third, even with proper image interpretation,
there is still a need for objective metrics on which to base triage decisions. Oftentimes these
decisions are subjective, but they may be less consistent if taken by less skilled operators in
remote emergency scenarios.

Artificial intelligence (AI) models for image interpretation and the subsequent analysis
of these models can serve as a basis for simplifying image interpretation and developing
objective triage metrics. Deep learning approaches have been extensively applied to ultra-
sound imaging to automate the detection of various injuries and abnormalities. However,
deep learning image interpretation techniques can take different forms. Simple image clas-
sification approaches provide a categorical description of the ultrasound image; however,
information about regions of interest in the image is not provided, which may be critical
for adding granularity to the triage process (Figure 1A). Object detection models provide a
higher level of explainability to model predictions by generating bounding boxes around
the objects of interest present in an image, such as shrapnel (Figure 1B). We were recently
able to use various object detection architectures to identify shrapnel and neurovascular
features and use the predictions to measure distances between objects as a preliminary
triage metric [9,10]. However, bounding boxes are rectangular shapes that may not prop-
erly delineate features at certain angles and may overlook irregular shapes, lessening the
accuracy of making triaging predictions from bounding boxes. Instead, different deep
learning architectures have been developed for creating segmentation masks for objects of
any shape or size (Figure 1C). This allows for higher pixel-wise accuracy when recognizing
objects from which triage decisions can be made.
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tion models for identifying shrapnel in tissue phantoms as well as performing multi-class 
segmentation of shrapnel and neurovascular features. Shrapnel or foreign body detection 
in tissues is especially relevant for improved triages, as data from the Soviet–Afghan war 
highlighted how 71% of casualties were able to be treated minimally, non-operatively 
minimizing the need for medical evacuations when these casualties could be properly 
classified at or near the point of injury [11]. Using the multi-class segmentation model, we 
develop and improve on a foreign body distance triage metric originally used with object 
detection AI models. 

Figure 1. Comparison of AI model types for shrapnel and neurovascular feature identification.
Representative ultrasound image showing output differences between a (A) binary classification
model, (B) a multi-class object detection model, and (C) a multi-class segmentation model. The
classification model labels images as either positive or negative for shrapnel. The object detection
model makes predictions and places a bounding box around the predicted objects. The segmentation
model creates an outline around the detected object.

In this work, we first evaluate the feasibility of developing deep learning segmentation
models for identifying shrapnel in tissue phantoms as well as performing multi-class
segmentation of shrapnel and neurovascular features. Shrapnel or foreign body detection
in tissues is especially relevant for improved triages, as data from the Soviet–Afghan war
highlighted how 71% of casualties were able to be treated minimally, non-operatively
minimizing the need for medical evacuations when these casualties could be properly
classified at or near the point of injury [11]. Using the multi-class segmentation model, we
develop and improve on a foreign body distance triage metric originally used with object
detection AI models.
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To accomplish these goals, this paper first reviews how segmentation models have
been used for other medical applications. Next, the methods section details how the images
were collected and processed as well as the AI model setup for this application. The results
section first describes how single-class segmentation models can be used for shrapnel
detection followed by expanding these models for multi-class detection of additional
neurovascular features. An application is lastly shown to highlight how a multi-class
segmentation model can track the distance of shrapnel to neurovascular features as a
potential triage tool.

Overview of Ultrasound Imaging Artificial Intelligent Segmentation Models

Various edge detection or intensity thresholding methods have been used for medical
image segmentation [12]. However, these methods are not fully automated or as robust as
more recent AI approaches. Focusing on AI modalities for ultrasound imaging, different
architectures have been used, with encoder–decoder neural network approaches being
the most widely used, followed by fully convolutional network model architectures [13].
Encoder–decoder segmentation models are similar in structure to more widely used object
detection architectures, relying on convolution models to encode the image and extract
features, followed by a deconvolution model or decoder which restores the pixel locations
for the extracted features.

The most widely used segmentation model for medical imaging is the U-Net encoder–
decoder model [14]. U-Net’s name is based on its U-shaped network architecture, which
comprises a series of encoder steps to extract features, followed by a series of decoder blocks
connected to each encoder by a bridge. The decoder blocks are used to align the extracted
features with image pixels and generate segmentation masks. The bridge connections
between each encoder and decoder help provide clarity for features identified at each step
that may be lost at deeper convolutional steps to improve the accuracy of the segmentation
masks. U-Net was developed specifically for biomedical image segmentation, initially for
the segmentation of neurons and cell structures in microscope images [14]. It has since
been utilized for a wide array of biomedical segmentation tasks including blood vessel,
tumor, and organ segmentation [12,13,15].

Another widely used architecture for image segmentation is the YOLO (You Only
Look Once) series of architectures [16]. YOLO models are single-stage object detectors
made up of a convolutional backbone, where features are extracted, a neck, where features
are mixed and combined, and a head, where locations and classes of objects are predicted.
One of the latest models in this series is YOLOv7 [17]. YOLOv7 improves upon previous
architectures by updating the backbone to include Extended Efficient Layer Aggregation
(E-ELAN). This and several other improvements have served to make the model both more
accurate and faster than previous YOLO releases. While YOLO is traditionally an object
detection framework, YOLOv7 has been modified for instance segmentation use cases [17].
This architecture has been used to develop segmentation models for self-driving cars [18]
as well as some medical image segmentation applications [19,20].

Image segmentation AI models can have many benefits for medical image interpre-
tation, aiding with the recognition of regions of interest which could impact treatment
and diagnosis [21,22]. As mentioned previously, U-Net was purpose-built for medical
imaging. In certain emergent conditions the prompt interpretation of medical imaging can
be critical, particularly when highly specialized personnel are not available. For this reason,
U-Net architecture has been used to identify pleural effusion [23], measure the optic nerve
sheath [24], and diagnose ascites [25]. The common use of U-NET for the segmentation of
biomedical imaging has led to architecture modification that better fit specific areas and
imaging modalities [26,27]. Along this line, segmentation architectures such as YOLOv7
have been used to achieve a reliable performance for the diagnostic segmentation of fetal
cardiac features [28], kidney stones [29], and cervical lymph nodes [30].
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2. Materials and Methods
2.1. Phantom Preparation and Imaging

The shrapnel image dataset was collected from an ultrasound tissue phantom that
has been extensively used to train multiple AI models [31]. Briefly, a double-layer gelatin
phantom was made by dissolving gelatin 10.0% w/v (Thermo-Fisher, Waltham, MA, USA)
and flour (0.25% w/v inner layer and 0.10% w/v outer layer, unbleached wheat flour,
H-E-B, San Antonio, TX, USA) in an evaporated milk (Costco, Seattle, WA, USA) and water
mixture at a 1:2 ratio, respectively. Fragments made of agarose (Fisher Scientific, Fair Lawn,
NJ, USA) at 2.0% w/v, with varying flour concentrations of 0.10% and 1.0% w/v, were
added to the inner layer of the phantom in order to add training noise between different
phantoms. A total of six phantom subjects were created to generate the training data: half
of the subjects were a simple phantom with no additional features, and the other half were
complex phantoms with an additional neurovascular bundle. The neurovascular bundle
consisted of three channels created with a biopsy punch, which were left hollow to simulate
the vein and artery and filled with the gelatin mixture with flour at 0.5% w/v for the nerve
channel. Shrapnel insertion and imaging of the phantom were performed under water
in 10 s clips. A 2.0 mm diameter brass rod (McMaster Carr, Elmhurst, IL, USA) was cut
into pieces of five different lengths (1.0 cm, 0.8 cm, 0.6 cm, 0.4 cm, and 0.2 cm), that were
used as shrapnel. All the ultrasound images were collected using a Sonosite Edge II System
(Fujifilm, Bothell, WA, USA) with the HL50x (Fujifilm, Bothell, WA, USA) transducer.

2.2. Preprocessing and Labeling Images

After the ultrasound videos had been recorded, individual frames were extracted
as images, totaling 12,144 collected ultrasound images. Next, the images were manually
annotated with the locations of neurovascular features and shrapnel, with 6385 receiving
annotations only for shrapnel and the remaining 5759 being annotated with vein, artery,
nerve, and shrapnel features. From these, 15 and 59 images were split to be used as holdout
test images after the models were trained for the single-class and multi-class models,
respectively. The annotations were generated manually using the COCO annotator software
to label pixels corresponding to the desired features in each image. The annotations were
then saved to a JSON file containing file and annotation information for each image.

Before the training of the models could start, Python scripts were developed to read
the COCO JSON file and use it to produce images and masks compatible with the needs
of the segmentation models. In the case of U-Net, this involved resizing all the images to
256 × 256 and generating image masks from the original COCO data. These masks consist
of one-channel 256 × 256 images with each desired class represented by a unique integer
value (such as vein = 1, artery = 2, etc.). For YOLOv7 training, the images were kept in
their original 512 × 512 size, and the COCO annotation data were used to generate text
files for each image that contain segmentation information for each class.

2.3. Training Segmentation Algorithms

All training was conducted using the same computer hardware setup: an NVIDIA
GeForce RTX 3090 Ti 24 GB VRAM system with Intel i9-12900k and 128 GB RAM with a
Windows 10 Pro operating system. YOLOv7 training was completed using an Anaconda
distribution running Python 3.8.8. U-Net training was conducted using MATLAB (R2023a,
Mathworks, Natick, MA, USA) with deep learning, computer vision, and image processing
packages installed. Before training, the images were randomly shuffled and separated into
training and validation sets at an 80:20 ratio and paired with their respective masks.

A publicly available version of the YOLOv7 segmentation model was used [17]. Minor
changes were made to the training and prediction scripts of the original code to be able to
extract generated prediction masks into text files for each image per YOLOv7 requirements.
The ultrasound images were paired with their respective segmentation text file containing
ground truth information prior to training. The model was trained for a total of ten epochs,
recording precision, recall, loss, and mean average precision for each epoch.
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The U-Net model was implemented in MATLAB, which provides a ready-made
4-depth U-Net for computer vision tasks. The customizations for our purposes included
removing the final layer of the model and replacing it with a pixel classification layer;
batch normalization layers were added after each convolution. Batch normalization works
by normalizing the output of each convolutional layer, allowing for a deeper and faster
running model and helping to prevent overfitting by inserting a small amount of noise
into the data. The original U-Net publication included max pooling layers after each
convolution layer. However, these were not present in the MATLAB implementation of
U-Net. The U-Net model was trained for a total of twenty epochs, with accuracy and loss
values being recorded after processing each batch of images. Similar training approaches
were taken with both architectures when training a single-class model for shrapnel and the
multi-class models further including neurovascular classes.

2.4. Performance Metrics for Evaluating Trained Models

For each of the trained models, prediction segmentation masks were generated from a
separate set of blind images. From these, every pixel in the prediction mask was compared
to the ground truth masks, and labeled as either True Positive (TP), False Positive (FP),
True Negative (TN), or False Negative (FN). The total number of each label was compiled
for each class as well as for the overall image and used to calculate performance metrics
including accuracy, precision, recall, the intersection-over-union (IOU) score, and the Dice
coefficient. Formulas for all the metrics used are shown in Table 1. Accuracy is a measure
of how frequently a model can be expected to make correct predictions. Precision measures
how often positive predictions are correct, while recall shows the efficiency of a model
to accurately predict positive features. The IOU score and Dice coefficient are common
metrics in object detection and segmentation models that determine how well the model
prediction masks correspond to the ground truth masks.

Table 1. Formulas for performance metrics. Each performance metric is calculated using True
Positives (TP), False Positives (FN), True Negatives (TN), and False Negatives (FN) predictions.

Metric Formula

Accuracy (TP + TN)/(TP + FN + TN + FP)

Precision TP/(FP + TP)

Recall TP/(FN + TP)

IOU TP/(TP + FP + FN)

Dice Coefficient 2 × TP/(2 × TP + FP + FN)

2.5. Distance Triage

The distance between shrapnel and neurovascular bundle anatomical features was
calculated as it could be a useful metric for triaging injury severity. This analysis was
performed using segmentation masks generated from the predictive models. The perimeter
of each object (shrapnel, nerve, artery, and vein) was found after isolating each object.

Distance triage is calculated from the predicted shrapnel to the predicted vein, artery,
or nerve, and then the distance from the shrapnel to the closest structure is provided. This
was performed using MATLAB’s regionprops functionality to find the closest distance
of shrapnel to each neurovascular feature, as well as combinations of multiple classes if
multiple shrapnel or nerves were identified. This was achieved by comparing each pixel
in the boundary of each anatomical feature to every pixel value in the boundary of the
shrapnel segmentation mask to find the two closest points between the two (given as
a pair of X,Y coordinates). After these were identified, the minimum of all the options
was selected, which served as the triage score for this application (Figure 2). Multi-class
segmentation masks (N = 46) generated by the AI models were compared to their respective
ground truth masks to measure the accuracy of each model for triage. The outlier exclusion
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ROUT (robust regression followed by outlier identification) methodology was applied
to the measured distance error to remove data points with a false discovery rate set at
1%. Statistical analysis and figures were generated using GraphPad Prism 10.1.2 (La Jolla,
CA, USA).
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3. Results
3.1. Single-Class Segmentation Models for Shrapnel

For shrapnel segmentation, the YOLOv7 model achieved an 82.2% validation precision
in nine training epochs, whereas U-Net reached a validation accuracy of over 90% in
the first epoch and continued to increase steadily throughout training, reaching a final
validation accuracy of 99%. From the test set for the single-class shrapnel segmentation
models, the accuracy, precision, recall, IOU, and Dice coefficient scores were calculated by
comparing the predicted shrapnel masks to the ground truth masks (Table 2). Both models
performed alike in identifying shrapnel in the test images, with both receiving an accuracy
of 99.1%. Both models also received similar scores in all the other recorded metrics, with
YOLOv7 slightly outscoring or equaling U-Net in all the metrics. Representative results of
both models on the same ultrasound image are shown in Figure 3.
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Table 2. Summary of performance metrics for single-class shrapnel segmentation.

Accuracy Precision Recall IOU Dice Coefficient

YOLOv7 99.1% 76.0% 74.3% 55.1% 69.7%

U-Net 99.1% 63.8% 67.7% 51.5% 64.7%

3.2. Multi-Class Segmentation Models

The YOLO model was trained for ten epochs, reaching a best precision of 84.8% and
recall of 84.2%. The U-net model reached an accuracy value over 90% in the fourth epoch,
steadily increasing after reaching a final accuracy of 96.5% at the end of twenty training
epochs. By visual comparison of the predicted masks for both models to the ground truth
masks, the U-Net model produced generally larger segmentation masks for each feature
than the YOLOv7 model, with the size of the ground truth masks falling in-between the
two (Figure 4). In some instances, the U-Net model would produce segmentation masks
with two or more class prediction masks in contact with one another or even overlapping.
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Figure 4. Multi-class segmentation for shrapnel. Representative image showing (A) ground truth
mask, (B) U-Net-model-generated mask, and (C) YOLOv7-model-generated mask for the same
ultrasound image. All classes are identified in each image.

To assess the performance of both models, metrics were calculated for each prediction
class and image background classification, with artery features having the highest test
accuracy at more than 99.0% for each model (Table 3). Averaging across all the features,
both models achieved accuracy scores above 98.0% for all classes (Figure 5). However,
recall was much higher for U-Net than YOLOv7 at 92.6% vs. 82.7%, in contrast to precision,
which was higher for YOLOv7 than U-Net, at 77.7% and 66.2%, respectively.
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Table 3. Summary of performance metrics by class for the segmentation models.

YOLOv7

Accuracy Precision Recall IOU Dice Coefficient

Vein 99.4% 75.9% 76.2% 61.6% 74.0%

Artery 99.5% 79.2% 78.3% 64.0% 76.8%

Nerve 99.4% 76.9% 81.4% 61.9% 74.9%

Shrapnel 99.2% 57.5% 78.8% 45.7% 58.6%

Background 97.8% 99.0% 98.7% 97.7% 98.8%

U-Net

Accuracy Precision Recall IOU Dice Coefficient

Vein 99.2% 60.5% 85.2% 54.7% 69.9%

Artery 99.4% 72.1% 84.1% 63.7% 77.1%

Nerve 98.9% 55.2% 97.4% 54.3% 69.5%

Shrapnel 98.9% 43.7% 84.1% 43.5% 58.2%

Background 97.1% 99.8% 97.1% 96.9% 98.5%

In addition, we evaluated performance excluding the image background class as it
was the most prevalent feature in all the images. Focusing on only the features, YOLOv7
outscored U-Net for test precision, with a difference of 14.6% between the two models.
Conversely, U-Net outperformed YOLOv7 with regard to test recall, with a difference of
12.8%. Both models received similar scores for the IOU and Dice coefficient, with YOLOv7
slightly outscoring U-Net for the IOU by 4.3% and the Dice coefficient by 2.5%.

In contrast to the single-class shrapnel model, the U-Net multi-class model precision
fell by a value of 0.201 while recall increased by 16.4% for the shrapnel predictions. The
IOU and Dice coefficient metrics decreased slightly between shrapnel-only and multi-class
U-Net by 8.0% and 6.5%, respectively. YOLOv7 saw similar trends, with precision falling
by 18.5% and recall increasing by 4.5%. The accuracy and IOU saw almost no change, while
the Dice coefficient fell by 11.1% for the YOLOv7 multi-class model.

3.3. Triage Metric for Segmentation

For the triage metric, minimum distances between each feature and shrapnel were
calculated for all the test images, using both the ground truth and prediction masks
(Figure 6). For the ground truth labels, the average minimum distance between the shrapnel
and the closest anatomical feature was found to be 10.2 pixels, with a standard deviation of
10.8 pixels (Figure 7). The average minimum distances for both U-Net and YOLOv7 were
3.8 and 9.7 pixels, respectively. For each predicted image, the minimum distance triage
metric was compared to its corresponding ground truth label, with the difference between
the two distances (difference) and the percentage error (% error) being calculated for each
image. These values were then averaged across all the test images to obtain a broad view
of the distance triage performance. The average difference for the minimum distances
between the U-Net predictions and the ground truth for all the images was 7.7 pixels and an
average error of 72.5%. For the YOLOv7 predictions, a 5.1-pixel difference was calculated
at an average error of 45.5% (Figure 7).
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Figure 7. Summary of triage metrics for multi-class segmentation. (A) Average minimum triage
distance measurements for ground truth, YOLOv7, and U-Net (N = 46 images). (B) Percent error
calculations relative to the ground truth distances for YOLOv7 (N = 41 after outliers removed) and
U-Net (N = 38 after outliers removed).

4. Discussion

Given the small form factor, low power requirements, and portability of ultrasound
technology, it can be a valuable tool for providing more objective criteria for medical triage
at or near the point of injury. This is especially critical in remote medical scenarios where
resources are limited and medical evacuation can only be made available to the most
severe injuries, such as during combat casualty care. However, ultrasound imaging is only
valuable if the images can be easily and objectively interpreted for making medical triage
decisions. The artificial intelligent segmentation models proposed here for identifying
shrapnel and neurovascular features highlight how AI technology can help standardize
medical decision making.

For this effort, we evaluated the use of two segmentation models—YOLOv7 seg-
mentation and U-Net—for tracking shrapnel only or multi-class applications including
vein, artery, and nerve features. Both models were successful in identifying shrapnel and
neurovascular features using the thousands of training images collected in a custom-made
ultrasound tissue phantom. However, there were performance differences between the
two models, notably with precision and recall. Precision, a measurement of the accuracy of
positive predictions, was significantly higher with YOLOv7, while recall, a measurement
of accurately identifying positive features, was higher with U-Net. This was mostly due
to the prediction masks around the identified features in the YOLOv7 model were fitted
around the object perimeter, resulting in more false-negative pixels but few false-positive
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pixels, while U-Net generally had larger prediction masks resulting in an opposite false bias.
Which bias is preferred for medical triage tasks such as this one is unknown. The smaller
YOLOv7 prediction masks would improve accuracy in identifying the exact shape of the
shrapnel object, which could be critically important for aiding surgical removal, while
U-Net would provide a more cautious triage outlook by overestimating the closeness of
the shrapnel to neurovascular features (triage distances of 3.8 and 9.7 pixels for U-Net and
YOLOv7, respectively). However, either segmentation model likely provides a much higher
fidelity for the determination of distances between shrapnel and neurovascular features
than the object detection models we previously used for this application. Bounding boxes
may be inferior for labeling the irregularly shaped geometries that can often be expected
with foreign-body objects embedded in tissues.

It is worth noting that the determination of model performance for both AI models
is highly dependent on the training dataset. While attempts were made to add subject
variability to the phantom creation process, the tissue phantom used to collect the shrapnel
image dataset lacks tissue-level organization, as seen in animal tissue. In addition, the
ground truth labels are biased by the image labeler, which can be prone to error. Given the
quantity of images being labeled (over 20k images), only a single label was drawn for each
US image. For a more robust training set, multiple labelers should be pooled to remove
labeling subjectivity from the process. This is especially critical in the case of YOLOv7’s
performance, which oftentimes focused on accurately defining the edge of labeled features
compared to the ground truth mask. Additional US images will be needed to expand
on the training of these segmentation models prior to real-time deployment for use with
animal or human triage processing. The translation of this effort will require engagement
with the FDA to ensure that the regulatory concerns associated with AI technologies are
properly addressed.

5. Conclusions

In summary, medical imaging-based triage is a critical tool for accurate decision
making regarding injury severity and evacuation priorities if the images can be properly
interpreted. Image interpretation challenges are compounded in remote emergency medical
situations, such as combat casualty care, due to limited medical personnel and resource
availability. The segmentation AI models developed in this work were successful in
identifying both foreign-body objects and neurovascular features. This allowed for the
measurement of the proximity of the shrapnel to artery, vein, or nerve features as a means
of objectifying the triage criteria for this application. Further work is needed to train the AI
models using in-vivo medical images rather than in-vitro, and the triage framework can be
expanded to other applications of relevance to emergency medicine. This will improve the
prioritization of limited resources at or near the point of injury and improve evacuation
priorities during remote emergency medical situations.
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