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Abstract: Objective: Develop two fully automatic osteoporosis screening systems using deep learning
(DL) and radiomics (Rad) techniques based on low-dose chest CT (LDCT) images and evaluate their
diagnostic effectiveness. Methods: In total, 434 patients who underwent LDCT and bone mineral
density (BMD) examination were retrospectively enrolled and divided into the development set
(n = 333) and temporal validation set (n = 101). An automatic thoracic vertebra cancellous bone (TVCB)
segmentation model was developed. The Dice similarity coefficient (DSC) was used to evaluate
the segmentation performance. Furthermore, the three-class Rad and DL models were developed
to distinguish osteoporosis, osteopenia, and normal bone mass. The diagnostic performance of
these models was evaluated using the receiver operating characteristic (ROC) curve and decision
curve analysis (DCA). Results: The automatic segmentation model achieved excellent segmentation
performance, with a mean DSC of 0.96 ± 0.02 in the temporal validation set. The Rad model was
used to identify osteoporosis, osteopenia, and normal BMD in the temporal validation set, with
respective area under the receiver operating characteristic curve (AUC) values of 0.943, 0.801, and
0.932. The DL model achieved higher AUC values of 0.983, 0.906, and 0.969 for the same categories
in the same validation set. The Delong test affirmed that both models performed similarly in BMD
assessment. However, the accuracy of the DL model is 81.2%, which is better than the 73.3% accuracy
of the Rad model in the temporal validation set. Additionally, DCA indicated that the DL model
provided a greater net benefit compared to the Rad model across the majority of the reasonable
threshold probabilities Conclusions: The automated segmentation framework we developed can
accurately segment cancellous bone on low-dose chest CT images. These predictive models, which
are based on deep learning and radiomics, provided comparable diagnostic performance in automatic
BMD assessment. Nevertheless, it is important to highlight that the DL model demonstrates higher
accuracy and precision than the Rad model.

Keywords: bone mineral density; osteoporosis; deep learning; tomography; X-ray computed;
radiomics

1. Introduction

Osteoporosis, a commonly occurring musculoskeletal disease, is characterized by a
decrease in bone mineral density (BMD) and damage to the microstructure of bone tissue,
leading to heightened bone fragility and an increased risk of fractures [1]. Often termed
a “silent disease”, osteoporosis typically exhibits no discernible signs or symptoms until
fractures manifest [2]. Notably, osteoporosis-related fractures are the primary cause of
morbidity and mortality in the elderly. It is estimated that globally, approximately 9 million
new cases of osteoporosis-related fractures occur annually, leading to a substantial burden
on public health systems [3,4]. Given these circumstances, it is imperative to prioritize early
warning and screening for osteoporosis.

Radiomics (Rad), a quantitative technique that utilizes high-throughput radiomics
features, has provided substantial evidence in assessing diseases. Specifically, it has been
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shown that radiomics can effectively extract BMD information from thoracic vertebrae
within chest CT images, enabling the provision of quantitative heterogeneity measures [5].
This approach holds promise for opportunistic and preventive osteoporosis screening,
as it eliminates the need for additional costs and radiation exposure. In addition, there
is growing concern regarding the radiation risks associated with CT scans, given the
increasing utilization of CT imaging and the public’s heightened awareness of radiation
protection [6,7]. Low-dose chest CT (LDCT), particularly with a tube voltage of 80 kVp,
has been widely applied in clinical practice for lung cancer screening among the high-risk
population, as well as routine physical examination [8,9]. However, it is worth noting that
modifying the tube voltage setting can potentially impact the stability of the radiomics
model [10–12]. To the best of our knowledge, the Rad model of BMD assessment based on
80 kVp images has not been well established.

Recently, the field of artificial intelligence has witnessed a surge of interest in deep
learning (DL) techniques. DL utilizes deep convolutional neural networks (CNN) to
automatically extract high-dimensional features from CT images, enabling end-to-end
learning without requiring manual feature extraction [13,14]. DL has exhibited remarkable
performance in image analysis and has proven advantages in differentiating between
benign and malignant vertebral compression fractures [15]. Although both Rad and DL
methods have demonstrated promising diagnostic capabilities in relevant aspects, there
exists a dearth of studies comparing their performance in BMD assessment based on chest
LDCT images, especially 80 kVp CT images. Can the novel deep learning network surpass
traditional radiomics models in accurately diagnosing bone density?

It is worth noting that both Rad and DL methods require manual delineation of the
region of interest, which can be a burdensome workload for radiologists and may introduce
observer variability that can impact image analysis. Fortunately, advancements in deep
learning architectures have enabled the development of automatic segmentation models
that can mitigate these challenges and provide satisfactory segmentation results [16,17].
Therefore, this study had dual objectives. Firstly, we endeavored to train an automatic
segmentation model using VB-Net architecture specifically for thoracic vertebra cancellous
bone (TVCB). Secondly, we aimed to develop and compare the diagnostic performance of
two predictive models—a deep learning-based model (DL model) and a radiomics-based
model (Rad model)—for BMD assessment based on low-dose chest CT images acquired at
80 kVp. We hypothesize that the novel DL model may outperform traditional Rad models
in accurately assessing bone mineral density.

2. Materials and Methods

This retrospective study received approval from the Ethics Committee, which also
waived the requirement for informed patient consent (IRB No. PJ-KS-KY-2023-276).

2.1. Study Population

A total of 687 patients who underwent chest LDCT scans and BMD examination were
retrospectively retrieved from the picture archiving and communication system from May
2021 to April 2023. Patients with the following conditions were excluded: (1) the time
interval between LDCT and BMD was more than one month (n = 138); (2) the scanning
range failed to cover the required thoracic vertebra (n = 9); (3) a history of surgery and
metal implants in the lower thoracic vertebrae (n = 36); (4) bone metastasis of malignant
tumors (n = 38); (5) abnormal vertebral morphology in the lower thoracic vertebrae, such
as compression fracture, severe degenerative changes or deformities (n = 29); and (6) recent
use of drugs affecting bone metabolism (n = 3). Eventually, 434 patients were enrolled
and divided into a development set (n = 333, examined between May 2021 and June
2022) and a temporal validation set (n = 101, examined between July 2022 and April
2023) according to the examination time. This development set was utilized for training
automatic segmentation models as well as BMD assessment models. During the training
of the BMD assessment models (Rad and DL model), the development set was randomly
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partitioned into two subsets for BMD assessment models training and internal evaluation,
with 80% allocated for the internal training set and the remaining 20% for the testing
set. The temporal validation set was used to evaluate the performance of all models.
A detailed enrollment flowchart is shown in Figure 1, and the overall workflow of this
study is illustrated in Figure 2. The automatic segmentation framework construction, Rad
model, and DL model were developed and validated on the uAI Research Portal V1.1
(United Imaging Intelligence, Co., Ltd. (Shanghai, China)). The design of uAI Research
Portal architecture takes a modular and layered approach [18]: (1) The lower level is
composed of hardware drivers, such as graphics processing unit (GPU) accelerated using
NVIDIA CUDA, and cloud servers, such as Amazon web services (AWS); (2) At the middle
level, there is an application programming interface (API), primarily Python and C++,
contributing a range of algorithms (e.g., segmentation, classification); (3) the higher level
presents build blocks to the end users for domain-specific analysis.
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2.2. Image Acquisition and BMD Assessment

All CT images were acquired on a 256-row CT scanner (Revolution CT, GE HealthCare,
Milwaukee, WI, USA). The chest LDCT scans were acquired using a low tube voltage of
80 kV, smart mA (noise index: 10, 50–400 mA), rotation speed of 0.5 s/rot, detector width
of 80 mm, pitch of 0.992, and scanning slice thickness and slice interval of 5 mm. The scan
coverage started from the lung apexes to 2 cm below the diaphragm. All images were
reconstructed using the standard kernel, adaptive statistical iterative reconstruction-Veo
(ASIR-V) at 40% strength, and reconstruction thickness and interval of 1.25 mm.
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BMD examinations were performed using a standardized protocol following the man-
ufacturer’s guidelines for the quantitative computed tomography (QCT) workstation. The
details of the QCT scanning protocol can be found in Supplementary S1. Patient abdominal
data were transferred to a QCT Pro workstation (version 6.1, Mindways Software, Inc.
(Austin, TX, USA)), and BMD measurements were taken at two consecutive vertebral
bodies (L1 and L2). Compared to conventional methods, QCT measures volumetric BMD,
reflecting BMD in different regions (trabecular and cortical) of the skeleton. This gives
QCT an advantage in assessing osteoporosis severity, guiding treatment strategies, and
monitoring treatment efficacy. According to clinical guidelines for BMD assessment [19], os-
teoporosis was defined as a BMD below 80 mg/cm3, osteopenia as a BMD between 80 and
120 mg/cm3, and normal status as a BMD above 120 mg/cm3. For this study, the diagnostic
performance was analyzed through the construction of receiver operating characteristic
(ROC) curves, employing QCT data as the diagnostic standard. The ROC curve assesses a
classification or diagnostic model’s performance by plotting the true positive (sensitivity)
and false positive rate (1-specificity) against various thresholds [20]. This provides an
overview of the model’s performance in predicting bone status.
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2.3. TVCB Auto-Segmentation Framework and VOI Delineation

Budoff et al. suggested that the cancellous bone of the lower thoracic vertebrae (TVCB),
specifically T10–12, closely correlates with lumbar vertebrae in providing information about
bone mineral density (BMD), making it a viable target for BMD assessment [21]. Therefore,
the volume of interest (VOI) of TVCB was manually delineated on the axial images and
carefully avoided vertebral venous plexuses and cortical bone. The boundary was placed
along the inner edge of the vertebral cortex. In addition, 100 patients were randomly
selected to assess the interobserver repeatability in the manual segmentation, and VOI was
independently delineated on CT images by two readers (W. Wei and Y. Liu, with 5 and
12 years of experience in musculoskeletal radiology, respectively). The Dice similarity
coefficient (DSC) was employed to assess the consistency of inter-observer segmentation. If
a satisfactory agreement was achieved, the junior radiologist would complete the remaining
cases under the supervision of the senior radiologist.

For the auto-segmentation framework, we trained a cascade model with two VB-
Nets based on the coarse-to-fine principle, including a coarse-scale segmentation network
for rapidly locating the target area and a fine-scale segmentation network for precisely
delineating target and optimization. The detailed architecture of the VB-Net is shown
in Supplementary Figure S1. In pre-processing, it was normalized by subtracting the
window level (WL: 100) and dividing by the window width (WW: 300). For training the
coarse-scale segmentation network, global sampling was used. The images were resampled
to 3 × 3 × 3 mm using B-Spline interpolation. In the fine-scale segmentation network,
images were resampled to crop high-resolution local images with a resampling voxel size
of 1 × 1 × 1 mm, and mask sampling was used. The learning rate was 1 × 10−4, the
batch size was 8, the number of epochs was set to 1001, and the optimizer was Adam.
We used the focal loss function to monitor the convergence of the training model and
optimize the network. The detailed settings of the coarse-scale segmentation network are
given in Supplementary S2. DSC and volume difference (VD) were used to evaluate the
segmentation performance of the model. The DSC coefficient is a measure of similarity
between the segmentation results and the reference criteria. Its calculation method is
based on the overlapping area between the segmentation result and the reference standard.
The VD was defined as the absolute value of the manually segmented volume minus the
automatically segmented volume.

2.4. Radiomics Model Construction

After establishing the auto-segmentation model, the model was used for automatic
cancellous bone segmentation in the development and temporal validation sets.

2.4.1. Radiomics Features Extraction

All images were normalized using Z-score and resampled, the voxel spacing to
1 × 1 × 1 mm using B-Spline interpolation, and the image gray level was discretized with
25 binwidth. Z-score normalization is a widely utilized technique for standardizing data
to make it comparable across different features. This is accomplished by subtracting the
mean from each data point and dividing it by the standard deviation of the feature’s data
within the given sample. A total of 90 features in six categories were extracted from the
original images, including first-order features and texture features. Details of the extracted
radiomics features are provided in Supplementary Table S1.

2.4.2. Features Selection and Model Construction

The development set was randomly divided into the internal training and testing sets
at a ratio of 8:2. The Z-score normalization was conducted to pre-process the features and
ensure the comparability between the data before the feature selection and Rad model
construction. A step-wise feature selection strategy was used to determine the optimal
features (Supplementary S3).



Bioengineering 2024, 11, 50 6 of 15

Finally, random forest was performed to establish a three-classification model to
distinguish osteoporosis, osteopenia, and normal BMD. Random forest is a widely used
ensemble technique in radiomics classification tasks. It is based on a collection of decision
trees, forming a “forest”, and incorporates random feature selection and bootstrap sampling
during training and prediction. The ROC curve was conducted to evaluate the efficacy
of the Rad model in diagnosing osteoporosis, osteopenia, and normal BMD. The area
under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision,
and accuracy were calculated to evaluate the performance of training, internal test, and
temporal validation set.

2.5. Deep Learning Network Construction

The DL model was trained using the residual network (Res-Net), which integrates
residual learning to prevent gradient dispersion and precision loss in deep networks,
achieving enhanced accuracy as the network depth increases [22]. The Res-Net is composed
of four simple residual blocks, which enable the network to learn more efficiently and
effectively; each residual block consists of two convolutional layers followed by a skip
connection, which can effectively learn both low-level and high-level features simulta-
neously. During the training process, all images were resampled with voxel spacing of
1 × 1 × 1 mm and normalized by min-max normalization. Figure 3 shows the detailed
architecture of the Res-Net. The batch size was set to 8, and the IO threads were set to
4. The focal loss function and Adam optimizer were used to monitor the convergence of
the model with an initial learning rate of 1 × 10−4, and the “step” learning rate strategy
was applied to accelerate convergence. The diagnostic performance of the deep learning
classification model was evaluated on the internal test and temporal validation sets using
ROC analysis.
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2.6. Statistical Analysis

SPSS version 24.0 (IBM Corp., Armonk, NY, USA) and MedCalc version 20.022 (Med-
Calc Ltd., Ostend, Belgium) were used for statistical analysis. The data were tested for
normality using the Kolmogorov–Smirnov test, and continuous variables were expressed
as mean ± standard deviation or medians (25–75th percentile). The chi-square test was
used for gender and bone status distribution in development and temporal validation sets.
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An independent sample t-test was used to test the age difference between the development
and the temporal validation sets. The DeLong test was used to assess the difference in
diagnostic performance between the Rad model and the DL model. The clinical application
value of the Rad model and the DL model was evaluated in the temporal validation set by
constructing decision curve analysis (DCA).

3. Results
3.1. Participant Demographics

A total of 434 patients were enrolled in the study, including 333 patients in the devel-
opment set (mean age: 62.89 ± 11.55 years) and 101 patients in the temporal validation
set (mean age: 60.76 ± 10.41 years). In both sets, there were no significant differences
in the distributions of age, gender, and BMD distribution. The detailed demographic
characteristics are shown in Table 1.

Table 1. Participant demographics.

Characteristic Development Set Temporal Validation Set p-Value

All (n) 333 101
Male (n) 170 57

Female (n) 163 44 0.404
All (years) 62.89 ± 11.55 60.76 ± 10.41 0.098

Male (years) 65.37 ± 10.37 62.60 ± 9.14 0.073
Female (years) 60.30 ± 12.17 58.39 ± 11.54 0.350

Osteoporosis (n) 84 20
Osteopenia (n) 134 34

Normal BMD (n) 115 47 0.094
Data are presented as the number of patients except for mean ± standard deviation for age.

3.2. Automatic Segmentation Model

The cancellous bone segmentation was in good agreement between the two observers,
with a mean DSC of 0.96 ± 0.02. The automatic segmentation model demonstrated excellent
performance with a mean DSC of 0.96 ± 0.02 in the temporal validation set. The detailed
distribution of DSC is shown in Figure 4. The VD did not exceed 1 cm3 with a mean of
0.50 (0.17, 0.69). The segmentation performance of TVCB for different BMD populations is
illustrated in Table 2.
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Table 2. The Dice similarity coefficient and volume difference of manual and automatic segmentation.

Category DSC VD (cm3)

All 0.96 ± 0.02 0.50 (0.17, 0.69)
Osteoporosis 0.97 ± 0.01 0.44 (0.09, 0.68)
Osteopenia 0.96 ± 0.02 0.53 (0.19, 0.63)

Normal BMD 0.96 ± 0.02 0.50 (0.18, 0.80)
DSC, Dice similarity coefficient; VD, volume difference; BMD, bone mineral density.

3.3. The Comparison of the Rad Model and DL Model

In the Rad model, 6 radiomics features were selected, including 1 first-order feature
and 5 texture features (Supplementary Table S2). The AUCs in predicting osteoporosis,
osteopenia, and normal BMD were 0.919, 0.873, and 0.976, respectively, in the internal test
set. In the temporal validation set, the AUCs were 0.943, 0.801, and 0.932, respectively.

As for the DL model, the AUCs in predicting osteoporosis, osteopenia, and normal
BMD were 0.942, 0.866, and 0.972, respectively, in the internal test set. In the temporal
validation set, the AUCs were 0.983, 0.906, and 0.969, respectively.

The two models achieved similar performance in distinguishing osteoporosis, os-
teopenia, and normal BMD for the temporal validation set, with no significant difference
demonstrated by the DeLong test. The results of more detailed metrics are summarized in
Table 3, and the ROC curves are shown in Figures 5 and 6. DCA showed that the DL model
had a higher net benefit than the Rad model across the majority of the range of reasonable
threshold probabilities in the temporal validation set, indicating that the DL model has
good clinical utility (Figure 7).

Table 3. Overall performance of BMD assessment for the Rad model and DL model.

Model Set Category AUC 95%CI Sensitivity
(%)

Specificity
(%)

Precision
(%)

Accuracy
(%)

Rad Model

Internal training set

Osteoporosis 0.959 0.927–0.979 88.1 92.0 88.9
Osteopenia 0.881 0.835–0.917 90.7 75.5 67.3

Normal BMD 0.977 0.95–0.991 84.8 98.9 96.3
Overall 79.0

Internal test set

Osteoporosis 0.919 0.826–0.971 88.2 86.0 71.4
Osteopenia 0.873 0.769–0.942 81.5 85.0 60.0

Normal BMD 0.976 0.906–0.998 100.0 93.2 90.0
Overall 70.2

Temporal validation set

Osteoporosis 0.943 0.878–0.979 90.0 90.1 85.7
Osteopenia 0.801 0.709–0.874 82.4 67.2 58.1

Normal BMD 0.932 0.864–0.972 93.6 85.2 84.3
Overall 73.3

DL Model

Internal training set

Osteoporosis 0.975 0.948–0.990 95.5 96.5 87.7
Osteopenia 0.936 0.900–0.962 89.7 95.6 93.2

Normal BMD 0.972 0.944–0.988 96.7 94.8 95.6
Overall 92.5

Internal test set

Osteoporosis 0.942 0.857–0.985 100.0 76.0 75.0
Osteopenia 0.866 0.760–0.937 74.1 85.0 71.4

Normal BMD 0.972 0.900–0.997 100.0 90.9 87.0
Overall 77.6

Temporal validation set

Osteoporosis 0.983 0.935–0.998 100.0 92.6 84.2
Osteopenia 0.906 0.831–0.955 85.3 80.6 68.3

Normal BMD 0.969 0.914–0.993 95.7 85.2 92.7
Overall 81.2

DL, deep learning; Rad, radiomics; AUC, area under the receiver operating characteristic curve; CI, confidence
interval; BMD, bone mineral density.
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Model Set Category AUC 95%CI Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) 

Rad 
Model 

Internal train-
ing set 

Osteoporosis 0.959 0.927–0.979 88.1 92.0 88.9  
Osteopenia 0.881 0.835–0.917 90.7 75.5 67.3  

Normal BMD 0.977 0.95–0.991 84.8 98.9 96.3  
Overall      79.0 

Internal test set 

Osteoporosis 0.919 0.826–0.971 88.2 86.0 71.4  
Osteopenia 0.873 0.769–0.942 81.5 85.0 60.0  

Normal BMD 0.976 0.906–0.998 100.0 93.2 90.0  
Overall      70.2 

Temporal vali-
dation set 

Osteoporosis 0.943 0.878–0.979 90.0 90.1 85.7  
Osteopenia 0.801 0.709–0.874 82.4 67.2 58.1  

Normal BMD 0.932 0.864–0.972 93.6 85.2 84.3  
Overall      73.3 

DL Model 

Internal train-
ing set 

Osteoporosis 0.975 0.948–0.990 95.5 96.5 87.7  
Osteopenia 0.936 0.900–0.962 89.7 95.6 93.2  

Normal BMD 0.972 0.944–0.988 96.7 94.8 95.6  
Overall      92.5 

Internal test set 

Osteoporosis 0.942 0.857–0.985 100.0 76.0 75.0  
Osteopenia 0.866 0.760–0.937 74.1 85.0 71.4  

Normal BMD 0.972 0.900–0.997 100.0 90.9 87.0  
Overall      77.6 

Temporal vali-
dation set 

Osteoporosis 0.983 0.935–0.998 100.0 92.6 84.2  
Osteopenia 0.906 0.831–0.955 85.3 80.6 68.3  

Normal BMD 0.969 0.914–0.993 95.7 85.2 92.7  
Overall      81.2 

DL, deep learning; Rad, radiomics; AUC, area under the receiver operating characteristic curve; CI, 
confidence interval; BMD, bone mineral density.  
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Figure 5. The receiver operating characteristic curves of the radiomics model on the internal training
(A), the internal testing set (B), and the temporal validation set (C). The AUC values of the radiomics
model on the internal training set for osteoporosis, osteopenia, and normal BMD were 0.959, 0.881,
and 0.977, respectively. As for the internal testing set, these values were 0.919, 0.873, and 0.976,
respectively. As for the temporal validation set, these values were 0.943, 0.801, and 0.932, respectively.
The red, blue, and green lines represent predicted osteoporosis, osteopenia, and normal BMD,
respectively. AUC, area under the receiver operating characteristic curve; BMD, bone mineral density.
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Yang et al. (Deep learning) [5] 
Detecting osteopenia 0.831 73.6 80.5 
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Detecting osteoporosis 0.972 95.6 88.0 

Figure 6. The receiver operating characteristic curves of the deep learning model on the internal
training (A), the internal testing set (B), and the temporal validation set (C). The AUC values of
the radiomics model on the internal training set for osteoporosis, osteopenia, and normal BMD
were 0.975, 0.936, and 0.972, respectively. As for the internal testing set, these values were 0.942,
0.866, and 0.972, respectively. As for the temporal validation set, these values were 0.983, 0.906, and
0.969, respectively. The red, blue, and green lines represent predicted osteoporosis, osteopenia, and
normal BMD, respectively. AUC, area under the receiver operating characteristic curve; BMD, bone
mineral density.

Furthermore, we compared the performance of the proposed method with several
benchmark methods. The comparison reveals that our DL model demonstrates superior
performance in detecting osteoporosis, osteopenia, and normal BMD (Table 4).
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Figure 7. DCAs of the Rad model and DL model in the temporal validation set. (A) DCA of the Rad
model and DL model in predicting abnormal BMD. (B) DCA of the Rad model and DL model in
predicting osteopenia. (C) DCA of the Rad model and DL model in predicting osteoporosis. Rad
model, radiomics model; DL model, deep learning model; DCA, decision curve analysis; BMD, bone
mineral density.

Table 4. The performance of our proposed method is compared with several benchmark methods.

Authors(methods) Key Findings AUC Sensitivity (%) Specificity (%) Accuracy (%)

Xue et al. (Radiomics) [23] Detecting abnormal BMD 0.944 95.8 - -
Detecting osteoporosis 0.866 83.3 - -

Chen et al. (Radiomics) [24] Detecting abnormal BMD 0.960 93.0 89.0 91.0
Detecting osteoporosis 0.980 95.0 93.0 94.0

Wang et al. (Radiomics) [25] Detecting osteoporosis 0.914 90.7 75.0 89.8

Ours (Radiomics)
Detecting abnormal BMD 0.932 93.6 85.2

73.3Detecting osteopenia 0.801 82.4 67.5
Detecting osteoporosis 0.943 90.0 90.1

Yang et al. (Deep learning) [5] Detecting osteopenia 0.831 73.6 80.5 -
Detecting osteoporosis 0.972 95.6 88.0

Ours (Deep learning)
Detecting abnormal BMD 0.969 95.7 85.2

81.2Detecting Osteopenia 0.906 85.3 80.6
Detecting osteoporosis 0.983 100 92.6

BMD, bone mineral density.

4. Discussion

In this study, we developed an automatic TVCB segmentation model using the VB-Net
network architecture and a coarse-to-fine cascade training strategy based on 80 kVp chest
LDCT images. The model achieved segmentation accuracy comparable to that of manual
depiction, with mean DSC surpassing 0.90. In addition, we compared the classification
performance between the Rad and DL models for BMD assessment. The AUCs of the
Rad and DL models were 0.943 and 0.983 for predicting osteoporosis, 0.801 and 0.906 for
predicting osteopenia, and 0.932 and 0.969 for predicting normal BMD in the validation
set, respectively. The Delong test showed that for diagnostic performance, there was no
statistically significant difference between the Rad and DL models. However, the DL model
demonstrated superior sensitivity, specificity, precision, and overall accuracy in evaluating
various performance metrics compared to the traditional Rad model. In addition, the
end-to-end learning strategy employed in the DL model eliminated intermediate steps
such as Rad model data pre-processing, feature extraction, and classifier selection, which
reduces human intervention and improves the efficiency of model construction and the
objectivity of the results.

LDCT is primarily accomplished by reducing the tube current or tube voltage. As the
radiation dose is directly proportional to the square of the tube voltage, reducing the tube
voltage can effectively decrease the radiation dose [26]. This is particularly advantageous
for the Asian population, which typically has smaller body sizes. Lower tube voltage scans
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do not significantly compromise diagnostic confidence but provide more cost-effective and
radiation-dose-efficient imaging for patients [27].

To the best of our knowledge, no attempt has been made to establish automatic seg-
mentation of TVCB on LDCT using 80 kVp. Previous segmentation models have been
constructed using 120 kVp images in a complex or error-prone manner. Chen et al. initially
used CNN networks to identify the entire thoracic vertebrae and subsequently applied an
erosion algorithm to remove the bone cortex [24]. However, the working process of this
method to obtain TVCB was complex. Wang et al. used a fixed-size cylindrical shape to
identify TVCB, leading to incomplete segmentation in cancellous bone and introducing
bias in the BMD assessment [28]. In our study, we employed the VB-Net to construct an
automatic segmentation model for TVCB. The VB-Net is a modified version of CNN that
incorporates a bottleneck structure in place of convolutional, normalization, and activa-
tion layers. This modification not only reduces the number of model parameters but also
improves inference efficiency and robustness [28]. The VB-Net has been demonstrated to
produce satisfactory segmentation results, with established applications in cervical and
lung cancer segmentation [29,30]. Additionally, the uneven distribution of BMD in the
thoracic vertebrae can reduce the sensitivity of osteoporosis assessment if the entire ver-
tebrae are segmented. However, some researchers found that utilizing the lower thoracic
vertebrae (T10–12) for BMD assessment yields high levels of accuracy and repeatability [21].
Therefore, we used a cascade approach utilizing VB-Net in this work. The 10-12th vertebrae
were initially identified at a “coarse” resolution to achieve accurate spatial localization, fol-
lowed by the detailed delineation of bony cortex and cancellous bone at a “fine” resolution.
It is worthwhile to emphasize the advantages of our method, as it efficiently and accurately
identifies the TVCB in chest LDCT images. Our method achieved DSC results exceeding
0.90 in the temporal validation set.

Radiomics encompasses the extraction of high-dimensional tissue data from medical
images, which can be further integrated with machine learning techniques to establish
radiomics signatures. The radiomics features extracted from TVCB can reflect the trans-
formation of bone microstructure and accurately assess BMD [31]. Notably, Chen et al.
pointed out that the performance of radiomics in assessing BMD significantly decreased in
the external validation set, with a 20% lower accuracy compared to the internal validation
set [24]. This phenomenon occurs because the stability of radiomics features depends on
image acquisition parameters. Altering factors such as tube voltage or slice thickness can
indeed impact the effectiveness of existing radiomics models [32]. Therefore, we deem it
imperative to establish a novel Rad model in 80 kVp chest CT images for BMD assessment.
To ensure the stability of the feature selection process and the generalization ability of the
Rad model, we employed a step-wise feature selection strategy to select 6 highly effective
features. Encouragingly, these 6 features have been closely related to bone quantity, mi-
crostructure, and loss in relevant studies [23,25]. Our Rad model could provide valuable
information in BMD assessment and demonstrate comparable or superior performance
compared to recent research results.

Deep learning has emerged as a highly promising approach for achieving accurate
diagnostic outcomes in medical imaging. Recent advancements in artificial intelligence
have been crucial in driving this progression. Mehdi et al. developed a DL model that was
capable of distinguishing tumor invasiveness, achieving accuracy comparable to pathology
results [33]. Li et al. developed a DL model based on CT images using Res-Net, achieving
faster convergence and high accuracy in diagnosing vertebral fractures [34]. Kitamura
et al. [35] discovered that Res-Net convolutional neural networks demonstrated strong
performance in ankle fracture detection with small sample sizes. Therefore, we selected
Res-Net to build a three-classification BMD assessment model. The core concept of Res-
Net is to learn residuals, which involves the network learning the difference between
inputs and outputs. To tackle the challenges of vanishing and exploding gradients in
training deep neural networks, Res-Net introduces “residual blocks” [34]. These blocks
enable the network to efficiently capture the disparity between input and output through
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shortcut connections, resulting in faster convergence and improved accuracy [36]. With
this innovative network architecture, Res-Net empowers models to train deeper neural
networks, effectively addressing complex visual tasks like image classification, object
detection, and semantic segmentation.

In our study, the DL model utilized automatic segmentation of TVCB as an input, elim-
inating the need for time-consuming, manually segmented regions of interest. Furthermore,
the DL model enabled the extraction and analysis of high-level semantic features in an end-
to-end manner, facilitating the automatic learning of pertinent and robust features without
human intervention. Consequently, the overall approach mitigated human bias arising
from artificial features. Our DL model yielded satisfactory outcomes in BMD assessment.

Previous studies have compared the performance of Rad and DL models across vari-
ous tasks. Mehdi et al. [33] discovered that the Rad model outperformed the DL model in
predicting malignancy of pulmonary nodules from chest LDCT images. Li et al. [37] ob-
served that their DL model outperformed the Rad model in classifying molecular subtypes
of diffuse gliomas. In our study, we developed Rad and DL models based on relatively
large samples. To the best of our knowledge, this is the first study to investigate and
compare the performance of DL networks against traditional Rad models in assessing BMD.
The main findings of our study demonstrate that the novel DL model outperformed the
traditional Rad model in the precise assessment of BMD. The DL model exhibited enhanced
sensitivity, specificity, precision, and overall accuracy across various performance metrics
relative to the traditional Rad model. Zhou et al. [37] obtained similar results when distin-
guishing between benign and malignant breast lesions using Rad and DL models. In the
Rad model, it is necessary to determine the most suitable features for the BMD assessment
task in advance. In contrast, the DL model does not require predefined features and can
automatically determine the nuanced features of the target task with almost no human
intervention, ensuring objectivity and efficient classification performance. Consequently,
our results indicate that deep learning has the potential to serve as a diagnostic tool for
BMD assessment in clinical practice. The improved performance of the DL model can
provide enhanced diagnostic accuracy, thus leading to better clinical decision-making and
improving patient outcomes. By accurately predicting BMD status, clinicians can identify
individuals at high risk of fractures and tailor intervention strategies accordingly. This
approach can lead to early interventions that prevent or mitigate the progression of bone
diseases, ultimately improving patient outcomes and reducing healthcare costs. Further-
more, the successful application of DL networks in assessing BMD highlights the potential
for similar approaches in other medical domains.

This study has some limitations. Firstly, our proposed Rad and DL models were
developed using chest LDCT images acquired from a single center, which may restrict their
applicability of the models to the LDCT in other institutions. Additionally, while residual
networks have shown significant success in enhancing performance, the architecture can
also suffer from black-box effects stemming from the complexity caused by convolutional
layers and non-linear activation functions. Finally, the selection of the random forest
classifier, although informed by a comprehensive literature review, was not accompanied
by comparative analysis against other potential classifiers in our study, which leaves room
for exploration regarding optimal classification strategies.

5. Conclusions

In conclusion, we developed and evaluated a model for automatic TVCB segmentation
using 80 kVp chest LDCT images, which laid the foundation for future fully automated
BMD assessment programs. In addition, we developed deep learning-based and radiomics-
based predictive models, which provided similar excellent diagnostic performance in
BMD assessment. Nevertheless, it is important to highlight that the deep learning model
demonstrates higher accuracy and precision compared to the radiomics model. Future
research should investigate whether variations in CT scan parameters would affect the
performance of DL models in assessing bone mineral density.
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protocol and measurement; Supplementary S2: The detailed settings of the coarse-scale segmentation
network; Supplementary S3: Radiomic features extraction methods; Figure S1: VB-Net architecture.
VB-Net is a variant segmentation network structure of V-Net that utilizes a bottleneck structure (B
stands for bottleneck) instead of the convolution, normalization, and activation layers within the
Down Block and Up block. A bottleneck structure in a neural network has fewer neurons than its
adjacent layers, which helps compress feature representations to fit in the available vector space. The
bottleneck structure consists of three convolutional layers. The first and third convolutional layers
use the unit convolution kernel and match the dimensions of the preceding and succeeding layers,
respectively. The second convolution layer performs spatial convolution on the feature image that
has been reduced in dimension by the first convolution layer. This reduction in dimensionality helps
reduce the number of model parameters, leading to increased efficiency; Table S1: Radiomics features
extracted from original images; Table S2: Selected features for constructing radiomics model.
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