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Abstract: Work-related musculoskeletal disorders are globally one of the leading causes of work-
related injuries. They significantly impact worker health and business costs. Work task ergonomic
risk indices have been developed that use observational assessments to identify potential injuries,
and allow safety managers to promptly intervene to mitigate the risks. However, these assessments
are very subjective and difficult to perform in real time. This work provides a technique that can
digitalize this process by developing an online algorithm to calculate the NIOSH index and provide
additional data for ergonomic risk assessment. The method is based on the use of inertial sensors,
which are easily found commercially and can be integrated into the industrial environment without
any other sensing technology. This preliminary study demonstrates the effectiveness of the first
version of the Online Lifting Index (On-LI) algorithm on a common industrial logistic task. The
effectiveness is compared to the standard ergonomic assessment method. The results report an
average error of 3.6% compared to the NIOSH parameters used to calculate the ergonomic risk and a
relative error of the Lifting Index of 2.8% when compared to observational methods.

Keywords: ergonomic risk assessment; event detection; biomechanical analysis; NIOSH; work-related
musculoskeletal disorders; wearable technology

1. Introduction

Worker quality of life is crucial across all industrial fields; however, work-related
musculoskeletal disorders (WMSDs) are having a worldwide impact on worker health [1,2].
The European Agency for Safety and Health at Work survey found that, in Europe, 60%
of work-related health problems affect the musculoskeletal system, and the back is the
most affected area [3]. Reducing or preventing these disorders would significantly im-
pact companies and society from both a well-being and an economic perspective, since
reducing WMSDs will result in a decrease in absenteeism, and a saving of money and
manpower [4–7]. National surveys in the U.K. [8] and Germany [9] reported GBP 5.7 billion
of production losses and more than EUR 30 billion of gross losses due to musculoskeletal
disorders in the upper body. To prevent/reduce these costs companies rely on ergonomists
and qualified personnel that, through field inspections, assess operating environments and
movements performed by workers. Based on observational measures, they can calculate
ergonomic risk indices. These risk indices differ according to the tasks performed and
consider both the kind of activity executed (static, dynamic, repetitive, etc.) and the body
segment involved. For example, to evaluate the risk of WMSDs, and thus the injury-free
lifting capabilities during manual material handling (MMH) activities, the NIOSH lift-
ing equations [10–12] are used, while the TACOS [13] is the most appropriate to assess
static and dynamic postural aspects. For workers performing repetitive movements and
exertions of the upper limbs, relevant assessment methods are the OCRA [14], the Strain

Bioengineering 2024, 11, 14. https://doi.org/10.3390/bioengineering11010014 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering11010014
https://doi.org/10.3390/bioengineering11010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0002-0944-5773
https://orcid.org/0000-0002-6233-9961
https://orcid.org/0000-0001-7399-7399
https://doi.org/10.3390/bioengineering11010014
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering11010014?type=check_update&version=2


Bioengineering 2024, 11, 14 2 of 14

Index [15], and the RULA. The last three methods include subjective data to quantify the
effort required to accomplish the task, and they have poor repeatability, making them
unsuitable for objective analysis [16]. As employers have legal (and ethical) obligations to
avoid/limit worker exposure to manual handling of loads, evaluation of the ergonomic risk
of specific work tasks is vital in assisting the whole ergonomic analysis and redesign of the
work environment. In fact, to reduce the chance of injury, work tasks should be designed
to limit exposure to ergonomic risk factors. Engineering controls are the most desirable,
where possible [17].

This paper focuses on MMH, and the associated work tasks regulated by ISO
11228-1, [18], namely: lifting, carrying, and lowering. The MMH ergonomic assessment
is carried out in an observational manner using the NIOSH method to calculate the risk
indices. A digital ergonomic assessment is fundamental to deliver a more consistent
risk evaluation [19–22]. From the literature, several works [22–24] aim to evaluate the
ergonomic risk associated with the upper limbs for human–robot interaction purposes.
Some studies provide an online risk evaluation, but they use equipment that is not well
suited for real adoption in industrial scenarios, such as force sensors to calculate ground
reaction forces [20], high-resolution cameras for motion capture [19], or box sensing to
track the movement of boxes [25]. More recently, Lorenzini et al. [26] have suggested
evaluating ergonomic risk factors using robotics-inspired indices. Other works, based
on ergonomic assessment worksheets (EAWSs), make use of data from inertial suits and
sensorized gloves to train recognition models based on hidden Markov models to provide
online risk evaluation, as in [27–29]. However, these are still not correlated to worldwide
accepted standard ergonomic assessment methods as cited in ISO 11228-1:2022 [30].

This study uses a set of sensors that can be included in a wearable device for online
ergonomic assessment in MMH. Here, data from only inertial sensors are used together
with kinematic-based algorithms to assess a worker’s postures during logistics activities. A
proof of concept is proposed to provide online ergonomic assessment of the NIOSH Lifting
Index. The algorithm identifies lifting and release instants of each activity and monitors
any incongruous or dangerous postural behavior and warns the worker. The introduction
of online ergonomic teaching features contributes to a safer industrial work environment,
as introduced in Figure 1. Indeed, digitalization of the ergonomic risk assessment enables a
standardized evaluation procedure based on stable data, allowing comparisons between
workers or within multiple activities performed by the same worker. Moreover, a digital
ergonomic evaluation, if recorded over a long period, allows the ergonomist to support the
assessment with a statistical analysis. Several essential services would be enabled when
considering extending the ergonomic risk assessment from a single measurement event to a
continuum measurement supported by a non-invasive wearable device. Online ergonomic
assessment will enable monitoring of the risk evolution over time and worker training
during work shifts by eliminating risky postural attitudes; see Figure 1. This preliminary
study has the goal of improving the quality of working conditions for workers according
to the civil construction and railway sector requirements mentioned in [31]. In this paper,
Section 2 defines the general framework and details the innovative architecture for the
assessment of the NIOSH lifting index. Section 3 describes the experimental protocol used
to validate our ergonomic evaluation method. The results are presented in Section 4 and
discussed in Section 5. Finally, Section 6 offers some concluding remarks and directions for
future work.
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Figure 1. Human in the loop. This work aims at improving working conditions by providing online
ergonomic evaluations of the NIOSH Lifting Index.

2. Materials and Methods
2.1. On-LI Architecture

The Online Lifting Index (On-LI) architecture proposed in this work consists of
two interconnected layers, as shown in Figure 2. The On-LI algorithm exchanges sev-
eral inputs internally and data of different natures, such as inertial, kinematic, geometrical,
and temporal information, to produce an accurate assessment of the ergonomic risks asso-
ciated with MMH activities. In this scheme, the first layer can be considered as the physical
level. It is formed from the wearable IMU sensors and the processing unit. These sensors
acquire the subject-specific inertial measurements and the processing unit collects and fuses
these data into the digital layer. The digital layer represents the central core of this work,
and it is responsible for the data processing and the evaluation level. The main blocks of
the digital layer are: the kinematic analysis, the event detector algorithm (EDA), and the
evaluation blocks. The kinematic analysis and the EDA are strongly interconnected and
fetch all data for the evaluation level. Finally, the evaluation level includes the ergonomic
assessment and the visual feedback of the On-LI system. The On-LI has been developed to
work online, producing assessments of the NIOSH Lifting Index and visual feedbacks of
the most critical postures adopted by subjects. At the moment, the On-LI’s main limitation
is the wearable sensors currently used, which do not allow online data sharing. The future
goal would be to enable real-time communication with the wearable sensors to enhance
the On-LI by ensuring real online and continuous assessments of the NIOSH Lifting Index
and relevant warnings for workers. This work focuses on verifying the effectiveness of
our online ergonomic evaluation method through simulations that emulate real-time data
sharing, and comparing the results against the traditional observational method.

2.2. Kinematic Analysis

The data gathered and shared by the physical level of the On-LI architecture is fed to
the kinematic analysis block. Here, the kinematic variables are processed. The position
pW

i ∈ R3 and the orientation matrix RW
i ∈ SO(3) of each i-th link are used to reconstruct

the biomechanical model of each subject. The model consists of i = 14 links connected by
eleven spherical joints and a “virtual” joint with six degrees of freedom (DoFs). During the
functional calibration of the wearable suit, the world frame W is established with the x-axis
pointing forward, the y-axis pointing to the left, and the z-axis pointing upward, as shown
in Figure 3. A local frame is attached to the middle of each link in the model, starting from
the pelvis frame P, which is placed in the midpoint of the right and left antero-superior
iliac spine. The “virtual” joint relates the instantaneous position and orientation of P with
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respect to frame W. It consists of three prismatic joints for the linear displacement and a
spherical joint for the orientation. The biomechanical model can be considered a kinematic
chain with branches. From frame P, three branches spread toward the trunk and toward
the right and left hips. Two additional branches originate from trunk frame T and connect
to the right and left shoulders. Given the pelvis position vector pW

P (t), the biomechanical
model is generated iteratively as follows:

pW
Rhip(t) = pW

P (t) + RW
P (t)lP

hip (1)

where the vector pW
P (t) and the matrix RW

P (t) represent the absolute position and orienta-
tion of frame P with respect to frame W, respectively. The variable pW

Rhip represents the

right hip position vector expressed in frame W coordinates. The vector lP
hip represents

the length from the pelvis to the hips, expressed in P frame coordinates. In this way, all
segments of the biomechanical model are expressed in frame W coordinates. However, the
subject’s overall orientation may vary widely while performing MMH activities, especially
about the z-axis of frame W. This makes the kinematic analysis in W coordinates cumber-
some. Therefore, an additional “virtual” frame B is considered and each hand position and
velocity vector is projected onto it. Frame B can be thought of as a frame attached to the
grasped object. The orientation of Frame B is estimated starting from the orientation on
each hand. The transformation matrix R̂W

B (t) results in

R̂W
B (t) =

 cos(q̄H) −sin(q̄H) 0
sin(q̄H) cos(q̄H) 0

0 0 1

 (2)

which corresponds to a rotation of q̄h radians about the z-axis of frame W. The variable
q̄H(t) corresponds to the average of the right, qRHaz(t), and left, qLHaz(t), angles of the
hands about the z-axis of frame W. The position and velocity vectors pW

RHa, vW
RHa, pW

LHa,
and vW

LHa of the right and left hands, respectively, are projected in frame B coordinates
as follows:

pB
RHa(t) = R̂W

B (t)TpW
RHa(t)

vB
RHa(t) = R̂W

B (t)TvW
RHa(t)

(3)

where R̂W
B (t)T is the inverse of matrix R̂W

B (t). This work targets MMH activities, and
therefore, the relative distance, as well as the average and the relative velocities of the
hands, represent key variables for identifying the grasping, lifting, and release phases. From
the difference ∆pB

H(t) = pB
RHa(t)− pB

LHa(t), it is possible to estimate the instantaneous
relative distance d(t) between the hands as follows:

d(t) = 2
√

∆pB
H(t)

T∆pB
H(t). (4)

This variable is relevant in identifying the load grasping. The average velocity vector
v̄B

H(t) is given by

v̄B
H(t) =

vB
RHa(t) + vB

LHa(t)
2

. (5)

In particular, the z component of v̄B
H(t) assumes relevance in identifying the load

lifting instant. Finally, the hand’s relative velocity vector ∆vB
H(t) is computed as follows:

∆vB
H(t) = vB

LHa(t)− vB
RHa(t). (6)

Specifically, the y component of ∆vB
H(t) can be thought of as the normal velocity with

respect to the load. Positive values of ∆vB
Hy
(t) are associated with the load release. The

kinematic analysis block routes these three variables to the event detector algorithm. In
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addition, this block connects to the ergonomic assessment and provides it with the pelvis,
right/left hip, and knee flexion/extension angles.

Figure 2. The On-LI algorithm uses NIOSH evaluation criteria to provide an online assessment of the
ergonomic risks associated with the MMH task.

Figure 3. The biomechanical model of the On−LI system. Such a model reconstructs the subject
posture. The dark red lines represent the body segments, the red and green squares represent the
body joints of the right and left sides, respectively. The inertial reference is the world frame W, whose
x, y and z axes are represented by the red, green and blue lines, respectively; on the pelvis there is the
local frame P, whose x, y and z axes are represented by the red, green and blue lines, respectively.

2.3. Event Detector Algorithm

As the name suggests, the event detector algorithm is responsible for the estimation
of the instants when the lift and release occur; tl and tr are the times of these events,
respectively. Timing is very critical for identifying correctly the instantaneous posture of
the subject to perform accurate ergonomic evaluations of MMH activities with only inertial
sensors. For this, the EDA fuses the information of the hand’s distance d(t), the average
velocity v̄B

H(t), and the relative velocity ∆vB
H(t) to progressively refine the estimates of tl

and tr. The algorithm works as follows. For identifying the lifting instant tl , the algorithm
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compares the distance d(t) with a given grasp threshold d̃g, as shown in Figure 4a. If
the grasp occurs along the shortest edge of the load, the algorithm produces the first
approximation t̂l0. If the load is below the level of the subject hands, the z component of
the average velocity v̄B

H(t) presents a negative peak when the subject bends, followed by a
positive peak when the subject lifts the load, as shown in Figure 4b. The EDA scans the
z component of the average velocity v̄B

H(t) in the interval t ∈
[
t̂l0 − ϵl ; t̂l0 + ϵl

]
looking

for those two peaks. The variable ϵl > 0 defines the time interval being investigated.
The algorithm identifies the two instants t̂l1 and t̂l2 that correspond to the minimum and
maximum peaks, respectively. Finally, the EDA scans v̄B

Hz(t) again in the new interval
t ∈

[
t̂l1; t̂l2

]
, and compares it to a given threshold ṽB

Hz > 0. If the condition is met, the
algorithm determines the last estimate t̂l3. Comparing Figure 4a,b, the difference between
the first estimate t̂l0 and the final estimate t̂l3 is clear. In this case, the real lifting event
occurs almost 0.8 seconds later than t̂l0.

The EDA performs a similar procedure to identify the release instant tr. It compares
the distance d(t) with a given release threshold d̃r and detects the instant t̂r0. In this
case, the algorithm scans the y component of the relative velocity ∆vB

H(t) in the interval
t ∈

[
t̂r0 − ϵr, t̂r0 + ϵr

]
. Here, the variable ϵr > 0 defines the interval width. As shown in

Figure 4c, the velocity component ∆vB
Hy(t), which is normal with respect to the grasped

object, presents a positive peak when the subject releases the load and detaches the hands.
Usually, this peak is followed by another one when the subject returns the arms to the
resting position. The EDA identifies the instants when the positive, t̂r1, and the negative,
t̂r2, peaks occur. Then, the algorithm discards the instant t̂r2 and refines the search interval
into

[
t̂r1 − ϵr1; t̂r1

]
. The variable ϵr1 > 0 specifies the time span investigated. Lastly, the

algorithm verifies when the y component of ∆vB
H(t) crosses a given threshold ∆ṽB

H > 0
in this interval. When the condition is met, the algorithm produces the last estimate, t̂r3.
Again, comparing Figure 4a,c, the difference between t̂r0 and t̂r3 amounts to almost 0.2 s.

Figure 4. The EDA estimations. In (a), the distance d(t) between hands is shown in blue, the lifting
time estimate t̂l0 is the dashed line, and the release time estimate t̂r0 is the dash−dot line. In (b),
the z component of the average velocity vector v̄B

H(t), the estimate t̂r1 − ϵr1 is the dashed line, the
estimate t̂r1 is the dash−dot line, and the estimate t̂r3 is the solid line. In (c), the y component of the
hands relative velocity vector ∆vB

H(t), the estimate t̂r1 − ϵr1 is the dashed line, the estimate t̂r1 is the
dash-dot line, and the estimate t̂r3 is the solid line.

2.4. Ergonomic Assessment: Digital Algorithm

The NIOSH Lifting Index provides a risk factor associated with a given MMH task.
Currently, all NIOSH parameters are measured or evaluated manually, introducing possible
human errors or over-simplifications in the process. Additionally, the assessment is only
conducted on a single or a small number of workers. The ergonomic assessment block
within the new framework relies on previous steps of the On-LI algorithm to generate
precise assessments of the Lifting Index. For all the identified lift and release instants
t̂l3 and t̂r3, the NIOSH parameters are evaluated and combined with the corresponding
kinematic data, resulting in a single value known as the recommended weight limit (RWL).
This is calculated as follows:

RWL = wc × hd × vh × vd × af × f × gf. (7)
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The variable wc is the maximum weight allowed. The parameters hd and vh are the
horizontal and vertical distances between the load position when lifted and the center
of the worker’s ankles. vd represents the vertical displacement of the hands between
the beginning and end of the task. The asymmetry factor af considers the load angular
displacement with respect to the worker’s sagittal plane, i.e., the upper body twist. The
frequency f is computed as the number of objects lifted per minute. Finally, the grip factor
gf encodes the type of grasp: good (G), sufficient (S), or poor (P). The Lifting Index (LI)
provides a standardized risk index for a given task, and it is computed as

LI =
WL

RWL
(8)

where the variable WL represents the weight of the load lifted. As listed in Table 1, LI
values below 1.5 indicate a low injury risk, while higher values denote moderate to very
high risks [10–12].

Table 1. NIOSH Lifting Index with corresponding risk magnitudes and recommendations working
with healthy subjects.

Lifting Index Risk Magnitude Recommendation

≤1.00 Very Low No modification required

1.01–1.50 Low
Pay attention to frequency of execution, excessively heavy loads, and/or awkward postures

that are held for too long

1.51–2.00 Moderate Redesign tasks and workplaces according to priorities to reduce the Lifting Index

2.01–3.00 High It is highly necessary to modify the task to reduce the Lifting Index

>3.00 Very High It is critically important to change the task immediately to reduce the Lifting Index

2.5. Visual Feedback

Referring to Figure 2, the ergonomic assessment algorithm also estimates the subject’s
posture while lifting the object. The pelvis, the right/left hip, and the knee flexion angles
(qP,qRHip, qLHip, qRK, qLK) are evaluated. If the subject performs a stoop, e.g., the angles
qP, qRHip, qLHip are above and the angles qRK, qLK are below a given threshold q̃lim, the
ergonomic assessment sends a warning to the visual feedback block. This block visualizes
the biomechanical model online and includes any possible warnings generated by the
ergonomic assessment block, as shown in Figure 5. Such feedback provides the ergonomist
or, in general, the person in charge of safety, with an additional tool to determine the risk
of WMSDs. This visual feedback may directly help the subject throughout the activity in
adopting safer postures by providing online notification warnings.

Figure 5. Visual feedback output. The biomechanical model reconstructs the subject’s posture. The
On−LI algorithm provides a LI warning and a posture warning.
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3. Experimental Assessment
3.1. Subjects and Data Collection

For the experiments, we recruited five healthy subjects (age: 29 ± 4 years; height:
184 ± 6 cm; weight: 77 ± 15 kg). To limit discomfort, each subject wore, on top of their
clothes, seventeen commercially available wireless inertial motion trackers (MTs) (MTw
Xsens technologies, Enschede, The Netherlands). The MTs were used to collect full-body
kinematic data and were positioned as reported in the Xsens-Awinda user manual. Precisely,
for the lower body segments, one sensor was placed on the pelvis, and six sensors were
placed on the mid-thigh, mid-shank, and foot instep, right and left. For the upper body,
one sensor was attached on the middle of the sternum, two sensors were placed on the
right and left scapulae, one sensor on the back of the head, and six sensors were attached
laterally, to the mid-upper arms, to the mid-lower arms, and the back of the hands, right
and left. Elastic bands covered each MT to reduce relative movements between sensors
and corresponding segments, with the exception of the sensors attached to the scapulae.
Data sampling was at 60 Hz. Before the session, each subject was asked to perform the
functional calibration procedure to assess the sensors-to-body alignment. In this procedure,
each subject maintained a standing upright posture, followed by a walk, a turn on the spot,
and a walk back to the starting position.

3.2. Experimental Protocol

The experimental protocol was compliant with the experimental protocol approved
by the Ethical Committee of Liguria, Italy, 8 October 2019, protocol number: 001/2019.
The experimental session involved simulating a realistic work activity that is common
across many industries where logistic tasks are carried out, as reported in our previous
works [32,33]. The task involved transferring loads from a pick-up point to a lateral
workbench that was two to three steps away. In these experiments, the loads were boxes,
the pick-up point was a pallet, and the workbench was a table with a sliding layer to
simulate a conveyor. Three stacks of two boxes each were placed precisely on the three
corners of the pallet, and each box weighed 10 kg. The first stack was in front and close
to the subject, the second, positioned to the left, was placed diagonally with respect to
the worker’s sagittal plane, and the third was placed directly behind the first stack but at
the far side of the pallet with respect to the subject. According to the order of execution,
the boxes were identified by the terms: FH and FL (front stack high and low positions,
respectively), LH and LL (lateral stack high and low positions, respectively), and RH and
RL (rear stack high and low positions, respectively). The conveyor was on the left relative
to the subject’s starting position. The geometry of the experimental environment are shown
in Figure 6. The task was to relocate each stack of boxes onto the conveyor. The high box
was moved first, then the low box was placed on top, and then the conveyor slid. The order
in which the stacks were moved was as follows: first, the one close by; second, the one
placed diagonally; and last, the one at the rear. The subjects could select their preferred
lifting technique, such as stoop or squat, but they were asked to grab the boxes from the
top, along the shortest edge and with both hands. Additionally, the subject had freedom in
deciding where to stand with respect to the front stack, within a square tile (40 × 40 cm).
The speed in executing the task was self-selected. At the end of each experimental session,
an investigator carried out a traditional ergonomic assessment by applying the NIOSH
table equations with the observational method. A video of the experimental section was
shot to support the observational evaluation process with visual feedback.
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Figure 6. (a) Side view and (b) top view of the experimental setup reporting the measurements
needed to calculate the NIOSH.

4. Results

To validate the proposed methodology, we manually measured all the parameters
needed to calculate the LI by applying the NIOSH equation. The observational results
are shown in Table 2. The LI associated with FH and FL is below 1.5, while for the other
boxes, the LI values range between 1.5 and 2. The same parameters were calculated by
importing the Xsens data, implementing the kinematic analysis, the EDA, the ergonomic
assessment and the subject-specific kinematic model in MATLAB (R2021b). The corre-
sponding parameters and the ergonomic risk indices are reported in Table 3, which reports
the average and the standard deviation of the parameters collected over all workers task by
task. With both methods, the LI related to the FH and the FL are below 1.5, and therefore,
the ergonomic risk is low. The LI related to the LH differs between the observational and
the digital method, the former reports a low ergonomic risk, while the latter indicates a
moderate ergonomic risk. Both methods agree in evaluating the risks associated with the
remaining boxes as moderate.

Table 4 summarizes the absolute errors (Abs.Err.) and the relative errors (Rel.Err.).
The Abs. Err. is computed by calculating the difference over each entry of Tables 2 and 3.
The Rel. Err. is calculated by dividing the Abs. Err. by the corresponding full-scale value.
Referring only to the linear parameters measured to calculate the LI, the minimum Abs. Err.
is 0 cm, while the maximum is 14 cm. Both of these measurements relate to the horizontal
distance and the average Abs. Err. is 3.6 cm. The minimum Rel. Err. is 0%, the maximum
22.2%, and the average is 5.8%. For the angular parameters, i.e., the twist, the minimum
Abs. Err. is 2 deg, the maximum is 4 deg, and the average is 2.5 deg. The minimum Rel. Err.
is 1.4%, the maximum 2.9%, and the average is 1.7%. Concerning the LI, the minimum Abs.
Err. is 0.02, the maximum is 0.15, and the average is 0.08. The minimum Rel. Err. is 0.6%,
the maximum is 5%, and the average is 2.8%.

Table 2. Manually measured parameters to calculate the NIOSH ergonomic risk index. The last
column reports the corresponding Lifting Index (LI). The values with an asterisk were used to
overcome the issue of out-of-scale parameters, as suggested in [34].

Box Hands
Height

Vertical
Travel

Horizontal
Distance Twist Grasp Frequency Single Limb Load LI

(cm) (cm) (cm) (deg) (G,S,P) (Lifting/Minute) (Yes/No) (kg)

FH 68 32 45 0 S 6 No 10 1.13

FL 40 88 45 0 S 6 No 10 1.33

LH 68 32 56 22 S 6 No 10 1.44

LL 40 88 56 22 S 6 No 10 1.77

RH 68 32 65 (63*) 0 S 6 No 10 1.52

RL 40 88 65 (63*) 0 S 6 No 10 1.79
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Table 3. Automatically measured parameters to calculate the NIOSH ergonomic risk index. The
last column reports the corresponding Lifting Index (LI). The values with an asterisk were used to
overcome the issue of out-of-scale parameters, as suggested in [34].

Box Hands
Height

Vertical
Travel

Horizontal
Distance Twist Grasp Frequency Single Limb Load LI

(cm) (cm) (cm) (deg) (G,S,P) (Lifting/Minute) (Yes/No) (kg)

FH 70 ± 6 34 ± 4 47 ± 8 2 ± 4 S 6 No 10 1.23 ± 0.16

FL 44 ± 5 79 ± 2 45 ± 7 3 ± 5 S 6 No 10 1.27 ± 0.16

LH 67 ± 4 38 ± 3 56 ± 7 26 ± 10 S 6 No 10 1.52 ± 0.17

LL 42 ± 4 79 ± 4 42 ± 7 24 ± 11 S 6 No 10 1.61 ± 0.26

RH 70 ± 8 39 ± 7 67 ± 5 (63*) -2 ± 3 S 6 No 10 1.54 ± 0.09

RL 46 ± 8 75 ± 6 61 ± 6 (63*) 2 ± 3 S 6 No 10 1.69 ± 0.11

Table 4. Measurement errors of NIOSH parameters obtained by comparison of the On-LI algorithm
and the classical method. The last column shows the resulting Lifting Index (LI) with corresponding
errors.

Box Hands Height Vertical Travel Horizontal Distance Twist LI

Abs. Err. Rel. Err. Abs. Err. Rel. Err. Abs. Err. Rel. Err. Abs. Err. Rel. Err. Abs. Err. Rel. Err.
(cm) (%) (cm) (%) (cm) (%) (deg) (%) (%)

FH 2 2.5 2 1.1 2 3.2 2 1.4 0.1 3.3

FL 4 5.0 9 5.1 0 0 3 2.2 0.06 2.0

LH 1 1.2 6 3.4 0 0 4 2.9 0.08 2.6

LL 2 2.5 9 5.1 14 22.2 2 1.4 0.15 5

RH 2 2.5 7 4.0 2 6.3 2 1.4 0.02 0.6

RL 6 7.5 13 7.4 4 3.2 2 1.4 0.1 3.3

5. Discussion

The results reported in the previous section are very promising. Most of the parameters
and the Lifting Index present marginal absolute and relative errors, less than 10%, as shown
in Table 4.

The most significant relative errors appear on the vertical travel of the lower boxes.
Such errors occur because the configurations of the hand and the feet positions change
during these activities. Comparing the biomechanical model reconstructions with the
corresponding footage, it is easy to notice that the subjects tend to lift the boxes as soon
as the fingertips come into contact with the box, then, they adjust the grasp mid-air and,
finally, they modify again the grasp configuration to release the load on top of the box
previously positioned on the conveyor. These aspects represent a current limitation of
the On-LI architecture. In fact, the closest inertial sensors to the box are those placed in
the Xsens gloves. Thus, because of their positions, these sensors are not able to measure
the excursion of fingertips, as shown in Figure 7. Constraining the grasp configuration or
providing ergonomic handles to the loads may represent a viable solution for these cases.
The highest relative error precentages are observed in the handling of the LL box: for the
horizontal distance the relative error is 22.2%; for the trunk twist the relative error is 2.9%;
and for the corresponding LI the relative error is 2.6%. The relative error of the trunk twist
depends mainly on two factors: a starting twist offset and a shorter distance from the pallet.
These considerations suggest that each subject tends to reduce, unintentionally, the risk
factor by adopting a more suitable configuration in approaching the successive activity.
Concerning the horizontal distance, thanks to the parameters extracted with the On-LI,
it was noticed that the subjects tended to come closer to the pallet regularly during the
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session, as shown in Figure 8. A second look at the footage confirmed this hypothesis. This
behavior is common within all subjects, and it is particularly noticeable for the boxes in
positions RH and RL. For this reason, it was necessary to retake the measurement of the
horizontal distance associated with the furthest stack of boxes. The reviewed measurement
is reported in Table 2 as 65 cm, for row 5 and 6 of column HorizontalDistance. It is worth
mentioning that differences between the observational NIOSH evaluation and the proposed
On-LI architecture are not necessarily due to the poor performance of the On-LI algorithms.
As a matter of fact, some of these differences may stem from the observational nature of
the classic approach. For instance, differences in the subject’s starting position may have
gone unnoticed with the observational method. However, the On-LI derives the NIOSH
parameters relying on the digital reconstruction of the subject posture, which is assessed by
the sensor data and the kinematic model. In these cases, the classic approach would have
required an ergonomist to take continuous measurements, which would have implied the
use of traditional tools, thus interfering with the subjects during the execution of the task.
The On-LI architecture allows systematic and continuous evaluations of the Lifting Index,
taking into account even slight variations in subject postures during working activities.
Additionally, the On-LI architecture ensures high analysis flexibility and adaptability with
respect to any possible change in the working station providing feedback and warnings
with high responsiveness.

Figure 7. Snapshots from the video footage. In (a), the subject picks up the load in position LL. As
shown by the red arrow in the circle, the sensors in the gloves are above the box edges, yellow dashed
line. In (b), the subject releases the load over the previous box. The subjects modified their grasp
mid-way through the motion and now the sensors are below the box edges.

Figure 8. Snapshots from the video footage. In (a), the subject picks up the load in position FH while
standing far from the pallet. As shown by the red arrow in the circle, the sensors on the feet are
visible in the frame. In (b), the subject picks up the load in position RL and steps closer to the pallet.
In this case, the sensors on the feet are hidden by the pallet.
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6. Conclusions

In this work, we presented the On-LI architecture to evaluate the ergonomic risks
using a method compliant with the ISO 11228-1:2022 standard. We demonstrated the
effectiveness of the proposed algorithm in identifying the NIOSH LI during lift and release
phases. This innovative architecture fuses kinematic data from wearable sensors, it applies
the NIOSH equations and autonomously calculates the risk factors associated with MMH
activities. The algorithm relies on the standard calculation of the NIOSH Lifting Index to
assess the ergonomic risk. It differs from the observational method, i.e., the ergonomist
evaluates a priori the risk factors, because the On-LI constantly monitors worker’s postures
and provides continuous appraisals of risk factors, thus accounting for any possible changes
in environment variables and postures during activities.

The preliminary results of the kinematics and identification algorithm are promising,
showing relative estimation errors of 2.8% in the LI with respect to the observational
method, providing the prerequisites for pursuing and extending this study to a wider
set of subjects also into an industrial environment. Possible improvements could target
the fine estimations of the grasp positions by introducing additional sensors on fingers.
Currently, the On-LI architecture has been validated with offline data because of the
limitation imposed by the sensors used; however, the On-LI algorithm has been developed
to work with online data.

This preliminary study revealed some possible hardware and software limitations. The
former relates to the IMU technology used to reconstruct the subject posture, i.e., accelerom-
eter, gyroscope, and magnetometer. Magnetometers could be sensitive to the environment,
particularly the presence of iron frames, robots, motors, and electric power lines, which
may limit the reliability of posture estimation in industrial scenarios. This will be evaluated
in future work. Software limitations relate to the event detection algorithm. Here, the
EDA is fine-tuned for this specific experimental protocol, to precisely detect the lift/release
instants, which represent crucial parameters for assessing task-related risk factors. In
future work, the EDA will include a calibration process to identify relevant thresholds,
e.g., grasp/release distances and velocities, thus extending the EDA’s applicability to more
complex scenarios.

In addition, future work will be conducted with the aim of (i) implementing a device
able to effectively run the data analysis online, (ii) improving the estimation of the hand’s
grasping position, (iii) extending the automatic detection of further NIOSH coefficients
such as single- or double-limb lifting, (iv) sending online visual feedback to a user interface,
(v) surveying the acceptance rate of such a system by workers.
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The following abbreviations are used in this manuscript:
WMSD Work-related musculoskeletal disorder
MMH Manual material handling
NIOSH National Institute for Occupational Safety and Health
TACOS Time-based assessment computerized strategy
OCRA Occupational repetitive action
RULA Rapid upper limb assessment
EAWS Ergonomic assessment worksheet
On-LI Online Lifting Index
IMU Inertial measurement unit
EDA Event detector algorithm
DoFs Degree(s) of freedom
RWL Recommended weight limit
LI Lifting Index
MT Motion tracker

References
1. Schneider, E.; Irastorza, X.; Copsey, S. Work-Related Musculoskeletal Disorders in the EU—Facts and Figures; European Agency for

Safety and Health at Work: Bilbao, Spain, 2010.
2. Vos, T.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.;

Abera, S.F.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries
for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259.
[CrossRef] [PubMed]

3. de Kok, J.; Vroonhof, P.; Snijders, J.; Roullis, G.; Clarke, M.; Peereboom, K.; van Dorst, P.; Isusi, I. Work-Related Musculoskeletal
Disorders: Prevalence, Costs and Demographics in the EU; Technical Report; European Agency for Safety and Health at Work: Bilbao,
Spain, 2019.

4. Bevan, S. Economic impact of musculoskeletal disorders (MSDs) on work in Europe. Best Pract. Res. Clin. Rheumatol. 2015,
29, 356–373. [CrossRef] [PubMed]

5. Rudy, T.E.; Weiner, D.K.; Lieber, S.J.; Slaboda, J.; Boston, J.R. The impact of chronic low back pain on older adults: A comparative
study of patients and controls. Pain 2007, 131, 293–301. [CrossRef] [PubMed]

6. Coyte, P.C.; Asche, C.V.; Croxford, R.; Chan, B. The economic cost of musculoskeletal disorders in Canada. Arthritis Rheum. Off. J.
Am. Coll. Rheumatol. 1998, 11, 315–325. [CrossRef] [PubMed]

7. Lee, P. The economic impact of musculoskeletal disorders. Qual. Life Res. 1994, 3, S85–S91. [CrossRef] [PubMed]
8. Buckle, P. Ergonomics and musculoskeletal disorders: Overview. Occup. Med. 2005, 55, 164–167. [CrossRef] [PubMed]
9. Pieper, C.; Schröer, S.; Eilerts, A.L. Evidence of workplace interventions—A systematic review of systematic reviews. Int. J.

Environ. Res. Public Health 2019, 16, 3553. [CrossRef]
10. National Institute for Occupational Safety and Health. Division of Physical Sciences and Engineering. NIOSH, Manual of

Analytical Methods; US Department of Health and Human Services, Public Health Service, Centers: Washington, DC, USA, 1994.
11. Waters, T.; Occhipinti, E.; Colombini, D.; Alvarez-Casado, E.; Fox, R. Variable lifting index (vli) a new method for evaluating

variable lifting tasks. Hum. Factors 2016, 58, 695–711. [CrossRef]
12. Garg, A.; Kapellusch, J.M. The cumulative lifting index (CULI) for the revised NIOSH lifting equation: Quantifying risk for

workers with job rotation. Hum. Factors 2016, 58, 683–694. [CrossRef]
13. Colombini, D.; Occhipinti, E. Working Posture Assessment: The TACOS (Time-Based Assessment Computerized Strategy) Method; CRC

Press: Boca Raton, FL, USA, 2018.
14. Occhipinti, E. OCRA: A concise index for the assessment of exposure to repetitive movements of the upper limbs. Ergonomics

1998, 41, 1290–1311. [CrossRef]
15. Garg, A.; Moore, J.S.; Kapellusch, J.M. The strain index to analyze jobs for risk of distal upper extremity disorders: Model

validation. In Proceedings of the 2007 IEEE International Conference on Industrial Engineering and Engineering Management,
Singapore, 2–4 December 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 497–499.

16. Humadi, A.; Nazarahari, M.; Ahmad, R.; Rouhani, H. In-field instrumented ergonomic risk assessment: Inertial measurement
units versus Kinect V2. Int. J. Ind. Ergon. 2021, 84, 103147. [CrossRef]

17. Cole, D.; Rivilis, I.; Van Eerd, D.; Cullen, K.; Irvin, E.; Kramer, D. Effectiveness of Participatory Ergonomic Interventions: A Systematic
review; Institute for Work & Health: Toronto, ON, Canada, 2005.

http://doi.org/10.1016/S0140-6736(17)32154-2
http://www.ncbi.nlm.nih.gov/pubmed/28919117
http://dx.doi.org/10.1016/j.berh.2015.08.002
http://www.ncbi.nlm.nih.gov/pubmed/26612235
http://dx.doi.org/10.1016/j.pain.2007.01.012
http://www.ncbi.nlm.nih.gov/pubmed/17317008
http://dx.doi.org/10.1002/art.1790110503
http://www.ncbi.nlm.nih.gov/pubmed/9830876
http://dx.doi.org/10.1007/BF00433381
http://www.ncbi.nlm.nih.gov/pubmed/7866377
http://dx.doi.org/10.1093/occmed/kqi081
http://www.ncbi.nlm.nih.gov/pubmed/15857895
http://dx.doi.org/10.3390/ijerph16193553
http://dx.doi.org/10.1177/0018720815612256
http://dx.doi.org/10.1177/0018720815627405
http://dx.doi.org/10.1080/001401398186315
http://dx.doi.org/10.1016/j.ergon.2021.103147


Bioengineering 2024, 11, 14 14 of 14

18. ISO 11228-1:2003; Ergonomics—Manual Handling—Part 1: Lifting and Carrying. ISO: Geneva, Switzerland, 2003.
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