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Abstract: Developing new drugs for emerging diseases, such as COVID-19, is crucial for promoting
public health. In recent years, the application of artificial intelligence (AI) has significantly advanced
drug discovery pipelines. Generative models, such as generative adversarial networks (GANs),
exhibit the potential for discovering novel drug molecules by relying on a vast number of training
samples. However, for new diseases, only a few samples are typically available, posing a significant
challenge to learning a generative model that produces both high-quality and diverse molecules
under limited supervision. To address this low-data drug generation issue, we propose a novel
molecule generative domain adaptation paradigm (Mol-GenDA), which transfers a pre-trained
GAN on a large-scale drug molecule dataset to a new disease domain using only a few references.
Specifically, we introduce a molecule adaptor into the GAN generator during the fine tuning, allowing
the generator to reuse prior knowledge learned in pre-training to the greatest extent and maintain
the quality and diversity of the generated molecules. Comprehensive downstream experiments
demonstrate that Mol-GenDA can produce high-quality and diverse drug candidates. In summary,
the proposed approach offers a promising solution to expedite drug discovery for new diseases,
which could lead to the timely development of effective drugs to combat emerging outbreaks.

Keywords: drug design; domain adaptation; generative model

1. Introduction

Drug discovery and development are critical translational science activities that sig-
nificantly contribute to human health and well-being [1]. However, drug discovery is a
long-term, high-investment, and high-risk endeavor that traditionally relies on human
expertise to design, synthesize, and test new drug molecules [2,3]. Traditional drug design
methods can take an average of 6 to 12 years and cost billions of dollars to produce just one
drug [4,5]. While only an estimated 108 compounds have ever been synthesized, the theo-
retical number of feasible compounds ranges from 1023 to 1060 [6]. As a result, conventional
discovery methods can only explore a limited amount and diversity of chemical space.
Therefore, there is an urgent need to develop efficient methods for exploring chemical space
to accelerate and improve the drug discovery process.

In recent years, deep learning technology has been utilized to expedite and enhance
the drug discovery process [7–9]. Specifically, bioinformatics scientists have shown a keen
interest in generative models due to their remarkable capacity to comprehend and explore
the intrinsic properties of data [10,11]. Rather than relying on human expertise to design
molecules, generative models employ recent advancements in deep learning to tackle
the inverse molecular design problem: determining the set of molecules that will satisfy
a desired set of properties [3]. Generative models can swiftly identify a wide range of
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molecules that are optimized for specific goals by mapping properties to structures. Re-
cently, there has been a significant increase in the number and diversity of generative models
employed in molecular design, such as variational autoencoders (VAEs) [12], generative
adversarial networks (GANs) [13], and normalizing flow models [14]. In generative models,
drug molecules are mostly represented as strings, such as SMILES (Simplified Molecular
Input Line Entry System) [15] and SELFIES (Self-Referencing Embedded Strings) [16],
or graphs [17]. For instance, VAEs have been utilized to generate SMILES strings and
molecular graphs by approximately maximizing likelihood through variational inference
techniques [18–20]. Similarly, GANs have also been adapted to generating molecules
represented as sequences or graphs by formulating molecule generation as a minimax
game [21–23]. Furthermore, normalizing flow models generate molecules by learning a
series of invertible transformations between high-dimensional molecule data and a prior
distribution [24–26].

Although generative models have made significant progress, their effectiveness pri-
marily relies on the amount of training data, with larger sample sizes leading to greater
accuracy. Unfortunately, acquiring labeled data for emerging diseases like COVID-19 can
be challenging. The characteristics of effective drugs for such diseases are not yet estab-
lished, and only a limited number of drugs are available to alleviate symptoms. As a result,
training a generative model with adequate performance for low-data drug discovery is a
daunting task due to the limited availability of labeled data. Few-shot generative domain
adaptation has been introduced to address the challenge of limited data availability in
GAN training [27–29]. Typically, a large-scale model is first trained in the source domain
with a sufficient amount of data and then transferred to the target domain with only a
few samples. Building on this idea, we propose a novel few-shot Molecule Generative
Domain Adaptation paradigm (Mol-GenDA) for the low-data drug design. Specifically,
we introduce a lightweight module called the molecule adaptor, which aids in adapting
the generator to the target disease with the target molecule’s attributes. We first pre-train
the GAN on a large-scale drug-like dataset, then freeze the parameters of the pre-trained
generator and optimize only the molecule adaptor during fine tuning on the new disease
dataset. This approach leverages the prior knowledge learned in the source domain to
inherit the generation quality and diversity of the source model.

We have conducted extensive experiments to evaluate the proposed method’s ability
to generate molecules with specific structures and desired properties in low-data drug
design. The experiments showed that the proposed method can generate both simple
structural features, such as halogen groups or aromatic rings, and more complex molecules
with higher scores of desired properties, such as penalized logP and quantitative estimate
of drug-likeness (QED score), among others. As part of our study, we have designed
drugs that could be effective against COVID-19 and assessed the properties of various
drug candidates.

2. Research Problem and Motivation
2.1. Research Problem

The aim of this study is to develop a generation method for the rapid design of
effective drugs for emergent diseases. The main challenge in achieving this goal is training
an effective generative model on only a few referenced drug molecules. Moreover, emerging
diseases often require drugs with multiple desired properties, further complicating the
generation process. Therefore, the generation method needs to address these challenges,
namely few-shot reference drugs and multiple desired properties. The low-data drug design
problem can be formalized as follows: If we only have a few known drug moleculesMr
that are partially effective in treating a specific disease, such as relieving certain symptoms,
how can we train a generative model fθ to design new drugs based on this information?

Generative models are expected to possess two key capabilities: (1) structure-constrained
generation, which involves the ability to make simple structural modifications such as
altering the presence of halogen groups or adjusting the number of aromatic rings; and
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(2) property-constrained generation, which enables the model to generate molecules with
higher scores of desired properties. By leveraging these abilities, generative models can
produce drug molecules that are more effective in treating emerging diseases or are easier
to manufacture.

2.2. Limitation of Previous Methods

VAEs. Variational autoencoders (VAEs) are widely used in drug design and consist
of an encoder and a decoder [12]. The encoder converts a molecule into a latent vector
representation and maps it to a pre-defined distribution of valid molecule latent vectors.
Novel molecules can be generated by sampling latent vectors from the distribution and
decoding them with the decoder [20,30]. For instance, the JT-VAE method interpolates
reference drugs within the pre-trained VAE’s latent space [20], while GF-VAE randomly
samples the space surrounding reference drug molecules in the latent space [31]. However,
these approaches have struggled to produce molecules that exhibit both diversity and
desired properties.

GANs. Generative adversarial networks (GANs) have become widely used in various
fields, including image, audio, and video processing [32]. A GAN comprises two parts:
a generator G and a discriminator D. During training, the GAN plays a max-min game,
in which D learns to differentiate between real and generated data from G, while G learns
to generate more realistic data to deceive D. Ultimately, the trained G generates realistic
data, and the trained D improves its ability to classify fake data. In recent years, there has
been a surge of GAN-based models applied to molecule design [23,33–35]. For example,
Mol-GAN trains a GAN from scratch using a large dataset of drug molecules with desired
properties [23]. Mol-CycleGAN, on the other hand, trains GANs based on the latent space
of pre-trained VAEs [35]. However, these methods require extensive collections of drug
molecules for training.

To summarize, none of the previous methods have addressed the challenge of gener-
ating a diverse set of desired drugs with only a few references. Few-shot generation has
been extensively studied in computer vision [36–38]; however, few-shot drug molecule
generation remains an ongoing area [39]. Low-data drug discovery techniques, such as
few-shot property prediction [40], cannot be directly applied to molecule generation.

3. Our Method

To tackle the issue of low-data drug molecule generation, we propose a novel genera-
tive domain adaptation approach called Mol-GenDA, inspired by recent work in computer
vision [38]. Figure 1 depicts the overall workflow of Mol-GenDA. Firstly, the GAN is
pre-trained on a large-scale drug molecule dataset. Then, it is fine-tuned with few-shot
reference drug molecules using a lightweight molecule adaptor. Finally, the model is used
to generate desired drug molecules.
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Figure 1. An illustrative diagram of Mol-GenDA. (a) The GAN is pre-trained on a large-scale drug
molecule dataset. (b) For a specific task, the pre-trained GAN is fine-tuned with related drug
molecules using a molecule adaptor. (c) The fine-tuned GAN is utilized to generate desired drug
molecules. (d) The architecture of molecule adaptor, where a two-layer neural network is adopted to
adapt the original distribution to that of desired drug molecules. A, G, and D denote the molecule
adaptor, generator, and discriminator, respectively. Best viewed in color.

3.1. Large-Scale Pre-Training

We adopted the Junction Tree Variational Autoencoder (JT-VAE) to encode drug
molecules into a latent space and decode latent vectors back to drug molecules, as in
previous studies on drug molecule generation [23,35,41]. The JT-VAE approach is VAE-
based and operates on the graph structure representation of molecules, employing a
junction-tree scaffold of molecule sub-components and a graph-structure representation
of molecules. Compared to other VAE-based methods that operate on the SMILES repre-
sentation of molecules, JT-VAE exhibits superior performance, with 100% validity of the
generated molecules [30,31]. Pre-training the JT-VAE on a large-scale molecule dataset can
improve its representation learning capability. In this work, we take the pre-trained JT-VAE
(https://github.com/wengong-jin/icml18-jtnn, accessed on 25 April 2021) on ZINC-250K
from previous work [20]. During pre-training and fine tuning, we froze the parameters
of JT-VAE.

In this stage, we pre-train the GAN on a large-scale molecule dataset and freeze the
JT-VAE. As shown in Figure 1a, the generator G produces fake molecule latent vectors,
while the VAE encoder produces realistic ones. The discriminator D is trained to classify
whether the vectors are realistic or generated by G. The training strategy is a max-min
game, and the objective between the generator G and discriminator D can be formulated as:

min
G

max
D

E
rE∼Pr

[log(D(rE))] + E
rG∼Pg

[log(1− D(rG))], (1)

where Pr is the data distribution, Pg is the model distribution defined implicitly by rG =
G(z), and z ∼ p(z) is sampled from a simple noise distribution (a Gaussian distribution is
chosen in this work). Following WGAN-GP [42], we introduce the gradient penalty to the
model, and the loss function is finally improved as follows:

L = E
rG∼Pg

[D(rG)]− E
rE∼Pr

[D(rE)] + λ E
r̂E∼Pr̂E

[(∥∥∇r̂E D(r̂E)
∥∥

2 − 1
)2
]
, (2)

where r̂E ∼ Pr̂E is uniformly sampled along the straight lines between pairs of points
sampled from the data distribution PrE and the generator distribution Pg. Algorithm 1
summarizes the details of the pre-training process.

https://github.com/wengong-jin/icml18-jtnn
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Algorithm 1: Large-scale pre-training
Input: Ml , a large-scale drug molecules dataset;

θE, pre-trained encoder parameters;
θD, pre-trained decoder parameters;
θG, initial generator parameters;
θC, initial discriminator parameters;
z, random noise.

Output: θ̂G, pre-trained generator parameters;
θ′C, pre-trained discriminator parameters.

Hyperparameters: Npre ∈ Z∗.
1 for i = 1, 2, . . . , Npre do
2 rE ← θE(Ml)
3 rG ← θG(z)
4 loss(θG, θC) = Lθ(rE, rG) based on Equation (2)
5 (θG, θC)← (θG, θC)− η · ∇ loss(θG, θC)

6 end
7 θ̂G = θG, θ′C = θC

8 return θ̂G, θ′C

3.2. Generative Domain Adaptation

The pre-trained generator of Mol-GenDA has already acquired the ability to generate
diverse and high-quality drug molecules, learned from a large-scale drug molecule dataset.
The random noise z input into the generator of GAN can be viewed as the features used to
generate latent drug molecule vectors in the latent space of a pre-trained JT-VAE [43]. These
latent vectors can then be decoded by the decoder of JT-VAE to produce drug molecules.
The goal of Mol-GenDA fine tuning is to learn the ability to select appropriate features,
i.e., the noise z, for generating desired drug molecules. However, fine-tuning all the
parameters of the generator on a few reference drug molecules carries the risk of overfitting.
To address these concerns, we designed a lightweight module called molecule adaptor. As
illustrated in Figure 1b, during the fine-tuning process, we freeze the parameters of the
generator and only update those of the molecule adaptor. The goal is to transfer the noise
distribution, which serves as the input features of the generator to produce latent vectors,
to the distribution of reference drug molecules. The architecture of the molecule adaptor is
illustrated in Figure 1d, and it can be defined as:

z′ = Az + b (3)

where A and b are the linear projection matrix that controls the variation scale of the latent
vector, and a bias vector in the affine module learned in the fine-tuning.

Regarding the discriminator, the first several layers are responsible for feature extrac-
tion, while the latter layers perform classification [44]. As the discriminator is a binary
classifier, we freeze the first several layers and train only the last n layers, aiming to main-
tain the discriminator’s ability to extract key features while training it to classify whether
the drug is desired or not. In this work, we update the last two layers of the discriminator
during fine-tuning. Reference drug molecules are fed into the joint model, and the objective
is the same as in pre-training, as shown in Equation (2). Algorithm 2 summarizes the details
of the generative domain adaptation process.
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Algorithm 2: Generative Domain Adaptation Fine Tuning
Input: Mr, a dataset of referenced drug molecules;

θE, pre-trained encoder parameters;
θD, pre-trained decoder parameters;
θ̂G, pre-trained generator parameters;
θ′C, pre-trained discriminator parameters;
θA, initial adaptor parameters;
z, random noise.

Output: θ̂C, fine-tuned discriminator parameters;
θ̂A, fine-tuned adaptor parameters.

Hyperparameters: Nadapt ∈ Z∗.

1 θ′′C ← Last2(θ′C) . get the last two layers of discriminator
2 for i = 1, 2, . . . , Nadapt do
3 rE ← θE(Mr)
4 rG ← θG(θA(z))
5 loss(θA, θ′C) = L′′θ (rE, rG) based on Equation (2)
6 θA, θ′′C ← (θA, θ′′C)− η · ∇ loss(θA, θ′C)
7 Last2(θ′C)← θ′′C
8 end
9 θ̂A = θA, θ̂C = θ′C return θ̂A, θ̂C

3.3. Constrained Molecule Generation

Structure- and property-constrained molecule generation are two common tasks in
drug design, and Mol-GenDA can solve their low-data problem.

Structure-constrained generation. To achieve structure-constrained generation, we
fine-tune the molecule adaptor θ̂A on few-shot molecules with specific structures. With the
additional pre-trained generator θ̂G in GAN and decoder θ̂D in VAE, the model generates
molecules with desired structures as follows:

Mgen = θ̂D(θ̂G(θ̂A(z))), (4)

where z is randomly sampled noise. Specifically, to generate desired drug molecules,
the molecule adaptor adapts the noise distribution to the desired molecule distribution.
Then, the noise is input into the generator to obtain the latent vectors rG, which can be
decoded to the desired drug moleculesMgen using the decoder.

Property-constrained generation. Generating molecules with desired properties fol-
low a similar process to structure-constrained generation, with the only difference being
that the molecule adaptor is fine-tuned on references with high scores for specific properties.
Algorithm 3 summarizes the details of constrained molecule generation.

Algorithm 3: Constrained Molecule Generation

Input: θ̂A, trained adaptor parameters;
θ̂G, pre-trained generator parameters;
θD, pre-trained decoder parameters;
z, random noise.

Output: Mgen, generated desired drug molecules;
Hyperparameters: Ngen ∈ Z∗

1 rG ← θ̂G(θ̂A(z))
2 Mgen ← θ̂D(rG)
3 returnMgen
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4. Results
4.1. Data

The model was pre-trained on the ZINC-250K dataset, which contains 250,000 drug-
like molecules extracted from the ZINC database [45]. This dataset is commonly used
in similar studies [20,35]. To evaluate the model’s performance on few-shot molecule
generation, we tested it on six datasets, including the structure- and property-constrained
generation. The statistics of these datasets are presented in Table 1.

Table 1. Statistics of the datasets, where Num. and Diver. indicate number and diversity, respectively.

Task Dataset Num. Diver. Plogp QED 1 Ring 2 Rings 3 Rings Halogen

Pre-training ZINC 2.5 × 105 0.915 0.561 0.731 75,580 98,222 47,603 87,556

Structure-
constrained

1 ring

5 0.902 0.519 0.799 5 - - -
10 0.905 - - 10 - - -
50 0.906 - - 50 - - -

100 0.909 - - 100 - - -

2 rings

5 0.893 0.668 0.839 - 5 - -
10 0.905 - - - 10 - -
50 0.906 - - - 50 - -

100 0.908 - - - 100 - -

3 rings

5 0.889 - - - - 5 -
10 0.902 - - - - 10 -
50 0.907 - - - - 50 -

100 0.908 - - - - 100 -

Halogen

5 0.895 - - 1 - 3 5
10 0.900 - - 2 3 3 10
50 0.908 - - 11 28 6 50

100 0.911 - - 25 52 15 100

Property-
constrained

QED

5 0.864 0.604 0.947 - - - -
10 0.888 0.599 0.947 - - - -
50 0.891 0.602 0.947 - - - -

100 0.893 0.602 0.947 - - - -

PlogP

5 0.878 1.000 0.292 - - - -
10 0.891 1.000 0.288 - - - -
50 0.901 1.000 0.357 - - - -

100 0.905 1.000 0.390 - - - -

Structure-constrained generation. For downstream tasks of structure-constrained
generation, we constructed four subsets with specific structures. Aromatic rings and
halogen moieties are two important structural properties of molecules. The 1 ring, 2
rings, and 3 rings datasets contain molecules with one, two, and three rings, respectively.
The Halogen dataset contains molecules with halogen groups. Each of these datasets
contains four subsets of 5-shot, 10-shot, 50-shot, and 100-shot reference drug molecules.
To construct these datasets, we randomly selected 100 molecules from the ZINC-250K
dataset for each 100-shot dataset. Then, we selected 50 molecules from the 100-shot
subsets to construct the 50-shot subsets. The 10-shot subsets were randomly selected from
the 50-shot subsets, and the 5-shot subsets were selected from the 10-shot ones. They
were constructed to evaluate the model’s ability to perform structural transformations.
For instance, the model can execute simple structural modifications such as changing the
presence of halogen groups or altering the number of aromatic rings.

Property-constrained generation. Plogp and QED datasets consist of molecules with
top penalized logP (Plogp) and quantitative estimate of drug-likeness (QED) scores, respec-
tively. These datasets evaluate the performance of property-constrained generation with
few-shot references. Specifically, we extracted the molecules with the first 5, 10, 50, and 100
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top scores of QED and Plogp from the ZINC-250K dataset to create the 5-shot, 10-shot,
50-shot, and 100-shot datasets.

4.2. Model and Training Configurations

In our evaluation, the generator G of GAN consists of a seven-layer multilayer percep-
tron (MLP) with 100, 128, 256, 256, 512, 256, and 56 neurons, respectively. The discriminator
D of GAN contains a 5-layer MLP with 56, 128, 256, 128, and 1 neurons, respectively.
The activation functions in the generator and discriminator are Tanh() and LeakyReLU(),
respectively. The adaptor is composed of two-layer MLPs with 57 and 56 neurons, re-
spectively. The architecture of an adaptor is straightforwardly designed according to the
length of the latent vector. We pre-trained the GANs for 200 epochs with a mini-batch
size of 128 and optimized the objective using the Adam optimizer [46] with a learning rate
of 1e-3. The loss was calculated using Equation (2). During the fine-tuning process, we
also used the Adam optimizer and fine-tuned the model for 40 epochs with a mini-batch
size of 1. For each experiment, we generated 1,000 drug molecules for evaluation. All
experiments were conducted on a computing cluster with eight NVIDIA® GeForce® RTX
2080 Ti 11GB GPUs and an Intel® Xeon® Gold 6139 CPU @ 2.30GHz. PyTorch [47] was
applied to complete our model and RDKit [48] was used to draw the pictures and estimate
the properties of molecules.

4.3. Comparison to Previous Methods

Structure-constrained generation. We compare our proposed method with GAN
and pre-trained GAN, for structure-constrained generation. GAN is directly trained with
few-shot drug molecule references with specific structures in the latent space of VAE. In this
work, we adopted WGAN-GP [42]. On the other hand, pre-trained GAN is pre-trained on
the ZINC-250K dataset from scratch.

Property-constrained generation. In addition to GAN and pre-trained GAN, we com-
pare our proposed method with previous approaches that use reference drugs, including
interpolating [31] and random sampling [30] for property-constrained generation. In ran-
dom sampling, the reference drugs are encoded into the latent space using the VAE encoder
to obtain their representations. Then, the spaces around these points are randomly sampled
with radii of 0.5, 1, and 2, respectively, as used in this work. On the other hand, in interpo-
lation, the desired drugs in the latent space are obtained by interpolating between each
pair of reference drug latent vectors.

4.4. Evaluation Metrics

Structure-constrained generation. We evaluate the performance of structure-constrained
generation based on diversity, uniqueness, and quality. Diversity measures the diversity
of generated molecules and is defined as:

Diversity = 1− 1∣∣Mgen
∣∣(∣∣Mgen

∣∣− 1)

m1 6=m2

∑
m1,m2∈Mgen

sim(m1, m2), (5)

where |·|, sim(·), and Mgen denote the operation of obtaining the number, a similarity
calculation method, and the generated molecules, respectively. In this work, we adopt the
Tanimoto similarity between two extended-connectivity fingerprint bit vectors. Unique-
ness measures the degree of variety during sampling and is defined as the ratio between
the number of unique samples and valid samples:

Uniqueness =

∣∣Munique
∣∣∣∣Mgen
∣∣ , (6)
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where Munique denotes the set of unique drugs (i.e., removing duplicated drugs in the
generated set). Quality is the ratio between the numbers of drug molecules with desired
structures and the generated drug molecules, defined as follows:

Quality =
|Mdesired|∣∣Mgen

∣∣ , (7)

where Mdesired is the desired drug molecule sets without duplicated molecules.
Property-constrained generation. In addition to diversity and uniqueness, we evalu-

ate the performance of property-constrained generation based on the scores of desired prop-
erties, including penalized logP(PlogP) and quantitative estimate of drug-likeness(QED).
PlogP is a commonly used property to evaluate molecule optimization models’ perfor-
mance, as it is relevant in the drug design process. It is defined as the logarithm of the ratio
of the concentrations of a solute in two solvents, and it provides a measure of lipophilicity.
QED score is another critical metric for drug design, which measures the similarity between
a compound’s properties and those of known drugs. QED stands for quantitative estimate
of drug-likeness, and it is a widely used measure in drug discovery.

4.5. Performance and Discussion
4.5.1. Structure-Constrained Generation

The results of generating molecules with one, two, and three aromatic rings, as well as
halogens, are presented in Figure 2. Overall, Mol-GenDA demonstrates superior perfor-
mance compared to GAN and pre-trained GAN in terms of diversity, quality, and unique-
ness in most cases. While Mol-GenDA performs slightly worse in terms of the uniqueness
of generated molecules with three rings, the experimental results still demonstrate its ability
to enhance the quality of generation while maintaining diversity.

Specifically, GAN trained from scratch on few-shot reference drug molecules performs
worse than both Mol-GenDA and pre-trained GAN, as training a GAN with just a few
molecules is challenging. Although the quality and diversity of molecules generated by
GAN increase with more reference molecules for training, it is still not enough to train
a proper GAN with just 100 reference drug molecules. Pre-trained GAN generates more
diversified drug molecules than GAN because GAN is trained with only a few reference
drug molecules, which limits its learning space. Additionally, the training data for GAN
are only a subset of those of pre-trained GAN, further narrowing down its learning space.

Mol-GenDA outperforms GAN in terms of diversity because the pre-trained generator
maintains the knowledge learned from large-scale training drug molecules in pre-training.
The diversity of drug molecules generated by pre-trained GAN and Mol-GenDA is similar
because both learned from large-scale training drug molecules. Moreover, the diversity
of molecules generated by Mol-GenDA varies in a small range since the diversity learned
from large-scale pre-training is maintained by freezing the parameters of the generator in
the domain adaptation fine tuning.

Mol-GenDA generates more desired drug molecules than pre-trained GAN because
of the additional fine-tuning stage that adapts the pre-trained GAN to a specific domain.
Training a GAN from scratch is hard because the latent space for the GAN to explore is too
large while only a few reference drug molecules are available, making it difficult to learn the
common features of the reference drug molecules. In contrast, only part of Mol-GenDA’s
parameters are updated in fine tuning, allowing for generating drug molecules with higher
quality than GAN and pre-trained GAN.

Figure 3 shows the generation examples of Mol-GenDA, with molecules randomly se-
lected from the generation of each task. We can see that Mol-GenDA successfully generates
molecules with desired structures.
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(c) Results of generating molecules with 3 aromatic rings
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Figure 2. Results of structure-constrained molecule generation.
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10-shot

5-shot

50-shot

100-shot

1 aromatic ring 2 aromatic rings 3 aromatic rings Halogen group

Figure 3. Structure-constrained generation examples of Mol-GenDA. Each row represents the struc-
tures that are desired and used for Mol-GenDA training, including 1, 2, and 3 aromatic rings, and the
halogen group. Each column corresponds to the generation with 5-shot, 10-shot, 50-shot, and 100-shot
reference drug molecules, respectively. The red highlight indicates the corresponding structures, i.e.,
the aromatic ring and halogen group. All molecules shown in the figure are randomly selected from
the corresponding task’s generation.

4.5.2. Property-Constrained Generation

The QED- and PlogP-constrained drug molecule generation results are presented in
Tables 2 and 3, respectively. Mol-GenDA outperforms other methods in terms of QED and
PlogP scores, demonstrating its capability for few-shot property-constrained molecule gen-
eration.

Table 2. Results of QED-constrained generation.

Inter-
Polate

Random Sampling GAN Pre-Train
GAN

Mol-
GenDA0.5 1 2

5-shot
QED 0.681 0.486 0.519 0.497 0.729 0.749 0.771

Diversity 0.868 0.908 0.923 0.930 0.850 0.866 0.859
Uniqueness 0.129 0.929 0.979 0.994 0.094 0.243 0.240

10-shot
QED 0.738 0.439 0.525 0.516 0.753 0.749 0.769

Diversity 0.886 0.902 0.920 0.927 0.832 0.866 0.865
Uniqueness 0.395 0.929 0.979 0.994 0.900 0.243 0.246

50-shot
QED 0.721 0.439 0.506 0.501 0.736 0.749 0.749

Diversity 0.897 0.910 0.922 0.928 0.841 0.866 0.862
Uniqueness 0.998 0.840 0.997 0.996 0.073 0.242 0.243

100-shot
QED 0.722 0.467 0.521 0.683 0.748 0.749 0.762

Diversity 0.897 0.914 0.921 0.927 0.852 0.866 0.866
Uniqueness 0.988 0.897 0.999 0.997 0.066 0.243 0.263
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Table 3. Results of PlogP-constrained generation.

Inter-
Polate

Random Sampling GAN Pre-Train
GAN

Mol-
GenDA0.5 1 2

5-shot
Plogp 0.651 0.639 0.547 0.519 0.519 0.568 0.682

Diversity 0.880 0.908 0.923 0.930 0.825 0.866 0.936
Uniqueness 0.234 0.929 0.979 0.994 0.069 0.243 0.252

10-shot
Plogp 0.660 0.669 0.667 0.609 0.562 0.568 0.679

Diversity 0.899 0.871 0.920 0.927 0.837 0.866 0.866
Uniqueness 0.612 0.827 0.994 0.995 0.065 0.243 0.255

50-shot
Plogp 0.635 0.617 0.614 0.594 0.547 0.568 0.677

Diversity 0.893 0.910 0.922 0.928 0.849 0.866 0.865
Uniqueness 0.982 0.840 0.997 0.996 0.068 0.243 0.232

100-shot
Plogp 0.659 0.653 0.607 0.590 0.484 0.568 0.672

Diversity 0.913 0.914 0.921 0.928 0.864 0.866 0.865
Uniqueness 0.985 0.897 0.999 0.994 0.085 0.243 0.236

Interpolation and random sampling methods generate drug molecules with similar
representation vectors in the latent space, and increasing the radius of random sampling
improves the diversity of generated molecules by ensuring more diverse representation
vectors. However, learning the target property features from few-shot reference drug
molecules is challenging. Pre-trained GANs are trained on large-scale drug molecules
without accessing the specific property features of the target molecules, which limits their
ability to generate desired molecules. Similarly, GANs trained from scratch also struggle to
capture the target features necessary for generating the desired molecules, although their
performance can be improved with the aid of a well-trained VAE.

Mol-GenDA outperforms other baseline methods in terms of property score, but it
performs worse in diversity than interpolation and random sampling, and better than
GANs and pre-trained GANs. Since the representation vectors generated by interpolation
and random sampling are different naturally, the diversity of the molecules decoded from
these vectors is guaranteed, but they fail to generate molecule drugs with desired properties.
Overall, Mol-GenDA appropriately addresses the challenge of generating desired drug
molecules with few-shot references.

Figure 4 displays the generated candidate molecules with the highest property scores
for their respective tasks. We can see that Mol-GenDA successfully generates molecules
with higher scores of desired properties.

PlogP

QED

10-shot5-shot 50-shot 100-shot

0.894 0.889 0.980 0.964

0.947 0.944 0.941 0.944

Figure 4. Property-constrained generation examples of Mol-GenDA. Each row represents the gen-
eration using 5-shot, 10-shot, 50-shot, and 100-shot reference drug molecules, respectively. Each
column indicates the desired properties used for Mol-GenDA training, including QED and PlogP.
The selected molecules in each row have the highest property scores for their corresponding task.
The property scores are below each molecule.
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4.5.3. Activity: Dopamine Receptor D2

To further validate the effectiveness of our Mol-GenDA, we conduct experiments on
generating bioactive drug molecules with Dopamine Receptor D2 (DRD2) as the biological
target. DRD2 score is the probability that one molecule can trigger the biological activity of
DRD2. Specifically, we utilize a machine learning-based score model from [35] to select the
top five reference molecules that can trigger the biological activity of DRD2. Mol-GenDA
then generates desired molecules with the five reference molecules. Figure 5 shows the top
five molecules generated by Mol-GenDA and GAN trained from scratch in terms of DRD2
score. We can see that the molecules generated by Mol-GenDA share similar substructures
with reference molecules and maintain the diversity score of 0.921, which is higher than that
of GAN (i.e., 0.770). Furthermore, Mol-GenDA generates drug molecules with much higher
DRD2 scores (i.e., the average DRD2 score of the top five molecules is 0.544) than those
of GAN (i.e., the average DRD2 score is 0.048). Mol-GenDA outperforms GAN trained
from scratch on both DRD2 score and diversity because of the fine-tuning paradigm in
Mol-GenDA, which generates molecules with desired properties and maintains diversity.
The pre-training enables Mol-GenDA to generate valid molecules, and the fine-tuning
paradigm introduces an adaptor to learn the distribution of drug molecules with desired
properties while freezing the parameters of the generator, which maintains the diversity of
generated drug molecules. Additionally, during the fine-tuning process, only the last two
layers of the discriminator are trained, which simplifies the training procedure. However,
for GAN trained from scratch, exploring the enormous latent space for drug molecules
with desired properties is difficult. Furthermore, we find that the QED and PlogP scores
of Mol-GenDA (i.e., 0.724 and 0.491) are comparable to those of GAN (i.e., 0.756 and
0.503). Similarly, the two methods also achieved comparable performance on the other two
properties, drug candidate score (DCS) (i.e., 0.595 and 0.609) and synthetic accessibility
(SA) (i.e., 0.531 and 0.503). This is because both of them contain the VAE module which is
taken from previous works [20] and pre-trained to be full of valid drug molecules in the
latent space for both methods.

0.62

Reference

Mol-GenDA GAN
DCS, QED

Plogp, SA

0.728, 0.866 

0.572, 0.913

0.585, 0.520 

0.415, 0.743

0.697, 0.702 

0.761, 0.788

0.643, 0.726 

0.165, 0.649

0.644, 0.641 

0.419, 0.579

0.742, 0.838  

0.693, 0.969

0.686, 0.704 

0.579, 0.747

0.732, 0.792 

0.579, 0.931

0.685, 0.917 

0.670, 0.740

0.684, 0.836 

0.480, 0.739

0.81 0.61 0.58 0.57 0.52

DRD2

Score

0.56

0.52

0.50

0.52

0.07

0.06

0.05

0.03

0.03

0.563, 0.917 

0.507, 0.254

0.615, 0.900 

0.589, 0.463

0.629, 0.840 

0.521, 0.516

0.586, 0.532 

0.963, 0.358

0.591, 0.774 

0.316, 0.366

Figure 5. The 5 reference drugs and candidates generated by Mol-GenDA and GAN for DRD2.
The numbers beside each molecule represent the drug candidate scores (DCS), QED, PlogP, SA,
respectively, with higher scores indicating better generation results. DRD2 is the probability that one
molecule can trigger the biological activity of DRD2. The drug molecules are arranged in order of
DRD2 Score.
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4.6. Case Study: Drug Generation for COVID-19

Due to the sudden outbreak of COVID-19 and the limited availability of drugs for sim-
ilar diseases, we utilized Mol-GenDA to identify effective candidate drugs for COVID-19.
We collected five established drugs known to be useful in treating COVID-19 as reference
drugs to fine-tune the pre-trained GAN in Mole-GenDA, including Remdesivir [49], Nir-
matrelvir [50], Baricitinib [51], Sabizabulin [52], and Molnupiravir [53]. Figure 6 shows the
candidate drugs generated by the GAN trained from scratch and our Mol-GenDA, which
are all valid and novel. The drugs generated by Mol-GenDA maintain both diversity and
similarities to the reference drugs, achieving a diversity score of 0.870. The QED and PlogP
scores of the generated drugs are 0.765 and 0.532, respectively, and the average synthetic
accessibility (SA) score for our drug candidates is 0.612. In comparison, the diversity, QED
score, PlogP score, and SA score of the drugs generated by the GAN trained from scratch
are 0.747, 0.654, 0.252, and 0.293, respectively, with only the QED score being comparable
to Mol-GenDA.

Baricitinib MolnupiravirNirmatrelvir RemdesivirSabizabulin

Reference

Mol-GenDA

0.656, 0.737
0.457, 0.624

0.622, 0.855
0.458, 0.488

0.631, 0.730
0.617, 0.523

0.698, 0.750
0.668, 0.791

0.659, 0.753
0.458, 0.635

GAN

0.596, 0.789
0.413, 0.385

0.572, 0.477
0.181, 0.319

0.517, 0.735
0.178, 0.111

0.450, 0.481
0.086, 0.258

0.598, 0.787
0.401, 0.391

DCS, QED
Plogp, SA

0.512, 0.389
0.120, 0.322

0.625, 0.716
0.394, 0.500

0.530, 0.503
0.394, 0.121

0.513, 0.164
0.543, 0.053

0.680, 0.498
0.727, 0.722

Figure 6. The 5 reference drugs and candidates generated by GAN and Mol-GenDA for COVID-19.
The numbers beside each molecule represent the drug candidate scores (DCS), QED, PlogP, SA,
respectively, with higher scores indicating better generation results. The highlight with the same color
indicate the same substructure. The drug molecules are arranged in order of drug candidate score.

5. Conclusions

Advantages. In this study, we proposed Mol-GenDA, a molecule generative domain
adaptation approach for low-data drug discovery, which addressed the challenge of generat-
ing drugs with both diversity and quality using only a few reference drugs. We introduced
a lightweight molecule adaptor that efficiently adapts the pre-trained generator to the
target disease domain with a few reference drug molecules. We first pre-trained the GAN
on ZINC-250K, a large-scale drug-like dataset, then froze the parameters of the pre-trained
generator and optimized only the molecule adaptor during fine tuning on the new dis-
ease dataset. This approach makes the generator leverage the prior knowledge learned in
the source domain to improve the generation quality and diversity in the target domain.
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Extensive experimental results on both structure-constrained and property-constrained
generation consistently demonstrated the superiority of Mol-GenDA over previous works
in terms of common evaluation metrics on the low-data drug design task.

Limitations. In the few-shot generation setting, Mol-GenDA outperformed previous
works in structure-constrained generation and most methods in property-constrained
generation. However, its diversity in generating molecules with desired properties is not
as good as that of interpolation and random sampling methods. This is due to the limited
space explored by Mol-GenDA during fine-tuning, as only the adaptor and the last two
layers of the discriminator are updated, resulting in a trade-off between diversity and
desired properties.

Although Mol-GenDA still requires a few reference drugs, our future work will focus
on generating desired drugs with one-shot learning or directly controlling the structures
of generated drugs. Specifically, we aim to generate desired drug molecules using a large
chemical language model, utilizing only the description of the molecule properties or
structures to retrieve the knowledge from the large chemical language model.

Author Contributions: Conceptualization, K.L.; methodology, K.L.; software, K.L.; validation, K.L.;
formal analysis, K.L. and Y.H.; investigation, K.L.; resources, K.L., Y.H. and H.X.; data curation, K.L.;
writing—original draft preparation, K.L.; writing—review and editing, K.L., Y.H., Z.G. and H.X.;
visualization, K.L.; supervision, Y.H.; project administration, Y.H. and H.X.; funding acquisition, H.X.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China under grants
No. 82202984.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets employed in our study can be found at Google Drive:
https://drive.google.com/drive/folders/10Z2n6co40abDIkuNlrNgDZkO1e7K-g91?usp=sharing, ac-
cessed on 11 January 2022. All code has been deposited and is publicly available on Github:
https://github.com/zjuKeLiu/Mol-GenDA, accessed on 3 May 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Salazar, D.E.; Gormley, G. Chapter 41—Modern Drug Discovery and Development. In Clinical and Translational Science, 2nd ed.;

Robertson, D., Williams, G.H., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 719–743. [CrossRef]
2. Dowden, H.; Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 2019, 18, 495–496. [CrossRef]

[PubMed]
3. Bilodeau, C.; Jin, W.; Jaakkola, T.; Barzilay, R.; Jensen, K.F. Generative models for molecular discovery: Recent advances and

challenges. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1608. [CrossRef]
4. Sharma, N.; Bora, K.S. Computer Aided Drug Design, 3D Printing, and Virtual Screening: Recent Advancement and Applications

in the Pharma Field. ECS Trans. 2022, 107, 16423–16430. [CrossRef]
5. Mullard, A. New drugs cost US $2.6 billion to develop. Nat. Rev. Drug Discov. 2014, 13, 877. [CrossRef]
6. Reymond, J.L.; Awale, M. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem.

Neurosci. 2012, 3, 649–657. [CrossRef]
7. Schneider, P.; Walters, W.P.; Plowright, A.T.; Sieroka, N.; Listgarten, J.; Goodnow, R.A., Jr.; Fisher, J.; Jansen, J.M.; Duca, J.S.; Rush,

T.S.; et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 2020, 19, 353–364. [CrossRef]
8. Jing, X.; Xu, J. Fast and effective protein model refinement using deep graph neural networks. Nat. Comput. Sci. 2021, 1, 462–469.

[CrossRef]
9. Chen, Z.; Min, M.R.; Parthasarathy, S.; Ning, X. A deep generative model for molecule optimization via one fragment modification.

Nat. Mach. Intell. 2021, 3, 1040–1049. [CrossRef]
10. Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature

2018, 559, 547–555. [CrossRef]
11. Walters, W.P.; Barzilay, R. Applications of deep learning in molecule generation and molecular property prediction. Accounts

Chem. Res. 2020, 54, 263–270. [CrossRef]
12. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the 2nd International Conference on Learning

Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014.

https://drive.google.com/drive/folders/10Z2n6co40abDIkuNlrNgDZkO1e7K-g91?usp=sharing
https://github.com/zjuKeLiu/Mol-GenDA
http://doi.org/10.1016/B978-0-12-802101-9.00041-7
http://dx.doi.org/10.1038/d41573-019-00074-z
http://www.ncbi.nlm.nih.gov/pubmed/31267067
http://dx.doi.org/10.1002/wcms.1608
http://dx.doi.org/10.1149/10701.16423ecst
http://dx.doi.org/10.1038/nrd4507
http://dx.doi.org/10.1021/cn3000422
http://dx.doi.org/10.1038/s41573-019-0050-3
http://dx.doi.org/10.1038/s43588-021-00098-9
http://dx.doi.org/10.1038/s42256-021-00410-2
http://dx.doi.org/10.1038/s41586-018-0337-2
http://dx.doi.org/10.1021/acs.accounts.0c00699


Bioengineering 2023, 10, 1104 16 of 17

13. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680.

14. Rezende, D.; Mohamed, S. Variational inference with normalizing flows. In Proceedings of the International Conference on
Machine Learning, Lille, France, 7–9 July 2015; pp. 1530–1538.

15. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J.
Chem. Inf. Comput. Sci. 1988, 28, 31–36. [CrossRef]

16. Krenn, M.; Häse, F.; Nigam, A.; Friederich, P.; Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): A 100% robust
molecular string representation. Mach. Learn. Sci. Technol. 2020, 1, 045024. [CrossRef]

17. Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: Moving beyond fingerprints. J.
Comput.-Aided Mol. Des. 2016, 30, 595–608. [CrossRef] [PubMed]

18. Kusner, M.J.; Paige, B.; Hernández-Lobato, J.M. Grammar variational autoencoder. In Proceedings of the International Conference
on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1945–1954.

19. Liu, Q.; Allamanis, M.; Brockschmidt, M.; Gaunt, A. Constrained graph variational autoencoders for molecule design. Adv.
Neural Inf. Process. Syst. 2018, 31 , 7795–7804.

20. Jin, W.; Barzilay, R.; Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. In Proceedings of the
International Conference on Machine Learning, Vienna, Austria, 25–31 July 2018; pp. 2323–2332.

21. De Cao, N.; Kipf, T. MolGAN: An implicit generative model for small molecular graphs. arXiv 2018, arXiv:1805.11973.
22. Pölsterl, S.; Wachinger, C. Adversarial learned molecular graph inference and generation. In Proceedings of the Machine Learning

and Knowledge Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, 14–18 September 2020;
Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2021; pp. 173–189.

23. Prykhodko, O.; Johansson, S.V.; Kotsias, P.C.; Arús-Pous, J.; Bjerrum, E.J.; Engkvist, O.; Chen, H. A de novo molecular generation
method using latent vector based generative adversarial network. J. Cheminform. 2019, 11, 1–13. [CrossRef] [PubMed]

24. Zang, C.; Wang, F. MoFlow: An invertible flow model for generating molecular graphs. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Virtual Event, 23–27 August 2020; pp. 617–626.

25. Shi, C.; Xu, M.; Zhu, Z.; Zhang, W.; Zhang, M.; Tang, J. Graphaf: A flow-based autoregressive model for molecular graph
generation. arXiv 2020, arXiv:2001.09382.

26. Madhawa, K.; Ishiguro, K.; Nakago, K.; Abe, M. Graphnvp: An invertible flow model for generating molecular graphs. arXiv
2019, arXiv:1905.11600.

27. Wang, Y.; Wu, C.; Herranz, L.; Van de Weijer, J.; Gonzalez-Garcia, A.; Raducanu, B. Transferring gans: Generating images from
limited data. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 218–234.

28. Ojha, U.; Li, Y.; Lu, J.; Efros, A.A.; Lee, Y.J.; Shechtman, E.; Zhang, R. Few-shot image generation via cross-domain correspondence.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 10743–10752.

29. Yang, C.; Shen, Y.; Zhang, Z.; Xu, Y.; Zhu, J.; Wu, Z.; Zhou, B. One-shot generative domain adaptation. arXiv 2021,
arXiv:2111.09876.

30. Lim, J.; Ryu, S.; Kim, J.W.; Kim, W.Y. Molecular generative model based on conditional variational autoencoder for de novo
molecular design. J. Cheminform. 2018, 10, 1–9. [CrossRef] [PubMed]

31. Ma, C.; Zhang, X. GF-VAE: A Flow-based Variational Autoencoder for Molecule Generation. In Proceedings of the CIKM’21: The
30th ACM International Conference on Information and Knowledge Management, Virtual Event, 1–5 November 2021; Demartini,
G., Zuccon, G., Culpepper, J.S., Huang, Z., Tong, H., Eds.; ACM: New York, NY, USA, 2021; pp. 1181–1190. [CrossRef]

32. Jabbar, A.; Li, X.; Omar, B. A survey on generative adversarial networks: Variants, applications, and training. ACM Comput. Surv.
(CSUR) 2021, 54, 1–49. [CrossRef]

33. Jiménez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020,
2, 573–584. [CrossRef]

34. Xu, M.; Cheng, J.; Liu, Y.; Huang, W. DeepGAN: Generating Molecule for Drug Discovery Based on Generative Adversarial
Network. In Proceedings of the 2021 IEEE Symposium on Computers and Communications (ISCC), Rhodes Island, Greece, 5–8
September 2021; IEEE: New York, NY, USA, 2021; pp. 1–6.

35. Maziarka, Ł.; Pocha, A.; Kaczmarczyk, J.; Rataj, K.; Danel, T.; Warchoł, M. Mol-CycleGAN: A generative model for molecular
optimization. J. Cheminform. 2020, 12, 1–18.

36. Li, Y.; Zhang, R.; Lu, J.; Shechtman, E. Few-shot Image Generation with Elastic Weight Consolidation. In Proceedings of the
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, Virtual, 6–12 December 2020.

37. Zhao, M.; Cong, Y.; Carin, L. On Leveraging Pretrained GANs for Generation with Limited Data. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, Virtual Event, 13–18 July 2020; Volume 119, pp. 11340–11351.

38. Yang, C.; Lim, S.N. One-shot domain adaptation for face generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 5921–5930.

39. Altae-Tran, H.; Ramsundar, B.; Pappu, A.S.; Pande, V. Low data drug discovery with one-shot learning. ACS Cent. Sci. 2017,
3, 283–293. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ci00057a005
http://dx.doi.org/10.1088/2632-2153/aba947
http://dx.doi.org/10.1007/s10822-016-9938-8
http://www.ncbi.nlm.nih.gov/pubmed/27558503
http://dx.doi.org/10.1186/s13321-019-0397-9
http://www.ncbi.nlm.nih.gov/pubmed/33430938
http://dx.doi.org/10.1186/s13321-018-0286-7
http://www.ncbi.nlm.nih.gov/pubmed/29995272
http://dx.doi.org/10.1145/3459637.3482260
http://dx.doi.org/10.1145/3463475
http://dx.doi.org/10.1038/s42256-020-00236-4
http://dx.doi.org/10.1021/acscentsci.6b00367
http://www.ncbi.nlm.nih.gov/pubmed/28470045


Bioengineering 2023, 10, 1104 17 of 17

40. Lv, Q.; Chen, G.; Yang, Z.; Zhong, W.; Chen, C.Y.C. Meta Learning With Graph Attention Networks for Low-Data Drug Discovery.
IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–13. [CrossRef]

41. Xu, Z.; Wauchope, O.R.; Frank, A.T. Navigating chemical space by interfacing generative artificial intelligence and molecular
docking. J. Chem. Inf. Model. 2021, 61, 5589–5600. [CrossRef]

42. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. Adv. Neural Inf.
Process. Syst. 2017, 30.

43. Xu, Y.; Shen, Y.; Zhu, J.; Yang, C.; Zhou, B. Generative hierarchical features from synthesizing images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4432–4442.

44. Dara, S.; Tumma, P. Feature extraction by using deep learning: A survey. In Proceedings of the 2018 Second International
Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; IEEE:
New York, NY, USA, 2018; pp. 1795–1801.

45. Sterling, T.; Irwin, J.J. ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [CrossRef]
46. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
47. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32.
48. Landrum, G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum

2013, 8, 31.
49. Hsu, J. COVID-19: What now for remdesivir? BMJ 2020, 371. [CrossRef] [PubMed]
50. McDonald, E.G.; Lee, T.C. Nirmatrelvir-ritonavir for COVID-19. CMAJ 2022, 194, E218. [CrossRef] [PubMed]
51. Jorgensen, S.C.; Tse, C.L.; Burry, L.; Dresser, L.D. Baricitinib: A review of pharmacology, safety, and emerging clinical experience

in COVID-19. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 843–856. [CrossRef]
52. Markowski, M.C.; Tutrone, R.; Pieczonka, C.; Barnette, K.G.; Getzenberg, R.H.; Rodriguez, D.; Steiner, M.S.; Saltzstein, D.R.;

Eisenberger, M.A.; Antonarakis, E.S. A Phase Ib/II Study of Sabizabulin, a Novel Oral Cytoskeleton Disruptor, in Men with
Metastatic Castration-resistant Prostate Cancer with Progression on an Androgen Receptor–targeting Agent. Clin. Cancer Res.
2022, 13, 2789–2795. [CrossRef]

53. Singh, A.K.; Singh, A.; Singh, R.; Misra, A. Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab. Syndr.
Clin. Res. Rev. 2021, 15, 102329. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNNLS.2023.3250324
http://dx.doi.org/10.1021/acs.jcim.1c00746
http://dx.doi.org/10.1021/acs.jcim.5b00559
http://dx.doi.org/10.1136/bmj.m4457
http://www.ncbi.nlm.nih.gov/pubmed/33214186
http://dx.doi.org/10.1503/cmaj.220081
http://www.ncbi.nlm.nih.gov/pubmed/35115376
http://dx.doi.org/10.1002/phar.2438
http://dx.doi.org/10.1158/1078-0432.CCR-22-0162
http://dx.doi.org/10.1016/j.dsx.2021.102329

	Introduction
	Research Problem and Motivation
	Research Problem
	Limitation of Previous Methods

	Our Method
	Large-Scale Pre-Training
	Generative Domain Adaptation
	Constrained Molecule Generation

	Results
	Data
	Model and Training Configurations
	Comparison to Previous Methods
	Evaluation Metrics
	Performance and Discussion
	Structure-Constrained Generation
	Property-Constrained Generation
	Activity: Dopamine Receptor D2

	Case Study: Drug Generation for COVID-19

	Conclusions
	References

