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Abstract: Accurate identification of lesions and their use across different medical institutions are
the foundation and key to the clinical application of automatic diabetic retinopathy (DR) detection.
Existing detection or segmentation methods can achieve acceptable results in DR lesion identification,
but they strongly rely on a large number of fine-grained annotations that are not easily accessible and
suffer severe performance degradation in the cross-domain application. In this paper, we propose
a cross-domain weakly supervised DR lesion identification method using only easily accessible
coarse-grained lesion attribute labels. We first propose the novel lesion-patch multiple instance
learning method (LpMIL), which leverages the lesion attribute label for patch-level supervision to
complete weakly supervised lesion identification. Then, we design a semantic constraint adaptation
method (LpSCA) that improves the lesion identification performance of our model in different
domains with semantic constraint loss. Finally, we perform secondary annotation on the open-source
dataset EyePACS, to obtain the largest fine-grained annotated dataset EyePACS-pixel, and validate
the performance of our model on it. Extensive experimental results on the public dataset FGADR
and our EyePACS-pixel demonstrate that compared with the existing detection and segmentation
methods, the proposed method can identify lesions accurately and comprehensively, and obtain
competitive results using only coarse-grained annotations.

Keywords: diabetic retinopathy identification; multiple instance learning; weakly supervised learning;
cross-domain

1. Introduction

Diabetic retinopathy (DR) is one of the most common complications of diabetes and
one of the leading causes of visual impairment in the working-age population. Fortunately,
timely diagnosis can prevent further deterioration of the lesions, thus reducing the risk of
blindness. During the diagnosis of DR, the ophthalmologist completes the comprehensive
diagnosis by identifying the lesion attributes on the fundus image, such as microaneurysm
(MA), hemorrhage (HE), exudate (EX), cotton wool spots (CWS), neovascularization (NV),
and intraretinal microvascular abnormalities (IRMA). However, due to the difficulty in
identifying certain lesions, this process can be time-consuming and labor-intensive. Au-
tomatic DR-aided diagnosis methods use deep learning models to extract features from
the fundus image to complete the location of the lesions, and the results can be provided
to ophthalmologists for further diagnosis. At the same time, with the maturity of auto-
matic DR-assisted diagnosis technology, the requirements for deep learning models in
clinical applications are also increasing. For example, it is expected to have the ability to be
used across medical institutions. In conclusion, cross-domain localization of DR lesions is
becoming a concern of both academia and industry.
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In recent years, with the development of deep learning, as shown in Figure 1a, several
lesion identification models have been proposed to assist ophthalmologists in the diagnosis
of DR. Models [1–4] trained with fine-grained annotations such as pixel-level annotations or
bounding box annotations have been proposed and have achieved acceptable results in DR
lesion identification. However, the application of these models is limited due to the time-
consuming manual annotation. Therefore, some methods [5–7] attempt to accomplish both
DR grading and lesion identification using only coarse-grained annotations such as grading
labels or lesion attribute labels. However, due to the limited supervision provided by
coarse-grained annotations, these methods tend to be biased on the most important lesion
regions while ignoring trivial lesion information. In addition, in clinical applications, image
quality and imaging performance vary due to the different image acquisition equipment
used in different healthcare facilities, the direct application of models on other datasets
will suffer huge performance losses (Figure 1b), which greatly limits the flexibility and
scalability of these deep learning methods.

fine-grained 

annotation

Detection model Segmentation model

CAM LpMIL (Ours)

Source domain image

(a) Different DR lesion identification methods

LpMIL (Ours)

LpSCA (Ours)
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(b) Cross-domain DR lesion identification
LpMIL (Ours)

Inference
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Figure 1. (a) Different DR lesion identification methods, including models trained with fine-grained
annotations represented by detection models and segmentation models, and models trained with
coarse-grained annotations represented by CAM and LpMIL. Using only coarse-grained annotations,
our LpMIL not only achieves better lesion identification performance than CAM, but also achieves
results that are competitive with detection and segmentation models. (b) Directly applying our
LpMIL trained on the source domain to the target domain results in severe performance degradation,
while our LpSCA improves cross-domain lesion identification performance through the semantic
constrained adaptation method. “GT” denotes ground truth.

Motivated by the above observations, we propose a novel cross-domain weakly super-
vised DR lesion identification method. First, we propose the novel lesion-patch multiple
instance learning method (LpMIL), which achieves both image-level supervision and patch-
level supervision. Specifically, it utilizes patch-level lesion predictions generated by fully
convolutional networks and a specified threshold to generate soft patch-level pseudo-labels,
enabling patch-level supervision. At the same time, image-level predictions are obtained
by the max-pooling aggregation for image-level supervision. Besides, to fully identify
lesions of different sizes, we also introduce a multi-scale fusion method to fuse the features
extracted by the backbone. Next, based on LpMIL, we propose a semantic constraint adap-
tation method (LpSCA) to facilitate the application of the model across medical institutions.
A semantic constrained loss is constructed using grading labels, which introduces sufficient
medical prior information and improves the performance of cross-domain lesion identi-
fication. Finally, since there is no public large-scale fine-grained annotated DR dataset to
conduct experiments and verify the effect of our model, we perform secondary annotation
on the open-source EyePACS dataset to obtain the largest fine-grained annotation dataset,
EyePACS-pixel, and verify the cross-domain identification performance of our model.

The main contribution of our work is as follows:

• We are the first to define DR lesion identification as a multi-label classification task,
and propose a novel lesion-patch multiple instance learning method (LpMIL) to
achieve it.
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• We propose a semantic constraint adaptation method (LpSCA) to improve cross-
domain DR lesion identification performance.

• We construct the largest fine-grained annotation dataset EyePACS-pixel, which can
provide a data basis for DR lesion identification.

• Extensive experiments conducted on the public datasets FGADR and EyePACS-pixel
show that, with only coarse-grained annotations, the proposed method can achieve
competitive results compared with the existing dominant detection, segmentation,
and weakly supervised object localization methods.

2. Related Work
2.1. Diabetic Retinopathy Lesion Identification

To complete automatic DR lesion identification, many DR lesion identification methods
based on pixel-level or bounding box annotations have been proposed. Yang et al. [8]
propose a two-stage Convolutional Neural Network (CNN) for DR grading and lesion
detection, which uses the lesion detection results to assign different weights to the image
patch to improve the performance of DR grading. Li et al. [9] adopt the object detection
model to extract lesion features from fundus images for DR grading. Using a small
number of pixel-level annotations, Foo et al. [10] propose a multi-task learning approach to
simultaneously complete the tasks of DR grading and lesion segmentation. Zhou et al. [2]
propose the FGADR dataset, on which DR lesion segmentation is performed. However,
the application of these methods is limited due to the difficulty of obtaining fine-grained
annotations. Therefore, researchers attempt to accomplish both DR grading and lesion
identification using only coarse-grained grading labels. Wang et al. [5] utilize the attention
map to highlight suspicious areas, and complete DR grading and lesion localization at
the same time. Sun et al. [6] formulate lesion identification as a weakly supervised lesion
localization problem through a transformer decoder, which jointly performs DR grading
and lesion detection. Different from previous methods, we define DR lesion identification
as a multi-label classification problem for patch-level lesion identification and use a cross-
domain approach to enable the model to be used across healthcare institutions.

2.2. Multiple Instance Learning

Multiple instance learning has become a widely adopted weakly supervised learning
method [11–16]. Many works have studied different pooling functions combined with
instance embedding or instance prediction to accomplish bag-level prediction [17–20]. How-
ever, the pooling function itself cannot provide sufficient information, and supervision can
only be retained at the bag level, which severely limits the effect of instance-level prediction.
To address this problem, some approaches introduce artificial instance labels by specifying
thresholds to provide both bag-level and instance-level supervision. Zhou et al. [18] use
specified thresholds to directly assign positive or negative labels based on prediction scores,
providing supervision for all instances. Morfi et al. [21] propose MMM loss for audio
event detection. This loss function provides supervision for instances of extreme prediction
scores according to the specified threshold and obtains bag level prediction through average
pooling aggregation for bag level supervision. Seibold et al. [22] use a more customized
way to create soft instance labels, flexibly providing supervision for all instances, and apply
it to the pathological localization of chest radiographs pathologies.

To the best of our knowledge, these methods have not been applied to automatic
DR detection. In this paper, we use the multiple instance learning method for weakly
supervised DR lesion identification.

2.3. Domain Adaptation

Domain adaptation is a subtask of transfer learning, which maps features of different
domains to the same feature space, and utilizes the labels of the source domain to enhance
the training of the target domain. The mainstream approach is to learn the domain invariant
representation using adversarial training. DANN [23] pioneers this field by training a
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domain discriminator to distinguish the source domain from the target domain, and training
a feature extractor to cheat the discriminator to align the features of the two domains.
CDAN [24] utilizes the discrimination information predicted by the classifier to condition
the adversarial model. GVB [25] improves adversarial training by building bridging layers
between the generator and the discriminator. MetaAlign [26] treats domain alignment tasks
and classification tasks as meta-training and meta-testing tasks in a meta-learning scheme
for domain adaptation. However, these methods lack sufficient medical prior information
to achieve satisfactory results. Therefore, we propose a semantic constraint adaptation
method using the common grading labels of the diabetic retinopathy dataset, and achieve
the cross-domain utilization of lesion attribute labels.

3. Materials and Methods
3.1. Datasets

Currently, although there are some public DR datasets, such as [2,27,28], only FGADR [2],
IDRiD [27] contains pixel-level annotations of lesions. Since FGADR is used to train the
model, and the amount of data contained in IDRiD is extremely limited, to evaluate the
effectiveness of our LpSCA, we construct a fine-grained lesion identification dataset based
on EyePACS [28]. Our dataset contains 4401 images with corresponding pixel-level lesion
annotations. Due to the requirements of the evaluation experiment, the annotated lesions
include HE, CWS, and EX. The number of lesions for each dataset is shown in Table 1.

Table 1. A Summary of public DR datasets with fine-grained annotations.

Dataset Annotation Images MA HE CWS EX IRMA NV

IDRiD [27] Pixel-level 81 81 80 40 81 - -
FGADR [2] Pixel-level 1842 1424 1456 627 1279 159 49

EyePACS-pixel Pixel-level 4401 - 4160 1550 2750 - -

3.1.1. Our EyePACS-Pixel Dataset

Since our main goal is to build a dataset containing annotated pixel-level DR lesions,
we prefer fundus images that contain more lesions. Therefore, we use FGADR to train our
LpMIL and apply it to the test set of EyePACS. We select images with lesions predicted
by our LpMIL and filter out images with a grade greater than 0 for labeling. Three
ophthalmologists (two residents and one attending physician) are invited to annotate the
data. Two residents make the preliminary annotation, and the attending physician is
responsible for the final verification. This dataset has been approved by the Biological and
Medical Ethics Committee of Beihang University (No. BM20230242). Some examples of
annotations are shown in Figure 2.

The images in the dataset all contain at least one annotated lesion. The distribution of
lesion counts is shown in Table 1. Through observation, we find that HE and EX are two
common lesions in DR images, while CWS appeared relatively less frequently.

In our experiment, this dataset is only used to evaluate the cross-domain lesion
identification performance of the model.

3.1.2. FGADR Dataset

FGADR dataset [2] contains 1842 fundus images in five DR categories including
pixel-level annotations of HE, MA, EX, CWS, NV, and IRMA. Due to the small size of
MA and limited training data for IRMA and NV, it is difficult for state-of-the-art semantic
segmentation models to achieve satisfactory results on MA, IRMA, and NV. Therefore,
excluding MA, IRMA, and NV, we only conduct experimental evaluations for HE, CWS,
and EX. We randomly divide it into 1474 training images and 368 testing images, the training
set is used for the training of our LpMIL and LpSCA, and the test set is used for the
evaluation of lesion identification.



Bioengineering 2023, 10, 1100 5 of 12

EX

CWS

HE

Figure 2. Examples of pixel level annotations from our EyePACS-Pexel dataset. White, blue and
yellow indicate HE, CWS, and EX, respectively.

3.1.3. EyePACS Dataset

EyePACS dataset [28] contains 88,702 images in five DR categories, of which 35,126 im-
ages are used for training, 10,906 images are used for validation, and 43,670 images are
used for testing.

3.2. Methods Overview

In Figure 3, the images are processed by fully convolutional networks including the
backbone and the multi-scale fusion module to obtain patch-level classification predictions
for each lesion. The number of patches is related to the size of the feature map, which
is determined by the backbone and the input size. Given a set of source domain images
Xs with lesion attribute labels Ya,s and grading labels Yg,s and a set of target domain
images Xt with only grading labels Yg,t. The purpose of LpMIL and LpSCA is to train
the backbone network and the multi-scale fusion module to predict patch-level lesion
attribute labels of Xs and Xt, respectively. To achieve this, we first extract the feature Fs
from the source domain image using the backbone, and then the last few layers of Fs are fed
into the multi-scale fusion module to fuse the feature maps of different scales, and finally,
the LpMIL perform bag-level and instance-level supervision using lesion attribute labels
Ya,s, where bags and instances correspond to images and patches in the images, respectively.
In a cross-medical institution scenario, that is, across different datasets, we use the same
backbone to extract the feature Ft from the target domain image, and then the LpSCA uses
the grading labels Yg,s and Yg,t to perform domain adaptation on the last layer of Fs and Ft
to improve cross-domain lesion identification performance. In the following subsection,
we will describe the specific implementation of the above method in detail.

3.3. Lesion-Patch Multiple Instance Learning for Lesion Identification
3.3.1. Multi-Scale Fusion Module

Since the lesions in the fundus images are of different sizes, it is difficult to preserve the
location information of the lesions after the multi-layer convolution operation. Therefore,
we propose a multi-scale fusion module to detect lesions of different sizes. As shown
by the multi-scale fusion module in Figure 3, given the feature Fs corresponding to the
source domain image Xs, we apply a convolutional layer to convert the outputs of the
last few layers of Fs into Fl,s with the same spatial size, where l ∈ {1, . . . , L} and L is a
hyperparameter that can be manually selected. These features Fl,s are transformed into
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instance-level lesion attribute predictions through convolution and sigmoid operation
after concatenation.

Backbone Multi-Scale Fusion Module
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Figure 3. The architecture of our model.

3.3.2. Lesion-Patch Multiple Instance Learning

Given lesion attribute prediction pc
i,j obtained from the multi-scale fusion module.

In multiple instance learning, pc
i = 1 if and only if there is at least one pc

i,j = 1, hence
we define

pc
i = max

j
pc

i,j, (1)

where pc
i,j is the attribute prediction of the c-th class generated by the j-th instance of the

i-th bag from the source domain and pc
i is the attribute prediction of the c-th class generated

by the i-th bag from the source domain. Bags and instances correspond to images and
patches in the images, respectively.

We refer to [22] and use Self-Guiding Loss (SGL) for multiple instance learning.
The specific example is shown in the LpMIL of Figure 3. Unlike the standard method,
which only contains bag-level supervision, our method includes bag-level supervision and
instance-level supervision. The specific implementation of the two kinds of supervision
will be described later.

Like the multi-label classification task, we use a regular loss function L such as the
binary cross-entropy loss function to compute the bag-level loss function:

LBag(Xs,Ya,s) =
1

C · N ∑
c

∑
i
L(pc

i , yc
i ), (2)

where C is the number of lesion categories, N is the total number of samples, and yc
i is the

c-th lesion attribute of the i-th sample from the source domain.
In multiple instance learning, there is an assumption that networks trained just from

bag-level annotations will inevitably assign some positive instances a noticeably higher
predicted score than most negative instances. Therefore, after initial training, we think that
the labels of instances with high predictions should be positive, those with low predictions
should be negative, and those predictions close to the decision boundary are ambiguous,
and use these labels as instance-level pseudo-labels. The main operations are as follows:

To address the problem of imbalanced data, we perform max-min normalization on
the prediction pc

i,j:

θc
i,j =

pc
i,j −min

(
pc

i,j

)
max

(
pc

i,j

)
−min

(
pc

i,j

) . (3)
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According to previous assumptions, we define the upper threshold δh and the lower
threshold δl (δh + δl = 1, δh > δl > 0), so that labels of instances with predictions greater
than the upper threshold δh are positive, those below the lower threshold δl are negative,
and labels of instances close to the decision boundary are normalized predictions to push
them towards a certain class, and pseudo-labels are defined as follows:

Mc
i,j =


0 , if θc

i,j < δl or yc
i = 0

θc
i,j , if δl ≤ θc

i,j ≤ δh

1 , if δh < θc
i,j

. (4)

Next, we use a regular loss function L such as the binary cross-entropy loss function
to construct the instance-level loss function:

LInst(Xs, M) = ∑
i

∑
c

∑
j

2αc
i−1 · L

(
pc

i,j, Mc
i,j

)
. (5)

We use the weight αc
i to adjust the impact of instance-level loss during training, and αc

i
is defined as follows:

αc
i = max

(
max

j

(
pc

i,j

)
−median

j

(
pc

i,j

)
, 1− yi

)
. (6)

In multiple instance learning, there is an assumption that there are generally fewer
positive instances in the positive bag, so the median in the predictions of the well-trained
model will be low. For positive bags, if the model can distinguish positive and negative
instances well, then we will assign a higher value of αc

i to increase the weight of the
instance-level loss. Whereas, if the model cannot distinguish positive and negative instances
well, then we will assign a lower value of αc

i to reduce the weight of instance-level loss.
For negative bags, since the instance labels are deterministic, we set αc

i to 1 to increase the
weight of the instance-level loss. The loss function of our LpMIL is defined as

LLpMIL(Xs,Ys,M) = LBag + λ · LInst, (7)

where λ represents the weight hyperparameter for instance-level loss.

3.4. Lesion-Patch Semantic Constraint Adaptation for Domain Adaptation

Due to the differences in the distribution of different fundus datasets, directly applying
a model trained in the source domain to the target domain will result in severe performance
degradation. To address this issue, based on LpMIL, we propose a semantic constraint
adaptation method (LpSCA), which utilizes grading labels to construct the semantic con-
strained loss for domain adaptation. Given the corresponding features Fs and Ft of the
source domain image and the target domain image, we use the classifier to obtain the
corresponding classification predictions pi,s and pi,t, and use the cross-entropy loss function
LCE for supervision:

LSCA,s(Xs,Yg,s) =
1
N

N

∑
i
LCE(pi,s, yi,s), (8)

LSCA,t(Xt,Yg,t) =
1
N

N

∑
i
LCE(pi,t, yi,t), (9)

LSCA(Xs,Yg,s,Xt,Yg,t) = LSCA,s + LSCA,t, (10)

where yi,s is the grading label of the i-th sample from the source domain, and yi,t is the
grading label of the i-th sample from the target domain.
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The overall loss function of LpSCA is defined as

LLpSCA(Xs,Ya,s,Yg,s,Xt,Yg,t) = LLpMIL + LSCA. (11)

4. Results
4.1. Evaluation Metrics

Since the output of our weakly supervised lesion identification network is a patch-
level binary classification result, we transform the lesion identification problem into a
multi-label classification problem. Therefore, we use precision, recall, and F1-score as eval-
uation metrics for lesion identification. Specifically, a 512× 512 image can be transformed
into a patch-level lesion classification result of 16× 16× 3 through the processing of our
model, where 3 is the number of lesion categories. After determining a threshold, we
calculate the precision and recall of each lesion on 16× 16 patches and then calculate the
F1-score. For simplicity, all the results are the average F1-score under different thresholds
T ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

4.2. Implementation Details

In this work, we use ResNet50 [29] as our backbone network to extract features by
removing the global average pooling layer and fully connected layers. The fundus image is
resized to 512× 512 as the input to the network. We set the parameter λ = 4 to keep the
two losses at similar magnitudes. The parameter L of the multi-scale fusion module and
the parameter δl of LpMIL will be discussed in the next subsection. In particular, the output
of the multi-scale fusion module is the patch-level lesion classification result of 16× 16× 3,
which is determined by the number of downsampling times of ResNet50 and the number
of lesion categories. With a learning rate of 1× 10−3 and a batch size of 128, all our models
are trained for 80 epochs using the Adam optimizer and cosine annealing strategy.

4.3. Ablation Studies
4.3.1. The Choice of L in the Multi-Scale Fusion Module

In this part, we analyze the effect of the hyperparameter L in our LpMIL, where L is
the number of feature layers for multi-scale fusion. The lesion identification performance
of our LpMIL on the FGADR dataset with different L is shown in Table 2. The results show
that the performance of lesion identification improves as L increases, and the best results
are obtained when L = 3. However, as L continues to increase, the results instead decrease.
We believe that the initial increase in L enlarges the receptive field, allowing the model to
observe tiny lesions. When L = 4, the semantic information of the previous layer is too
weak, resulting in a decline in the performance of lesion identification. Therefore, we set L
to 3 for better performance.

Table 2. Lesion identification performance of our LpMIL on the FGADR dataset of different L.

L HE CWS EX Mean

1 0.3363 0.2174 0.4529 0.3355
2 0.4086 0.2295 0.5011 0.3797
3 0.4113 0.2635 0.5140 0.3963
4 0.4261 0.1891 0.4939 0.3697

4.3.2. The Choice of the Threshold δl in LpMIL

In this part, we only analyze the effect of hyperparameter δl in our LpMIL, because
δl + δh = 1. Table 3 shows the lesion identification results of our LpMIL on the FGADR
dataset with different δl . When δl = 0.4, the lesion identification performance reaches the
best. We think that a high threshold enables the model to learn the characteristic information
of lesions more smoothly and avoid introducing bias. In the following experiments, we set
δl to 0.4.
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Table 3. Lesion identification performance of our LpMIL on the FGADR dataset of different δl .

δl HE CWS EX Mean

0.1 0.4092 0.1956 0.4609 0.3553
0.2 0.4282 0.2373 0.4664 0.3773
0.3 0.4272 0.2400 0.4824 0.3832
0.4 0.4113 0.2635 0.5140 0.3963

4.4. Comparisons with State-of-the-Art Methods

In this section, we compare our model with a series of lesion identification models
such as Faster R-CNN [1], U-net [3], CAM [30] and ADL [31]. The first two models are
trained with fine-grained annotations, and the latter two are CAM-based weakly supervised
object localization methods that use coarse-grained lesion attributes for supervision. For all
experiments, we convert their predictions to the same patch-level predictions as our model
and then evaluate the results.

4.4.1. Lesion Identification Performance

The lesion identification results on FGADR are shown in Table 4. The performance of
two weakly supervised object localization methods, CAM and ADL, is greatly surpassed
by our LpMIL. We think that these two methods perform poorly due to the GAP bias
of assigning higher weights to smaller activation regions and the instability of using the
maximum value of the class activation map as a threshold reference. Compared with Faster
R-CNN and U-net, two models trained with fine-grained annotations, LpMIL achieves
competitive results and even surpasses these two models in some metrics, which proves
the effectiveness of our LpMIL.

Table 4. Performance comparison with state-of-the-art methods on the FGADR dataset. “*” indicates
that the model is trained with fine-grained annotations. The best result is bolded and the second best
result is underlined.

HE CWS EX Mean

Faster R-CNN * 0.4029 0.4329 0.3002 0.3787
U-net * 0.5332 0.3101 0.5969 0.4801

CAM 0.2123 0.1813 0.3373 0.2437
ADL 0.2192 0.1432 0.3198 0.2274
LpMIL (Ours) 0.4113 0.2635 0.5140 0.3963

Figure 4 shows the qualitative results. We can observe that CAM can only identify a
small number of lesions, ignoring the majority of lesions. U-net trained with pixel-level
annotations can detect lesions in fundus images well, while Faster R-CNN trained with
bounding box annotations detects lesions relatively accurate but not comprehensively.
Although the identification performance is not as good as U-net, our model can detect most
lesions in different regions, which also highlights the superiority of our LpMIL.

4.4.2. Cross-Domain Lesion Identification Performance

In addition to the above baseline trained on FGADR, we also transfer the domain adap-
tation method of DANN [23] to our LpSCA, replacing the semantic constraint adaptation
method with a domain classifier. As shown in Table 5, our LpMIL achieves better results
than U-net and Faster R-CNN, demonstrating better generalization of our LpMIL. We can
observe that by using adversarial training for domain adaptation, DANN can achieve better
results than our LpMIL. Our LpSCA achieves better results than DANN, proving that our
semantic constrained adaptation method can provide more prior information and greatly
improve the performance of cross-domain lesion identification.
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Ground Truth CAM U-net LpMIL (Ours)Faster R-CNNOriginal image

Figure 4. Using the patch-level prediction results, we compare the lesion identification visualization
results of LpMIL on the FGADR dataset with other models, where the white, blue, and yellow boxes
represent HE, CWS, and EX, respectively.

Table 5. Performance comparison with state-of-the-art methods on the EyePACS-pixel dataset.
“*” indicates that the model is trained with fine-grained annotation.

HE CWS EX Mean

Faster R-CNN * 0.0961 0.2064 0.0818 0.1281
U-net * 0.1659 0.2301 0.3502 0.2487

CAM 0.1851 0.2091 0.3836 0.2593
ADL 0.2126 0.1673 0.3484 0.2428

LpMIL (Ours) 0.2125 0.2632 0.5239 0.3332
DANN 0.2690 0.2783 0.5510 0.3661
LpSCA (Ours) 0.3985 0.3369 0.5769 0.4374

Figure 5 shows the qualitative results. We can see that, unlike DANN, our LpSCA
can correctly identify CWS, which illustrates that the prior information provided by our
semantic constraint adaptation method drives the backbone to learn better lesion features.
Compared with U-net and Faster R-CNN, our LpSCA can identify more lesions, which
demonstrates the effectiveness of our LpSCA.

Ground Truth DANNU-net LpSCA (Ours)Faster R-CNNOriginal image

Figure 5. Using the patch-level prediction results, we compare the lesion identification visualization
of LpSCA on the EyePACS-pixel dataset with other models, where the white, blue, and yellow boxes
represent HE, CWS, and EX, respectively.

5. Conclusions

In this paper, we propose a novel cross-domain weakly supervised DR lesion identi-
fication method. Specifically, with only coarse-grained annotations, the proposed lesion-
patch multiple instance learning method can achieve both image-level and patch-level
supervision. The proposed semantic constraint adaptation method leverages the semantic



Bioengineering 2023, 10, 1100 11 of 12

constraints provided by grading labels to improve the cross-domain lesion identification
performance of our model. Extensive experiments show that the proposed method can
obtain competitive results compared with existing dominant detection, segmentation,
and weakly supervised object localization methods. Furthermore, we have noticed that
both our model and the compared models have missed a significant number of lesions.
Through an analysis of the missed lesions, we believe this can be attributed to certain
lesions being of relatively mild severity. These lesions are susceptible to confusion with
non-affected areas under different imaging conditions, particularly variations in lighting
conditions. We believe that future work could follow a similar approach to how medical
professionals review images by conducting a more detailed examination of the surrounding
areas where lesions are present.
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