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Abstract: This study introduces a novel convolutional neural network (CNN) architecture, encom-
passing both single and multi-head designs, developed to identify a user’s locomotion activity while
using a wearable lower limb robot. Our research involved 500 healthy adult participants in an activi-
ties of daily living (ADL) space, conducted from 1 September to 30 November 2022. We collected
prospective data to identify five locomotion activities (level ground walking, stair ascent/descent,
and ramp ascent/descent) across three terrains: flat ground, staircase, and ramp. To evaluate the
predictive capabilities of the proposed CNN architectures, we compared its performance with three
other models: one CNN and two hybrid models (CNN-LSTM and LSTM-CNN). Experiments were
conducted using multivariate signals of various types obtained from electromyograms (EMGs) and
the wearable robot. Our results reveal that the deeper CNN architecture significantly surpasses the
performance of the three competing models. The proposed model, leveraging encoder data such as
hip angles and velocities, along with postural signals such as roll, pitch, and yaw from the wearable
lower limb robot, achieved superior performance with an inference speed of 1.14 s. Specifically, the
F-measure performance of the proposed model reached 96.17%, compared to 90.68% for DDLMI,
94.41% for DeepConvLSTM, and 95.57% for LSTM-CNN, respectively.

Keywords: human activity recognition; wearable robot; single-head CNN; multi-head CNN;
hyperparameter optimization; time series classification

1. Introduction

Wearable exoskeleton robots have been developed to aid individuals in a range of
activities, including carrying heavy objects, alleviating the burden of physically demanding
tasks, and assisting in-patient rehabilitation. Studies have indicated that exoskeletons can
substantially assist and lower metabolic costs during walking [1,2]. Numerous powered
exoskeleton robots have facilitated the improvement of lower extremity movement deficits
resulting from strokes [3–5] or injuries such as amputations [6,7] by applying assistive
torques to the joints [8]. However, despite these successful applications, several challenges
persist in developing safe and versatile control systems [9], including the identification
of the wearer’s intended movement without external commands, and the autonomous
transition between different activity-specific controllers.

One approach to identifying intended activity involves using a locomotor activity
intent recognition framework [10,11]. This method is predominantly applied in medi-
cal rehabilitation, analyzing patients’ gait patterns to furnish clinicians with a quantita-
tive overview of motor function behavior over extended durations, thus aiding objective
treatment strategy applications [12]. For instance, due to postural instability and gait
disturbances, Parkinson’s disease patients have an increased susceptibility to fall-related
injuries [13,14]. Real-time movement monitoring can mitigate injury risks by promptly
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identifying fall hazards. Intent recognition technology augments current methods by pin-
pointing disease-specific predictors such as tremors and hyperkinesia [15,16], differentiating
symptoms across varied motor activities. Accurately discerning an individual’s intended
locomotion can also offer data that facilitate the adaptive control of assistive devices or
wearable robots. Several studies have implemented activity intent recognition strategies by
leveraging sensor fusion [10,11,17]. Specifically, [10] employed multiple sensors to monitor
the internal state of the prosthesis (i.e., joint angles and angular velocities), as well as to
gather information about user-environment interactions (i.e., forces and torques) to control
the prosthesis for various activity modes (e.g., walking, standing, sitting). Trials with a
unilateral amputee subject demonstrated that the Gaussian mixture model (GMM)-based
intent recognition framework can identify user intent in real time and transition to the
appropriate activity control. However, intent recognition in this study was reliant on
handcrafted features extracted from the prosthesis signals, such as mean and standard
deviation. This raises a challenge as temporal feature extraction becomes complex due
to continuous changes that may occur during transitions between the wearer’s intended
movements [18]. Consequently, domain-specific knowledge and trial-and-error approaches
become necessary to derive meaningful features [9,19–22].

Deep learning (DL) technology has risen in popularity as a tool to autonomously
detect users’ locomotion activities or intents in the field of human activity recognition
(HAR) [18,23,24]. Unlike traditional machine learning (ML) techniques, DL significantly
reduces the need for laborious extraction of valuable features from wearable sensor data.
Particularly, convolutional neural networks (CNN), with their local dependency and scale
invariance, have become the most widely used for many practical issues, such as image
classification [25,26], object recognition [27], and natural language processing [28–32]. Several
recent studies have formulated hybrid architectures by incorporating additional layers,
such as long short-term memory (LSTM) [33–36], gated recurrent unit (GRU) [20–22,37], or
squeeze-and-excitation network (SENet) [38]. These state-of-the-art technologies aim not
only to minimize the computational cost (i.e., the number of parameters) but also to enhance
prediction performance in HAR. While LSTM and GRU, variants of the recurrent neural
network (RNN), can improve the accuracy of activity or intention recognition, they often
entail issues such as prolonged training time. This is because the computational process of
each subsequent stage depends on the result of the previous step and is executed sequentially.
CNN has fewer parameters and quicker training than LSTM and GRU due to its local
connectivity and weight-sharing mechanisms [22]. However, the capability and accuracy of
feature extraction are contingent on the network’s depth. As the depth increases, the model
parameters rise exponentially. Therefore, choosing the appropriate network depth in CNN
or hybrid model architectures, such as CNN + LSTM (GRU) and LSTM + CNN, in addition
to model hyperparameters, is critical.

In this paper, we introduce multivariate single and multi-head CNN architectures
for human locomotion activity recognition while wearing a lower limb wearable robot.
In our design, two CNN architectures with different network depths and convolutional
filter sizes each maintain a fixed kernel size. These architectures extract local temporal
features from multivariate signals acquired from EMGs and a wearable robot, respectively.
Each architecture then connects to fully connected layers with varying neuron sizes and
ultimately identifies five locomotor activities: level ground walking (LW), stair ascent (SA),
stair descent (SD), ramp ascent (RA), and ramp descent (RD). These activities are measured
across three terrains: flat ground, staircase, and ramp.

The main contributions of this study include: First, we collected prospective research
data evaluating the locomotion activity of 500 healthy adults aged 19 to 64. Second, us-
ing different multivariate signals collected from eight electromyography (EMG) sensors
and a wearable robot, we compared the prediction performance for five locomotor activ-
ities between our two CNN architectures and three competing models, namely a CNN
and two hybrid architectures (i.e., CNN + LSTM and LSTM + CNN). Lastly, we demon-
strated that by only using the encoder, i.e., hip angles and velocities and postural signals,
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i.e., roll/pitch/yaw from an inertial measurement unit (IMU) from the lower limb wear-
able robot, a deeper single-head CNN architecture significantly outperforms the three
competing architectures.

The rest of this paper is organized as follows: Section 2 presents the related works.
Section 3 explains data collection, the proposed CNN model architecture, and hyperpa-
rameter optimization. Section 4 describes the collected data characteristics and compares
the proposed and three competing models. The conclusion and future study plans are
summarized in Section 5.

2. Related Works

This section outlines several deep neural network (DNN) architectures used for de-
tecting user locomotion activity and intent in wearable exoskeleton lower limb robots and
HAR. Table 1 summarizes 10 of the most relevant studies that have attempted to develop a
model for identifying human locomotion activity.

2.1. Locomotion Activity or Gesture Recognition

Ref. [39] proposed a deep CNN architecture, named ConvNet, to perform efficient and
effective HAR using smartphone sensors. Their model leverages the inherent properties of
activities and 1D time series signals, providing a way to automatically and adaptively extract
robust features from raw data. Similar to our study, they adjusted structural hyperparameters
using a greedy-wise tuning approach within the search space. This included the number of
layers (1–4), the number of feature maps (10–200), and the filter size (1× 3–1× 15). They sug-
gested the ConvNet configuration of C(96)–C(192)–C(192)–D(1000)–S(6) with a kernel/filter
size of 9 and a pooling size of 3. Here, C represents the number of feature maps in convolu-
tional/pooling layers, while D and S represent the number of nodes in the fully connected
layers and the softmax layer, respectively. The ConvNet exhibited a superior recognition per-
formance of 94.79% compared to other methods, using handcrafted features extracted from
the UCI-HAR dataset [40]. Ref. [33] developed a new DNN framework, DeepConvLSTM,
which combines four convolutional layers with two recurrent LSTM layers for identifying
different activity modes on two public datasets, namely OPPORTUNITY [41] and Skoda [42].
They tested the performance of 12 different ML algorithms on the OPPORTUNITY dataset
and two CNN models on the Skoda dataset. DeepConvLSTM outperformed the other meth-
ods in terms of F1 score on both datasets: achieving 89.5% and 91.5% in 5 locomotion modes
and 18 gesture recognition for OPPORTUNITY, respectively; and 95.8% in gesture recognition
for Skoda. To reduce model parameters and speed up convergence, Ref. [34] developed a
DNN architecture (i.e., LSTM-CNN) with a global average-pooling (GAP) layer followed
by a batch normalization layer (BN). In their proposed architecture, Ref. [34] examined the
impact of several network structures (e.g., with/without the use of GAP and BN) and three
hyperparameters (i.e., five optimizers, the number of filters, and batch size) using the UCI-
HAR dataset. Their LSTM-CNN model, structured as L(32)–L(32)–C(64)–C(128)–GAP–BN,
where L and C denote the number of nodes and feature maps in LSTM and convolutional
layers, respectively, achieved the highest weighted F1 score compared to other models, such
as CNN [43] and DeepConvLSTM [33]. The model achieved scores of 95.8% on the UCI-HAR,
92.71% on OPPORTUNITY, and 95.75% on WISDM datasets [44], respectively.

LSTM and GRU have shown similar performance in modeling speech signals and
processing natural language. Generally, LSTM is more powerful and flexible than GRU
with longer sequence data but is more complex and can tend to overfit. In contrast, GRU
consumes less memory and has faster processing times compared to LSTM. Ref. [20] sug-
gested a hybrid DNN classifier that combines two CNN and two stacked GRU layers to
automatically extract spatial or local information from sensor data with different modalities,
such as a gyroscope or accelerometer, gathered from Google Nexus or Samsung Galaxy S5
mobile devices and smartwatches. The hybrid CNN-GRU achieved classification accuracy
between 90.44% and 96.54% on the WISDM smartphone, smartwatch activity, and biomet-
rics dataset [45]. Similarly, some works [21,22,37] used 3-head CNN-GRU architectures to
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capture various temporal local dependencies in raw data for HAR, but different model
structures. These structures varied in the order of combining layers (e.g., BN, dropout,
max-pooling, or GAP), and the number and sizes of filters in the convolutional layers. The
3-head CNN-GRU models performed well on three datasets, yielding F1 scores between
96.19% and 96.71% for UCI-HAR, 96.39% and 97.22% for WISDM, and 95.24% and 96.59%
for PAMAP2.

Table 1. Summary of related works on deep learning-based human locomotion activity detection.

Locomotion Activity or Gesture Recognition

Model
Used Dataset
(Sensors or

Devices|Subjects)

Locomotion or/and
Transition Mode

Hand-Crafted
Features Use Performance Model Assessment

CNN [39]

UCI-HAR (3-axial
linear acceleration
and 3-axial angular

velocity|30)

6 activity modes Both

94.79 and 95.75 for
without/with

hand-crafted features,
respectively

Accuracy

DeepConvLSTM [33]

OPPORTUNITY
(7 IMUs and 12 3D

acceleration|4);
Skoda (10 3D

acceleration|1)

5 locomotion and
18 gesture modes for

OPPORTUNITY;
10 gesture modes for

Skoda

No
OPPORTUNITY

(89.5 and 91.5); Skoda
(95.8)

Weighted F1 score
(or measure)

LSTM-CNN [34]

UCI-HAR;
OPPORTUNITY;

WISDM
(1 accelerometer|36)

6 activity modes for
UCI-HAR; 18 gesture

modes for
OPPORTUNITY;

6 activity modes for
WIDSM

No

UCI-HAR (95.8);
OPPORTUNITY
(92.71); WISDM

(95.75)

Weighted F1 score

CNN-GRU [20]

WISDM smartphone
and smartwatch

activity and
biometrics (3-axis
accelerometer and

3-axis gyroscope|51)

18 activity modes No
Smartwatch (96.54)

and Smartphone
(90.44)

Accuracy

Multi-input
CNN-GRU [37]

UCI-HAR; WISDM;
PAMAP2 (a heart
rate monitor and

3 IMUs|9)

6 activity modes for
UCI-HAR and

WISDM respectively;
18 activity modes for

PAMAP2

No

UCI-HAR (96.2 and
96.19); WISDM

(97.21 and 97.22);
PAMAP2

(95.27 and 95.24)

Accuracy and F1
score

Multichannel
CNN-GRU [21]

UCI-HAR; WISDM;
PAMAP2

6 activity modes for
UCI-HAR and

WISDM respectively;
18 activity modes for

PAMAP2

No

UCI-HAR (96.67 and
96.72); WISDM (96.41
and 96.39); PAMAP2

(96.25 and 96.59)

Accuracy and F1
score

Multi-scale
CNN-GRU [22]

UCI-HAR; WISDM;
PAMAP2

6 activity modes for
UCI-HAR and

WISDM respectively;
18 activity modes for

PAMAP2

No

UCI-HAR
(96.71 and 96.72);

WISDM (97.18 and
97.17); PAMAP2
(96.28 and 96.27)

Accuracy and F1
score

LDA [11]

14 EMGs,
4 goniometers, and

4 IMUs|10
able-bodied adults

and one left
traumatic above-knee

amputee

5 locomotion
activities and

8 transitional modes
Yes

1.43 for overall;
0.76 for steady-state;

and 4.5 for
transitional modes

Error rate

CNN [46] 4 IMUs and a load
cell|7 healthy adults

5 locomotion
activities and

8 transitional modes
No

97.64, with the
average delay of

23.97% in the
transitional modes

Accuracy

CNN with
hierarchical

classification layer [8]

7 IMUs|8 healthy
adults 16 locomotion modes No 94.34 Accuracy
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2.2. Locomotion Intention Recognition

Ref. [11] showed that the inclusion of bilateral neuromechanical signals could signif-
icantly improve the accuracy of an intent recognition control system. The system could
predict five locomotor activities (i.e., LW, RA, RD, SA, and SD) and eight transition modes,
simply by adding one additional sensor from the contralateral side. Additionally, the
authors demonstrated the feasibility of their approach by controlling the walk of a left
traumatic above-knee amputee using a powered leg prosthesis in offline analysis. They
achieved the lowest error rate (1.43, 0.76, and 4.5 in linear discriminant analysis (LDA)
for overall, steady-state, and transitional modes, respectively) compared to other mod-
els, namely, support vector machines (SVM) and artificial neural networks (ANN). In a
study focused on transitional movement intention recognition, ref. [46] collected movement
activity data from seven healthy subjects wearing a soft lower limb exoskeleton robot
fitted with four IMUs and a load cell. These data included five steady-state movements
(i.e., LW, SA/SD, and RA/RD) and eight transitional modes (i.e., LW→SA, LW→SD,
SA→LW, SD→LW, LW→RA, LW→RD, RA→LW, and RD→LW). They developed an IMU-
based motion intention model called the DNN-based deep location mode identification
model (DDLMI), comprising four convolutional layers followed by a fully connected layer.
The model achieved a recognition rate of 97.64% for the five movements and an average
delay of 23.97% for the eight transitional modes. In a separate study aimed at identifying
user-initiated locomotion motions, ref. [8] designed a DNN classifier that combined stacked
causal 2D convolutional layers followed by a fully connected layer. Unlike the above stud-
ies, this study emphasized the hierarchical classification of less specific locomotor activities
before more specific actions to detect transitional motions. Using data from 16 locomotion
modes collected from eight healthy adults, the authors demonstrated that their locomotion
mode detection classifier was more effective, achieving an accuracy rate of 94.34%.

3. Methods
3.1. Participant Demographics and Recruitment Process

This study conducted a prospective analysis of five distinct locomotor activities—LW,
SA, SD, RA, and RD—engaged in by 500 adults aged 19 to 64 years, from 1 September to
30 November 2022. We recruited participants through in-hospital advertisements targeting
outpatients and their guardians. During recruitment, each participant was informed about
the study’s objectives, the personal details to be collected (e.g., name, gender, residential
area, date of birth, contact information), and the equipment and procedures for data
collection. The exclusion criteria encompassed individuals who declined participation in the
clinical study, those unable to walk independently, or those unable to communicate verbally.

3.2. Ethical Considerations

To address privacy and research ethics, we offered participants the following provi-
sions: (1) Participants voluntarily agreed to join the clinical study without forfeiting any
rights by signing the consent form. (2) While participant consent forms and other records
might be accessed by research staff and pertinent agencies, all documents will remain
confidential. (3) Participants consented to the use of portrait rights for photos and videos
captured during physical data measurements as raw data for clinical research. Should
consent be retracted, the associated data will be promptly deleted. (4) Participants have
the liberty to rescind their consent for this clinical study at any point. All participants
gave informed consent, encompassing the research subject consent form, security pledge,
personal information collection and use agreement, and portrait rights use form. The study
received approval from the Institutional Review Board (IRB) (No. GNUCH 2022-08-007-001)
at Gyeongsang National University Hospital, Republic of Korea.
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3.3. Data Collection

During the five locomotion behaviors, the participants, who were wearing a lower
limb wearable robot, were instrumented with EMG sensors and a motion capture system
in a simulated space for activities of daily living (ADL), as illustrated in Figure 1.
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motion information, e.g., spine, shoulders, elbows, hands, feet, and ankles. (c) Gait courses with three
terrains, namely, flat ground, stairs, and ramps. This figure shows an example of three locomotor
activities: level ground walking (LW), ramp ascent (RA), and stair ascent (SA).

They performed the five locomotor activities on three types of terrains with the
following specifications: (1) For the flat ground terrain, a total length of 3000 mm was set.
(2) For the ramp terrain, a total length of 3600 mm, a total height of 400 mm, and a slope of
4.3 degrees were set. (3) For the staircase terrain, a total height of 692 mm was set with four
steps and a full footrest depth of 1519 mm, which included each footrest depth of 303 mm
for the first and third steps and a final footrest depth of 610 mm.

The Hector H30A wearable robot, produced by HEXAR Humancare, Republic of Korea,
was employed in this study. The robot is designed to assist the hip joint’s muscle strength
while walking on various terrains, such as flat, uphill, and downhill [47]. The robot
comprises actuators, control units, sensors, and batteries and weighs approximately 4.3 kg.
The two brushless DC (BLDC) motors in the robot are each capable of providing up to
12 Nm of torque to the user’s hip joint. The robot is equipped with two types of sensors:
rotary encoders and an IMU. The encoders, placed within the actuator modules, measure
the hip joint’s angular velocity. The IMU sensor, which includes a tri-axial accelerometer
and a tri-axial gyroscope, is used to estimate the wearer’s posture. The robot can operate
continuously for about 2 h. During the study, we collected 7-channel wireless signals at
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the lowest level (i.e., default mode) of the three torque modes that support the hip joint’s
muscle strength. These signals, sampled at a rate of 71.42857 Hz, included the left/right
hip angles (in degrees), left/right velocities (in rpm), and three postures (roll, pitch, and
yaw; in degrees).

In addition to the robot’s sensor data, we used an 8-channel wireless surface elec-
tromyography (EMG) system (Delsys Trigno, Delsys, Inc., Boston, MA, USA), acquired
at 2000 Hz [48], to acquire EMG signals from four lower limb muscles. These muscles
included the vastus lateralis (VL), tibialis anterior (TA), biceps femoris (BF), and gastroc-
nemius lateralis (GAL) of both lower limbs [49]. Prior to placing the EMG sensors, the
skin over each muscle was cleaned using alcohol wipes to remove dry skin and skin oils.
The EMG electrodes were then affixed to the skin using double-sided adhesive tape, and
their placement was adjusted as necessary. To measure kinematic motion information, an
eight-camera motion capture system (Kestrel 2200, Motion Analysis Corp., Santa Rosa, CA,
USA) was used. This system captured information about the spine, shoulders, elbows,
hands, feet, and ankles, at a sampling rate of 100 Hz [50].

3.4. Model Architecture

The model architecture of the proposed model is described in Figure 2. It leverages
either a single or multi-head CNN structure to extract richer features from the two types of
multivariate signals gathered from the wearable robot and the EMG sensors. These archi-
tectures are similar in structure but vary in the number of blocks containing convolutional
layers, filter sizes, and the number of fully connected layers.

In the single-head CNN architecture, each block—specifically, the feature extractor—
captures local temporal features from EMG sensor signals and the wearable robot. Each
can encompass up to three convolutional layers. We limited convolutional blocks to three
to avoid degradation from potential gradient vanishing and exploding as network depth
increases [51–53]. The number of filters in a convolutional layer varied among four sizes:
16, 32, 64, or 128, with adjacent convolutional layers having a twofold difference in feature
maps. We employed a fixed kernel size of 3 with a stride of 1 to augment decision functions
and ensure quicker network convergence with non-linear activations. To hasten training
and convergence, a BN layer and a rectified linear unit (ReLU) activation followed each
convolutional layer. Each block concluded with a pooling layer, facilitating down-sampling
to minimize parameters, preserve dominant features, and filter noise from involuntary
human body jitter [34]. We contemplated max-pooling or average-pooling layers with a
pool size of two. Additionally, we restricted the number of fully connected layers to three.
In the first fully connected layer, the number of neurons could be set to 32, 64, 128, 256, or
512. Similarly, adjacent layers exhibited a twofold difference in nodes, mirroring the design
in the convolutional layer.

The multi-head CNN architecture, as displayed in Figure 2, was designed as a sep-
arable structure to independently preserve the unique characteristics of different signals
from the EMG sensors or the wearable robot. The temporal features extracted from various
blocks were combined to form the final feature representation. These features were then
forwarded to the fully connected layers. A classifier with a softmax layer was then used to
identify the five locomotor activities.

3.5. Hyperparameter Optimization

Hyperparameter optimization, also known as hyperparameter tuning, is the process
of selecting the best combination of hyperparameters that maximizes the performance
of a learning algorithm. Traditional methods such as grid search are exhaustive in their
approach and involve trialing a subset of hyperparameter values to find the optimal
configuration. However, due to the high number of trials required and the need to keep
track of them, this approach can be quite time-consuming. More recently, alternative
methods such as random search and Bayesian optimization have gained popularity. One
specific Bayesian optimization method is the tree-structure parzen estimation (TPE) [54].
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TPE is a unique Bayesian optimization method that sequentially builds models to estimate
the performance of hyperparameters based on past measurements [55,56]. It utilizes
conditional probability P(x|y), where x represents hyperparameters and y represents
the quality score (e.g., loss, accuracy) on the objective function. This method offers the
advantage of efficient convergence to a global minimum in a relatively shorter time.
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In this study, our focus was on the structural optimization issues, more specifically,
determining the depth of the convolutional and fully connected layers in the proposed
architecture (i.e., the number of blocks, convolution, and fully connected layers). For
this purpose, we employed the Hyperopt library [56,57] to identify hyperparameters that
yield the highest identification ability in validation data. Subsequently, the predictive
performance of our models, which are designed using these optimal hyperparameters, was
evaluated on test data.

4. Results and Discussion
4.1. Experimental Setup

Before the experiment, participants underwent a gait test on three distinct terrains
for approximately 10 min to familiarize themselves with the wearable robot. During this
preparatory phase, coordinators monitored the signal quality from both the wearable
robot and the EMG sensors. For data collection, participants were instructed to begin
and conclude each of the five movement activities with their feet together, regardless of
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starting with the left or right foot. Each activity was performed thrice by every participant.
Consequently, for each locomotor activity, we obtained nine data files per participant, en-
compassing details from the wearable robot, EMG sensors, and motion capture system [58].
Throughout the research, 78 cloud workers meticulously reviewed the motion-captured
data, identifying specific gait events such as heel strikes and toe-offs. Additionally, they
verified the commencement and conclusion timestamps for each locomotor activity based
on the data from the EMG sensors and the wearable robot to ensure data integrity.

4.2. Data Characteristics

This study was conducted with a total of 500 participants, whose ages ranged between
19 and 64 years. The most represented age group was 30–49 years, with fewer participants
in the 19–29 and 50–64 age groups. The average age was 40.16 ± 13.39 years, with a slight
difference between males (40.02 ± 13.47) and females (40.29 ± 13.31). Gender distribution
was evenly split with 250 males (50%) and 250 females (50%) (Table 2).

Table 2. Demographic characteristics.

Variable
Age Distribution

Total
19–29 30–49 50–64

Total, N (%) 150 (30) 200 (40) 150 (30) 500
Age (years), mean (SD) 24.49 (2.54) 39.28 (5.77) 57.01 (4.08) 40.16 (13.39)

Male 24.28 (2.25) 39.13 (6.03) 56.97 (3.98) 40.02 (13.47)
Female 24.69 (2.79) 39.42 (5.52) 57.05 (4.21) 40.29 (13.31)

Gender, N (%)
Male 75 (50) 100 (50) 75 (50) 250 (50)

Female 75 (50) 100 (50) 75 (50) 250 (50)
SD, standard deviation.

Table 3 shows the gait cycle periods for the different locomotor activities (LW, SA, SD,
RA, and RD). The gait cycles exhibited regular periods: 1.39–1.4 s for LW; 1.57–1.58 s for
SA; 1.51–1.53 s for SD; and 1.9–1.95 s for RA. However, the RD activity displayed slightly
more variation, ranging from 1.62 to 1.7 s, with the toe-off events taking relatively longer
than heel strikes.

Table 3. Gait cycle periods for five locomotor activities (units, s).

Gait Phase Patterns Level Ground Walking Stair Ascent Stair Descent Ramp Ascent Ramp Descent Total

LHS †, mean (SD) 1.4 (0.33) 1.57 (0.4) 1.51 (0.32) 1.93 (0.47) 1.62 (0.48) 1.58 (0.17)
RHS ‡, mean (SD) 1.4 (0.32) 1.58 (0.41) 1.52 (0.3) 1.95 (0.47) 1.63 (0.51) 1.61 (0.18)
LTO §, mean (SD) 1.39 (0.29) 1.57 (0.38) 1.53 (0.3) 1.95 (0.46) 1.69 (0.5) 1.61 (0.18)
RTO ¶, mean (SD) 1.4 (0.3) 1.57 (0.39) 1.51 (0.31) 1.9 (0.45) 1.7 (0.51) 1.61 (0.18)

† LHS, left heel strike; ‡ RHS, right heel strike; § LTO, left toe-off; ¶ RTO, right toe-off. SD, standard deviation.

Table 4 demonstrates the measurement time of the collected data from all participants
who wore the wearable robot with EMG sensors and attempted five locomotor activities
three times. The collected raw signals did not contain missing values. The sample size, as
shown in Table 4, was (23,288,780, 8) for the EMG data and (832,447, 7) for the wearable
robot data. The average measurement time for the collected multivariate signals was
approximately 4.66 s. Among the locomotor activities, LW (approximately 4.8 s) and RA
(approximately 4.9 s) took longer than the other activities, with SA and SD both taking
approximately 4.6 s and RD taking the least time at 4.3 s.
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Table 4. Measurement time for five locomotor activities (units, s).

Device Sample Size Level Ground Walking Stair Ascent Stair Descent Ramp Ascent Ramp Descent Total

EMG, mean (SD) (23,288,780, 8) 4.81 (1.52) 4.65 (1.12) 4.6 (1.1) 4.9 (1.36) 4.34 (1.3) 4.66 (1.3)
Wearable robot, mean (SD) (832,447, 7) 4.8 (1.51) 4.64 (1.11) 4.62 (1.11) 4.91 (1.37) 4.33 (1.32) 4.66 (1.31)

SD, standard deviation. The values enclosed in parentheses typically denote the number of samples and channels.

4.3. Preprocessing

Raw data from sensors can be tainted by noises originating from various factors, includ-
ing electronic fluctuations and sensor malfunctions. While signal processing techniques,
such as the Butterworth filter [11,40], can be employed to eliminate these disturbances,
caution is advised. Such techniques may inadvertently strip away crucial information
from raw signals [59]. Furthermore, introducing new time series data into a pre-trained
model demands extra efforts to address these artifacts, even if the latency is brief, using the
same preprocessing steps. In our study, we utilized raw signals from EMG sensors and a
wearable robot without applying any filtering. These raw signals were then normalized to
a range between −1 and 1.

4.4. Data Segmentation

After normalization, the signals were passed to the segmentation phase, an essential
step in preparing the data collected from sensors [19]. We segmented the signals into
sequences using the overlapping sliding window technique [59], which is preferred for
its straightforwardness and computational efficiency [19]. A window size of 1.76 s was
employed, with an overlap ratio of 0.9, determined by the average value and standard
deviation of the left heel strike (LHS). This windowing method was applied to the multi-
variate signals sourced from both the EMGs and the wearable robot. This choice was made
considering the different measurement times recorded during five locomotor activities, as
shown in Table 4. Typically, the sequences generated after sliding window segmentation are
randomly divided into training and test sets. However, this conventional data partitioning
approach can lead to sequences from the same user’s activity appearing in both the training
and test sets, causing information leakage. To prevent this, we applied a group-based data
partitioning strategy [21,22,33,39] to ensure that samples from the same user only exist in
one of the datasets. This approach divided the sequences into training, validation, and test
sets with a sample ratio of 8:1:1. The distribution of sequence data, including the number
of users, sample sizes, and locomotor activity frequencies in the training, validation, and
test sets used in the experiment, is provided in Table 5.

Table 5. Sequence data distribution in training, validation, and test sets.

Dataset Users EMG Wearable Robot Locomotion Activity Distribution

Training 400 (32,951, 3520, 8) (32,951, 125, 7)
Level ground walking (6873), Stair ascent
(6576), Stair descent (6387), Ramp ascent

(7153), Ramp descent (5962)

Validation 50 (4120, 3520, 8) (4120, 125, 7)
Level ground walking (862), Stair ascent

(860), Stair descent (883), Ramp ascent (823),
Ramp descent (692)

Test 50 (4126, 3520, 8) (4126, 125, 7)
Level ground walking (894), Stair ascent

(794), Stair descent (811), Ramp ascent (933),
Ramp descent (694)

In the EMG and wearable robot datasets, the values enclosed in parentheses represent the number of samples,
timestamps, and channels. Furthermore, in the context of activity distribution, the indicated value corresponds to
the frequency of the respective locomotor activity.

4.5. Benchmark Models

We considered three well-known models: the CNN-based model, called DDLMI [46];
the CNN-LSTM model; called DeepConvLSTM [33]; and the LSTM-CNN model [34], which
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are applied to the application domains of motion intention detection or HAR. The DDLMI
architecture integrates four convolutional layers activated by ReLU, complemented by
four max-pooling layers and a subsequent fully connected layer, which is then succeeded
by both a BN and a dropout layer. We utilized the softmax function to determine the
model’s probability. DeepConvLSTM, on the other hand, encompasses four sequential
convolutional layers and a pair of LSTM layers, culminating in a softmax layer. Within
each convolutional segment, ReLU was harnessed to delineate the feature maps. Notably,
the recurrent units’ activation was discerned using the hyperbolic tangent function. The
LSTM-CNN model blends two LSTM layers and a duo of convolutional layers, bridged
by a max-pooling layer. Post the final convolutional layer, a GAP is situated, succeeded
by a BN layer. The model concludes its processing by yielding an output from a fully
connected layer, equipped with a softmax classifier. Experiments were performed using
a segmented dataset in Table 5 under identical conditions using the model structure and
learning parameters provided in the above studies.

4.6. Experimental Environments and Implementation

We used the Keras API of the Tensorflow backend to implement the proposed model
and benchmark models. The experiments were carried out on a system with an Intel Xeon(R)
Silver 4208 @ 2.1 GHz CPU, NVIDIA Quadro RTX A6000, running Ubuntu 22.04 LTS. The
code was written in Python 3.8.16, using the Intellij IDEA 2019.2.4 (Ultimate Edition),
and leveraging Tensorflow-GPU 2.5, NumPy 1.19.5, Pandas 1.4.4, Matplotlib 3.5.3, and
Hyperopt 0.2.7.

4.7. Evaluation Metrics

The model performance was evaluated using four statistical criteria [21,22]: accuracy,
recall, precision, and F-measure. These metrics can be mathematically defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F-measure = 2× Precision× Recall
Precision + Recall

(4)

In Equations (1)–(4), TP, FP, FN, and TN represent true positive, false positive, false
negative, and true negative values, respectively. In addition to these metrics, a confusion
matrix was also used to illustrate the classification results for each locomotor activity.

4.8. Experiments on Different Network Architectures

We performed three distinct experiments on the dataset to investigate the benefits of
utilizing both different multivariate signals collected from EMG sensors and a wearable
robot: First, the locomotor activity recognition performance of the proposed model was
evaluated using only the multivariate signals gathered from EMG sensors. The results
were then compared with the performance of the three benchmark models. Second, the
locomotor activity recognition performance of the proposed model was evaluated using
only the multivariate signals from the wearable robot. Again, the results were compared
with the benchmark models. Lastly, the performance of the proposed model was examined
when both types of multivariate signals (from the EMG sensors and the wearable robot)
were considered together. In all three experiments, the hyperparameters of the proposed
architecture (see Figure 2) such as the number of blocks and convolutional layers in each
block, were optimized in the search space as indicated in Table 6, using the Hyperopt



Bioengineering 2023, 10, 1082 12 of 25

Python library [57]. During the hyperparameter optimization process, we set a limit on the
number of candidate models (or evaluators) to 50. The model with the highest F-measure
on the validation data was selected as the best model.

Table 6. Search space of hyperparameters.

Hyperparameters Selected Values or Ranges

Architecture

Block Number of blocks [1, 3]

Convolution

Number of layers [1, 3]
Filters 16, 32, 64, 128

Kernel size 3
Stride 1

Padding Same

Pooling
Type Max-pooling, Average-pooling

Pooling size 2
Padding Valid

Dense
Number of layers [1, 3]

Number of neurons 32, 64, 128, 256, 512
Batch normalization Yes

Training

Optimizer Adam
Learning rate 1 × 10−4, 1 × 10−3

Batch size 32, 64, 128, 256
Epochs 20

4.8.1. EMG-Based Locomotor Activity Detection

Following the hyperparameter optimization process, a single-head CNN architecture
was determined to be the most effective model for detecting five locomotor activities from
EMG data, as shown in Figure 3.

The architecture included three blocks and a fully connected layer. Each block con-
sisted of two convolutional layers followed by a max-pooling layer, and the fully connected
layer contained 512 units. The learning rate and batch size were set at 1 × 10−4 and 128,
respectively. A detailed performance comparison was made between the proposed and
the three benchmarking models by observing the variations in accuracy and loss during
training and validation. The learning rate was reduced by a factor of 0.9 each time the
validation loss of the model did not improve for 10 consecutive epochs in 200 epochs. The
initial learning rate was set to 1 × 10−4 for DDLMI and the proposed model and 1 × 10−3

for DeepConvLSTM and LSTM-CNN model. The weights of each network were recorded
when the model achieved its lowest validation loss.

Figure 4 demonstrates the alterations in accuracy and losses in the training and
validation sets for the four models. The proposed model’s validation loss dropped rapidly
in less than 20 epochs. In contrast, the two hybrid models, DeepConvLSTM and LSTM-
CNN, displayed convergence trends after 50–75 iterations. DDLMI, however, did not
converge. The epochs with the lowest validation losses were recorded as follows: 162-th
epoch (1.373) for DDLMI, 67-th epoch (0.5136) for DeepConvLSTM, 57-th epoch (0.909) for
LSTM-CNN, and 8-th epoch (0.5531) for the proposed model.

In the performance comparison provided in Table 7, our model can be seen exhibiting
an accuracy of 0.8938, recall of 0.8943 (0.0779), precision of 0.8968 (0.0394), and F-measure
of 0.8931 (0.0321) when applied to the EMG test data. Our method demonstrated superior
performance over the other two models in extracting discriminative features and achieving
accurate recognition results, even though the F-measure was slightly lower (by 0.49%)
than DeepConvLSTM. When comparing processing times, DDLMI consistently stood
out, boasting the swiftest average speed for both training epoch and inference time on
test data. In terms of the training epoch, our model zipped ahead, being approximately
4.6 and 2.4 times faster than DeepConvLSTM and LSTM-CNN, respectively. Moreover,
when it came to inferring test data, our proposed model demonstrated an impressive
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response time, roughly 3.7 and 2.6 times quicker than that of DeepConvLSTM and LSTM-
CNN, respectively.
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Table 7. Performance comparison of the proposed model with three benchmark models on
EMG dataset.

Model
Test Performance Parameters Processing Time (s)

Accuracy Recall Precision F-Measure Trainable Non-
Trainable Total Avg. Time per

Training Epoch
Inference

Time

DDLMI 0.4806 0.4931
(0.2609)

0.6649
(0.2561)

0.4742
(0.0933) 1,343,867 576 1,344,443 11.29 1.61

DeepConvLSTM 0.8982 0.8989
(0.0421)

0.8989
(0.0408)

0.898
(0.0278) 295,301 0 295,301 134.11 8.11

LSTM-CNN 0.8543 0.8583
(0.0999)

0.8545
(0.0458)

0.8527
(0.0454) 49,477 256 49,733 69.65 5.68

Proposed 0.8938 0.8943
(0.0779)

0.8968
(0.0394)

0.8931
(0.0321) 7,397,717 2272 7,399,989 29.17 2.21

The confusion matrix (Figure 5) reveals that three activities, LW, RA, and RD, had
higher misclassification rates in the DeepConvLSTM, LSTM-CNN, and our model. Specif-
ically, the LW activity was often misclassified as SA: 10% for DeepConvLSTM, 12% for
LSTM-CNN, and 9% for our model. For SA activity, 5% for DeepConvLSTM, 2% for LSTM-
CNN, and 2% for our model were predicted to be LW activity. This outcome suggests that
LW is similar to SA, causing some confusion in classification.
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Figure 5. Confusion matrices for four models on EMG test dataset. LW, level ground walking; SA,
stair ascent; SD, stair descent; RA, ramp ascent; RD, ramp descent. (a) DDLMI; (b) DeepConvLSTM;
(c) LSTM-CNN; (d) Proposed. Darker blue indicates higher classification performance.

4.8.2. Wearable Robot-Based Locomotor Activity Detection

Figure 6 presents a single-head CNN architecture designed to detect five locomotor
activities from multivariate signals collected by a wearable robot. The model’s structure
was similar to the one used for EMG data detection, but it had two fully connected layers
with 128 and 256 units. The learning rate and the batch size were chosen to be 1 × 10−4

and 32, respectively. The training and validation dataset’s accuracy and loss changes were
monitored for our model and the other three models, as depicted in Figure 7.

Compared to the previous results depicted in Figure 4, all four models exhibited
more stable learning. In particular, the proposed model and LSTM-CNN converged faster.
However, after 20–50 training epochs, DeepConvLSTM saw an increase in validation losses.
The lowest validation loss was as follows: 102-th epoch (0.3203) for DDLMI, 22-th epoch
(0.3061) for DeepConvLSTM, 34-th epoch (0.2321) for LSTM-CNN, and 69-th epoch (0.1706)
for the proposed model.
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The results of the performance comparison, are shown in Table 8, our model achieved
the highest F-measure of 0.9617, surpassing other competing models: 0.9068 for DDLMI,
0.9441 for DeepConvLSTM, and 0.9557 for LSTM-CNN. Moreover, our model demonstrated
accuracy improvements of 5.33%, 1.72%, and 0.63% over DDLMI, DeepConvLSTM, and
LSTM-CNN, respectively. In alignment with the earlier processing time findings, DDLMI
emerged as the quickest, trailed by our proposed model, and then by the two hybrid models,
LSTM-CNN and DeepConvLSTM. The proposed model, LSTM-CNN, and DeepConvLSTM
respectively clocked in average training epoch times of 19.21 s, 31.17 s, and 46.16 s, and
inference times of 1.14 s, 2.51 s, and 2.89 s. Consequently, our model demonstrated a
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brisker inference speed, approximately 2.2 and 2.5 times faster than LSTM-CNN and
DeepConvLSTM, respectively.
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models had the lowest recognition performance for two activities: LW and RD. In the LW 
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Table 8. Performance comparison of the proposed model with three benchmark models on wearable
robot dataset.

Model
Test Performance Parameters Processing Time (s)

Accuracy Recall Precision F-Measure Trainable Non-
Trainable Total Avg. Time per

Training Epoch
Inference

Time

DDLMI 0.9094 0.9051
(0.0689)

0.9121
(0.0339)

0.9068
(0.0343) 121,253 576 121,829 11.61 0.85

DeepConvLSTM 0.9455 0.9435
(0.0493)

0.9466
(0.0228)

0.9441
(0.0196) 294,981 0 294,981 46.16 2.89

LSTM-CNN 0.9564 0.9555
(0.0398)

0.9573
(0.0168)

0.9557
(0.0122) 49,349 256 49,605 31.17 2.51

Proposed 0.9627 0.9606
(0.04)

0.964
(0.0163)

0.9617
(0.0162) 838,245 2400 840,645 19.21 1.14

Figure 8 presents the confusion matrices’ differences when identifying the five locomo-
tor activities using multivariate signals collected from the wearable robot. All four models
had the lowest recognition performance for two activities: LW and RD. In the LW activ-
ity, three models showed high misclassification rates as the SD: 5% for DeepConvLSTM,
5% for LSTM-CNN, and 3% for our model, respectively. However, only for DDLMI, the
misclassification rate was 8% in the SA activity. Moreover, the RD activity was misclassified
as two activities, SA and RA: 4% and 6% for DDLMI and 4% and 3% for DeepConvLSTM.
Meanwhile, the other two models, LSTM-CNN and our model, showed misclassification
rates of 4% and 5% in the RA activity, respectively.



Bioengineering 2023, 10, 1082 18 of 25

Bioengineering 2023, 10, x FOR PEER REVIEW 18 of 25 
 

DeepConvLSTM, 5% for LSTM-CNN, and 3% for our model, respectively. However, only 
for DDLMI, the misclassification rate was 8% in the SA activity. Moreover, the RD activity 
was misclassified as two activities, SA and RA: 4% and 6% for DDLMI and 4% and 3% for 
DeepConvLSTM. Meanwhile, the other two models, LSTM-CNN and our model, showed 
misclassification rates of 4% and 5% in the RA activity, respectively. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Confusion matrices for four models on wearable robot test dataset. LW, level ground 
walking; SA, stair ascent; SD, stair descent; RA, ramp ascent; RD, ramp descent. (a) DDLMI; (b) 
DeepConvLSTM; (c) LSTM-CNN; (d) Proposed. Darker blue indicates higher classification 
performance. 

4.8.3. EMGs and Wearable Robot-Based Locomotor Activity Detection 
Figure 9 displays a two-head CNN architecture generated after hyperparameter 

optimization to identify the five locomotor activities. These activities were identified using 
multivariate signals collected from both EMG sensors and a wearable robot. In Figure 9, 
the first head consists of two blocks, each containing a convolutional layer followed by a 
max-pooling layer. The second head features a stacked structure, each comprising three 
convolutional layers with different filters, followed by a max-pooling layer. Both heads 
are connected to a fully connected layer via a concatenation layer. The learning rate and 
batch size were selected as 1 × 10−4 and 128, respectively. 

Figure 8. Confusion matrices for four models on wearable robot test dataset. LW, level ground
walking; SA, stair ascent; SD, stair descent; RA, ramp ascent; RD, ramp descent. (a) DDLMI; (b) Deep-
ConvLSTM; (c) LSTM-CNN; (d) Proposed. Darker blue indicates higher classification performance.

4.8.3. EMGs and Wearable Robot-Based Locomotor Activity Detection

Figure 9 displays a two-head CNN architecture generated after hyperparameter op-
timization to identify the five locomotor activities. These activities were identified using
multivariate signals collected from both EMG sensors and a wearable robot. In Figure 9,
the first head consists of two blocks, each containing a convolutional layer followed by a
max-pooling layer. The second head features a stacked structure, each comprising three
convolutional layers with different filters, followed by a max-pooling layer. Both heads are
connected to a fully connected layer via a concatenation layer. The learning rate and batch
size were selected as 1 × 10−4 and 128, respectively.

We maintained their original structures as closely as possible. Figure 11 shows the
changes in accuracy and losses in our model’s training and validation datasets, alongside
the three competing models. From the experimental results, our model and LSTM-CNN
showed more stable loss curves in the validation dataset compared to the other two models,
DeepConvLSTM and DDLMI. The best validation loss was recorded as follows: 32-th
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epoch (0.4839) for DDLMI, 21-th epoch (0.3602) for DeepConvLSTM, 62-th epoch (0.186)
for LSTM-CNN, and 21-th epoch (0.1908) for the proposed model.
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Figure 9. Multi-head CNN architecture for EMG and wearable robot datasets.

To differentiate the multivariate signals of the two types, we modified the structure
of the three competing models into a dual-head input architecture, as demonstrated in
Figure 10.

As shown in Table 9, our model achieved an F-measure performance of 0.9539, rep-
resenting a decrease of 0.72% from LSTM-CNN but increases of 3.74% and 2.25% from
DDLMI and DeepConvLSTM, respectively. The proposed model demonstrated the fastest
average training time (10.9 s) and inference speed (1.67 s) in the processing time comparison.
Nonetheless, the trio of models exhibited a relatively slower learning pace and inference
duration compared to the previous findings (refer to Tables 7 and 8) due to the presence of
a dual-head input structure. Particularly, the inference duration of DeepConvLSTM proved
to be approximately 1.1 times slower (i.e., 8.11 s→ 9.16 s) than that of the EMG sensors
and 3.16 times slower (2.89 s→ 9.16 s) than that of the wearable robot.



Bioengineering 2023, 10, 1082 20 of 25

Bioengineering 2023, 10, x FOR PEER REVIEW 19 of 25 
 

 
Figure 9. Multi-head CNN architecture for EMG and wearable robot datasets. 

To differentiate the multivariate signals of the two types, we modified the structure 
of the three competing models into a dual-head input architecture, as demonstrated in 
Figure 10. 

 
 

 
(a) (b) (c) 

Figure 10. Two-head input architectures for DDLMI, DeepConvLSTM, and LSTM-CNN. (a) A 
modified version of DDLMI; (b) A modified version of DeepConvLSTM; (c) A modified version of 
LSTM-CNN. 

Figure 10. Two-head input architectures for DDLMI, DeepConvLSTM, and LSTM-CNN. (a) A modified
version of DDLMI; (b) A modified version of DeepConvLSTM; (c) A modified version of LSTM-CNN.
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Figure 12 highlights the differences in the confusion matrices for identifying the
five types of locomotor activity across the four models. All four models had the lowest
detection performance for the RD activity. DDLMI and DeepConvLSTM had similarly
high misclassification rates in three locomotor activities, SA, SD, and RA: 4%, 3%, and
3%, respectively, for DDLMI and 3%, 4%, and 3%, respectively, for DeepConvLSTM.
Furthermore, our model and LSTM-CNN demonstrated the highest misclassification rate
of 4% in RA.
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Table 9. Performance comparison of the proposed model with three benchmark models on EMG and
wearable robot datasets.

Model

Test Performance Parameters Processing Time (s)

Accuracy Recall Precision F-Measure Trainable Non-
Trainable Total Avg. Time per

Training Epoch
Inference

Time

DDLMI 0.9176 0.9174
(0.0515)

0.9185
(0.0355)

0.9165
(0.0186) 1,465,115 1152 1,466,267 12.01 1.72

DeepConvLSTM 0.9329 0.9305
(0.0484)

0.934
(0.0279)

0.9314
(0.0238) 590,277 0 590,277 144.28 9.16

LSTM-CNN 0.9612 0.9605
(0.0222)

0.9621
(0.0098)

0.9611
(0.0071) 98,821 512 99,333 78.69 6.27

Proposed 0.9542 0.9534
(0.0369)

0.9556
(0.0221)

0.9539
(0.0113) 8,858,725 4160 8,862,885 10.9 1.67
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4.8.4. Summary

This study explored the predictive performance of five different locomotor activities
across four distinct DNN architectures. The models were trained on different multivariate
signals sourced from both EMG sensors and a wearable robot. All four models were more
effective in identifying the five locomotor activities using encoder and posture signals
(i.e., hip angles, velocities, roll/pitch/yaw) from the wearable robot, rather than the EMG
sensors. F-measure performance improvements were as follows: 0.4742 to 0.9068 for
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DDLMI, 0.898 to 0.9441 for DeepConvLSTM, 0.8527 to 0.9557 for LSTM-CNN, and 0.8931 to
0.9617 for the proposed model (see Tables 7 and 8). These results align with previous results,
that highlighted high recognition accuracy in detecting human locomotor modes with IMU
sensors [8]. Interestingly, when incorporating all signals from both the EMG sensors and
the wearable robot, DDLMI and LSTM-CNN showed slight improvements in F-measure
performance (0.97% and 0.54% increase, respectively). However, the proposed model and
DeepConvLSTM displayed a slight decrease in performance (0.78% and 1.27%, respectively;
see Tables 8 and 9). The proposed model provided the highest predictive performance with
an inference speed of 1.14 s (i.e., average 0.28 ms) in correctly identifying the five locomotor
activities, achieving 0.9627 and 0.9617 in accuracy and F-measure, respectively. This model
is cost-effective as it uses a smaller number of those multivariate signals compared to
LSTM-CNN, as shown in Table 10.

Table 10. Best performance comparison of the proposed model with three benchmark models.

Model Selected Inputs Accuracy Recall Precision F-Measure

DDLMI EMG, Wearable robot 0.9176 0.9174 (0.0515) 0.9185 (0.0355) 0.9165 (0.0186)
DeepConvLSTM Wearable robot 0.9455 0.9435 (0.0493) 0.9466 (0.0228) 0.9441 (0.0196)

LSTM-CNN EMG, Wearable robot 0.9612 0.9605 (0.0222) 0.9621 (0.0098) 0.9611 (0.0071)
Proposed Wearable robot 0.9627 0.9606 (0.04) 0.964 (0.0163) 0.9617 (0.0162)

5. Conclusions

In this paper, we proposed a multivariate single and multi-head CNN architecture
to detect a user’s locomotor activity while wearing a lower limb wearable robot. Our
research involved 500 healthy adult participants in an ADL space between 1 September and
30 November 2022. The prospective data were collected for the identification of five
locomotor activities (LD, SA, SD, RA, and RD) across three terrains: flat ground, staircase,
and ramp. Through our experiments, we compared the prediction performance between
our proposed CNN and three other competing models. These models were trained on
multivariate signals of different modalities, acquired from EMGs and a wearable robot.
We found that a deeper CNN architecture outperformed the three competing models
when using only the wearable lower limb robot’s encoder (hip angles and velocities) and
postural signals (roll/pitch/yaw from an IMU). Despite the promising results achieved
by the proposed CNN architecture, there remains room for improvement. Notably, our
CNN model possesses a deep structure, which results in a higher computational cost. In
subsequent research, we intend to employ lightweight models that integrate a GAP layer
with either SENet or attention networks. This will enhance the efficiency of locomotion
intent recognition across various continuous terrain scenarios and foster adaptive control
profile generation for muscle strength support using the wearable lower limb robot.

Author Contributions: Conceptualization, C.-S.S. and W.-S.K.; investigation, C.-S.S.; methodology,
C.-S.S.; software, C.-S.S.; validation, C.-S.S.; writing—original draft preparation, C.-S.S.; project
administration, W.-S.K.; funding acquisition, W.-S.K.; resources, W.-S.K.; writing—review and editing,
W.-S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Artificial Intelligence Learning Data Construction
Support Project, the Ministry of Science and ICT (no. 2022060038), as well as the Basic Science
Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of
Education (2020R1A6A1A03040516).

Institutional Review Board Statement: All participants provided informed consent, and the study
was approved by the Institutional Review Board (IRB) (No. GNUCH 2022-08-007-001) of Gyeongsang
National University Hospital, Republic of Korea.

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.



Bioengineering 2023, 10, 1082 23 of 25

Data Availability Statement: The raw data that underpin this study were published on the AI inte-
gration platform, AI Hub (https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=
100&aihubDataSe=realm&dataSetSn=71526 (accessed on 8 August 2023)), which is operated by
the National Information Society Agency (NIA) under the auspices of the Ministry of Science and
ICT (MSIT). For further details about the use of these data, please contact the data management
representative at AI Hub.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mooney, L.M.; Rouse, E.J.; Herr, H.M. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage.

J. Neuroeng. Rehabil. 2014, 11, 80. [CrossRef]
2. Zhang, J.; Fiers, P.; Witte, K.A.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-in-the-loop optimization of

exoskeleton assistance during walking. Science 2017, 356, 1280–1284. [CrossRef]
3. Chen, G.; Qi, P.; Guo, Z.; Yu, H. Mechanical design and evaluation of a compact portable knee–ankle–foot robot for gait

rehabilitation. Mech. Mach. Theory 2016, 103, 51–64. [CrossRef]
4. Awad, L.N.; Bae, J.; O’donnell, K.; De Rossi, S.M.; Hendron, K.; Sloot, L.H.; Kudzia, P.; Allen, S.; Holt, K.G.; Ellis, T.D. A soft

robotic exosuit improves walking in patients after stroke. Sci. Transl. Med. 2017, 9, eaai9084. [CrossRef]
5. Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait training for stroke

patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017, 13, 1303–1311. [CrossRef]
6. Au, S.; Berniker, M.; Herr, H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008, 21,

654–666. [CrossRef]
7. Sup, F.; Varol, H.A.; Mitchell, J.; Withrow, T.J.; Goldfarb, M. Preliminary evaluations of a self-contained anthropomorphic

transfemoral prosthesis. IEEE ASME Trans. Mechatron. 2009, 14, 667–676. [CrossRef]
8. Narayan, A.; Reyes, F.A.; Ren, M.; Haoyong, Y. Real-time hierarchical classification of time series data for locomotion mode

detection. IEEE J. Biomed. Health Inform. 2021, 26, 1749–1760. [CrossRef] [PubMed]
9. Lee, U.H.; Bi, J.; Patel, R.; Fouhey, D.; Rouse, E. Image transformation and CNNs: A strategy for encoding human locomotor

intent for autonomous wearable robots. IEEE Robot. Autom. Lett. 2020, 5, 5440–5447. [CrossRef]
10. Varol, H.A.; Sup, F.; Goldfarb, M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans. Biomed.

Eng. 2009, 57, 542–551. [CrossRef] [PubMed]
11. Hu, B.; Rouse, E.; Hargrove, L. Fusion of bilateral lower-limb neuromechanical signals improves prediction of locomotor activities.

Front. Robot. AI 2018, 5, 78. [CrossRef]
12. Kazemimoghadam, M.; Fey, N.P. An activity recognition framework for continuous monitoring of non-steady-state locomotion of

individuals with Parkinson’s disease. Appl. Sci. 2022, 12, 4682. [CrossRef]
13. Bloem, B.R.; Grimbergen, Y.A.; Cramer, M.; Willemsen, M.; Zwinderman, A.H. Prospective assessment of falls in Parkinson’s

disease. J. Neurol. 2001, 248, 950–958. [CrossRef] [PubMed]
14. Bloem, B.R.; Hausdorff, J.M.; Visser, J.E.; Giladi, N. Falls and freezing of gait in Parkinson’s disease: A review of two interconnected,

episodic phenomena. Mov. Disord. Off. J. Mov. Disord. Soc. 2004, 19, 871–884. [CrossRef]
15. Salarian, A.; Russmann, H.; Vingerhoets, F.J.; Burkhard, P.R.; Aminian, K. Ambulatory monitoring of physical activities in patients

with Parkinson’s disease. IEEE Trans. Biomed. Eng. 2007, 54, 2296–2299. [CrossRef] [PubMed]
16. Zwartjes, D.G.; Heida, T.; Van Vugt, J.P.; Geelen, J.A.; Veltink, P.H. Ambulatory monitoring of activities and motor symptoms in

Parkinson’s disease. IEEE Trans. Biomed. Eng. 2010, 57, 2778–2786. [CrossRef]
17. Huang, H.; Zhang, F.; Hargrove, L.J.; Dou, Z.; Rogers, D.R.; Englehart, K.B. Continuous locomotion-mode identification for

prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans. Biomed. Eng. 2011, 58, 2867–2875. [CrossRef] [PubMed]
18. Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep learning for sensor-based human activity recognition: Overview,

challenges, and opportunities. ACM Comput. Surv. CSUR 2021, 54, 1–40. [CrossRef]
19. Ignatov, A. Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft

Comput. 2018, 62, 915–922. [CrossRef]
20. Gupta, S. Deep learning based human activity recognition (HAR) using wearable sensor data. Int. J. Inf. Manag. Data Insights

2021, 1, 100046. [CrossRef]
21. Lu, L.; Zhang, C.; Cao, K.; Deng, T.; Yang, Q. A multichannel CNN-GRU model for human activity recognition. IEEE Access 2022,

10, 66797–66810. [CrossRef]
22. Zhang, C.; Cao, K.; Lu, L.; Deng, T. A multi-scale feature extraction fusion model for human activity recognition. Sci. Rep. 2022,

12, 20620. [CrossRef]
23. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Deep learning for time series classification: A review. Data

Min. Knowl. Discov. 2019, 33, 917–963. [CrossRef]
24. Dang, L.M.; Min, K.; Wang, H.; Piran, M.J.; Lee, C.H.; Moon, H. Sensor-based and vision-based human activity recognition:

A comprehensive survey. Pattern Recognit. 2020, 108, 107561. [CrossRef]

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=71526
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=71526
https://doi.org/10.1186/1743-0003-11-80
https://doi.org/10.1126/science.aal5054
https://doi.org/10.1016/j.mechmachtheory.2016.04.012
https://doi.org/10.1126/scitranslmed.aai9084
https://doi.org/10.2147/NDT.S114102
https://doi.org/10.1016/j.neunet.2008.03.006
https://doi.org/10.1109/TMECH.2009.2032688
https://doi.org/10.1109/JBHI.2021.3106110
https://www.ncbi.nlm.nih.gov/pubmed/34410932
https://doi.org/10.1109/LRA.2020.3007455
https://doi.org/10.1109/TBME.2009.2034734
https://www.ncbi.nlm.nih.gov/pubmed/19846361
https://doi.org/10.3389/frobt.2018.00078
https://doi.org/10.3390/app12094682
https://doi.org/10.1007/s004150170047
https://www.ncbi.nlm.nih.gov/pubmed/11757958
https://doi.org/10.1002/mds.20115
https://doi.org/10.1109/TBME.2007.896591
https://www.ncbi.nlm.nih.gov/pubmed/18075046
https://doi.org/10.1109/TBME.2010.2049573
https://doi.org/10.1109/TBME.2011.2161671
https://www.ncbi.nlm.nih.gov/pubmed/21768042
https://doi.org/10.1145/3447744
https://doi.org/10.1016/j.asoc.2017.09.027
https://doi.org/10.1016/j.jjimei.2021.100046
https://doi.org/10.1109/ACCESS.2022.3185112
https://doi.org/10.1038/s41598-022-24887-y
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1016/j.patcog.2020.107561


Bioengineering 2023, 10, 1082 24 of 25

25. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

26. Tan, T.-H.; Gochoo, M.; Huang, S.-C.; Liu, Y.-H.; Liu, S.-H.; Huang, Y.-F. Multi-resident activity recognition in a smart home using
RGB activity image and DCNN. IEEE Sens. J. 2018, 18, 9718–9727. [CrossRef]

27. Ijjina, E.P.; Chalavadi, K.M. Human action recognition in RGB-D videos using motion sequence information and deep learning.
Pattern Recognit. 2017, 72, 504–516. [CrossRef]

28. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
29. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the International Conference on

Machine Learning, Beijing, China, 21–26 June 2014; pp. 1188–1196.
30. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the 27th International

Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3104–3112.
31. Goldberg, Y. A primer on neural network models for natural language processing. J. Artif. Intell. Res. 2016, 57, 345–420. [CrossRef]
32. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language processing. IEEE Comput.

Intell. Mag. 2018, 13, 55–75. [CrossRef]
33. Ordóñez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition.

Sensors 2016, 16, 115. [CrossRef] [PubMed]
34. Xia, K.; Huang, J.; Wang, H. LSTM-CNN architecture for human activity recognition. IEEE Access 2020, 8, 56855–56866. [CrossRef]
35. Jain, R.; Semwal, V.B.; Kaushik, P. Deep ensemble learning approach for lower extremity activities recognition using wearable

sensors. Expert Syst. 2022, 39, e12743. [CrossRef]
36. Khan, I.U.; Afzal, S.; Lee, J.W. Human activity recognition via hybrid deep learning based model. Sensors 2022, 22, 323. [CrossRef]
37. Dua, N.; Singh, S.N.; Semwal, V.B. Multi-input CNN-GRU based human activity recognition using wearable sensors. Computing

2021, 103, 1461–1478. [CrossRef]
38. Khan, Z.N.; Ahmad, J. Attention induced multi-head convolutional neural network for human activity recognition. Appl. Soft

Comput. 2021, 110, 107671. [CrossRef]
39. Ronao, C.A.; Cho, S.-B. Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst.

Appl. 2016, 59, 235–244. [CrossRef]
40. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Human activity recognition on smartphones using a multiclass

hardware-friendly support vector machine. In Proceedings of the 4th International Workshop of Ambient Assisted Living and
Home Care (IWAAL 2012), Vitoria-Gasteiz, Spain, 3–5 December 2012; pp. 216–223.

41. Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Förster, K.; Tröster, G.; Lukowicz, P.; Bannach, D.; Pirkl, G.; Ferscha, A.
Collecting complex activity datasets in highly rich networked sensor environments. In Proceedings of the 7th International
Conference on Networked Sensing Systems (INSS), Kassel, Germany, 15–18 June 2010; pp. 233–240.

42. Zappi, P.; Lombriser, C.; Stiefmeier, T.; Farella, E.; Roggen, D.; Benini, L.; Tröster, G. Activity recognition from on-body sensors:
Accuracy-power trade-off by dynamic sensor selection. In Proceedings of the 5th European Conference of Wireless Sensor
Networks (EWSN 2008), Bologna, Italy, 30 January–1 February 2008; pp. 17–33.

43. Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series
for human activity recognition. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015),
Buenos Aires, Argentina, 25–31 July 2015; pp. 3995–4001.

44. Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 2011,
12, 74–82. [CrossRef]

45. Weiss, G.M.; Yoneda, K.; Hayajneh, T. Smartphone and smartwatch-based biometrics using activities of daily living. IEEE Access
2019, 7, 133190–133202. [CrossRef]

46. Zhu, L.; Wang, Z.; Ning, Z.; Zhang, Y.; Liu, Y.; Cao, W.; Wu, X.; Chen, C. A novel motion intention recognition approach for soft
exoskeleton via IMU. Electronics 2020, 9, 2176. [CrossRef]

47. HEXAR-Humancare. Hector H30A. Available online: https://hexarhc.com/?page_id=5465&lang=en (accessed on 28 June 2023).
48. DELSYS. Trigno Wireless Biofeedback System—User’s Guide. Available online: https://delsys.com/support/documentation/

(accessed on 28 June 2023).
49. Moreira, L.; Figueiredo, J.; Fonseca, P.; Vilas-Boas, J.P.; Santos, C.P. Lower limb kinematic, kinetic, and EMG data from young

healthy humans during walking at controlled speeds. Sci. Data 2021, 8, 103. [CrossRef] [PubMed]
50. MotionAnalysis. Kestrel-2200. Available online: https://www.motionanalysis.com/cameras/kestrel-2200/ (accessed on 28

June 2023).
51. He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5353–5360.
52. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway networks. arXiv 2015, arXiv:1505.00387. [CrossRef]
53. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
54. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter

optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.

https://doi.org/10.1109/JSEN.2018.2866806
https://doi.org/10.1016/j.patcog.2017.07.013
https://doi.org/10.1613/jair.4992
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.3390/s16010115
https://www.ncbi.nlm.nih.gov/pubmed/26797612
https://doi.org/10.1109/ACCESS.2020.2982225
https://doi.org/10.1111/exsy.12743
https://doi.org/10.3390/s22010323
https://doi.org/10.1007/s00607-021-00928-8
https://doi.org/10.1016/j.asoc.2021.107671
https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1109/ACCESS.2019.2940729
https://doi.org/10.3390/electronics9122176
https://hexarhc.com/?page_id=5465&lang=en
https://delsys.com/support/documentation/
https://doi.org/10.1038/s41597-021-00881-3
https://www.ncbi.nlm.nih.gov/pubmed/33846357
https://www.motionanalysis.com/cameras/kestrel-2200/
https://doi.org/10.48550/arXiv.1505.00387


Bioengineering 2023, 10, 1082 25 of 25

55. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 24th
International Conference of Neural Information Processing Systems, NIPS 2011, Granada, Spain, 12–15 December 2011;
pp. 2546–2554.

56. Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June
2013; pp. 115–123.

57. Arora, N.; Mior, M. Hyperopt: Distributed Hyperparameter Optimization. Available online: https://github.com/hyperopt/
hyperopt (accessed on 8 May 2023).

58. AI-Hub. Motion Data of Walking Assistive Wearable Robot. Available online: https://aihub.or.kr/aihubdata/data/view.do?
currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=71526 (accessed on 9 August 2023).

59. Dehghani, A.; Sarbishei, O.; Glatard, T.; Shihab, E. A quantitative comparison of overlapping and non-overlapping sliding
windows for human activity recognition using inertial sensors. Sensors 2019, 19, 5026. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=71526
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=71526
https://doi.org/10.3390/s19225026
https://www.ncbi.nlm.nih.gov/pubmed/31752158

	Introduction 
	Related Works 
	Locomotion Activity or Gesture Recognition 
	Locomotion Intention Recognition 

	Methods 
	Participant Demographics and Recruitment Process 
	Ethical Considerations 
	Data Collection 
	Model Architecture 
	Hyperparameter Optimization 

	Results and Discussion 
	Experimental Setup 
	Data Characteristics 
	Preprocessing 
	Data Segmentation 
	Benchmark Models 
	Experimental Environments and Implementation 
	Evaluation Metrics 
	Experiments on Different Network Architectures 
	EMG-Based Locomotor Activity Detection 
	Wearable Robot-Based Locomotor Activity Detection 
	EMGs and Wearable Robot-Based Locomotor Activity Detection 
	Summary 


	Conclusions 
	References

