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Abstract: Background: CT scans are often the first and only form of brain imaging that is performed
to inform treatment plans for neurological patients due to its time- and cost-effective nature. However,
MR images give a more detailed picture of tissue structure and characteristics and are more likely to
pick up abnormalities and lesions. The purpose of this paper is to review studies which use deep
learning methods to generate synthetic medical images of modalities such as MRI and CT. Methods:
A literature search was performed in March 2023, and relevant articles were selected and analyzed.
The year of publication, dataset size, input modality, synthesized modality, deep learning architecture,
motivations, and evaluation methods were analyzed. Results: A total of 103 studies were included
in this review, all of which were published since 2017. Of these, 74% of studies investigated MRI to
CT synthesis, and the remaining studies investigated CT to MRI, Cross MRI, PET to CT, and MRI to
PET. Additionally, 58% of studies were motivated by synthesizing CT scans from MRI to perform
MRI-only radiation therapy. Other motivations included synthesizing scans to aid diagnosis and
completing datasets by synthesizing missing scans. Conclusions: Considerably more research has
been carried out on MRI to CT synthesis, despite CT to MRI synthesis yielding specific benefits. A
limitation on medical image synthesis is that medical datasets, especially paired datasets of different
modalities, are lacking in size and availability; it is therefore recommended that a global consortium
be developed to obtain and make available more datasets for use. Finally, it is recommended that
work be carried out to establish all uses of the synthesis of medical scans in clinical practice and
discover which evaluation methods are suitable for assessing the synthesized images for these needs.

Keywords: cross-modality synthesis; CT to MRI; modality translation; medical image generation;
deep learning; medical imaging

1. Introduction

Medical imaging is a routine part of the diagnosis and treatment of a variety of medical
conditions. Due to limitations, including the acquisition time of imaging methods and the
cost of obtaining medical images, patients may not receive all the imaging modalities that
they could benefit from. A possible solution to this is to use deep learning methods to
generate synthetic medical images which estimate these modalities from scans the patient
did receive.

For example, the diagnosis of brain disorders is often informed by brain scans obtained
from the patient. The purpose of such neuroimaging is to rule out or diagnose a variety of
conditions caused by lesions in the central nervous system. The most widely used imaging
modalities for this purpose are magnetic resonance imaging (MRI) and computerized
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tomography (CT). MRI is much more sensitive to conditions such as stroke, offering better
contrast of soft tissues and excellent anatomical detail in comparison to CT scans; however,
MRIs tend to take longer, and be less available and more expensive [1]. MRI is also not
appropriate for patients with metal implants or claustrophobia. Due to these limitations,
CT scans tend to be the first and often only scan a patient receives. Furthermore, compared
to CT scans, MRIs provide a more accurate registration to most commonly used brain
atlases. Benefitting from the advantages provided by MRI by synthesizing an MRI from
a patient’s CT scan would therefore improve the treatment of patients presenting with
brain disorders.

Deep learning can be utilized to generate images and therefore be applied to this
problem. A limitation in using deep learning for medical imaging tasks is the availability of
large datasets, a distinguishing factor in terms of what types of deep learning frameworks
are suitable. Two commonly used frameworks for image synthesis are generative adversar-
ial networks (GANs) and convolutional neural networks (CNNs). A GAN is a framework
that consists of two models—a generator and discriminator—which are simultaneously
trained [2]. The generator captures the data distribution of the training data and attempts
to generate data which fits within this distribution, whilst the discriminator is presented
with one piece of data and estimates whether it was generated by the generator. The
generator and discriminator then engage in a two-player game, trying to become better
at their respective tasks. A CNN is a framework that processes pixel data, and which is
often used to detect objects in images [3]. In a medical context, one of the most widely used
CNNs is U-Net, which is most commonly used for segmentation tasks [4].

A variety of evaluation metrics are used to assess the performance of deep learning
models for medical image synthesis. Many of the metrics used to assess the performance
of medical image synthesis models are the same as those used in general image synthesis
tasks. Metrics assess the difference between two images—the one generated by the model
and the ground truth image. Commonly used metrics include the mean error (ME), mean
absolute error (MAE), and mean squared error (MSE) which compare pixel intensities.

The purpose of this study is to review the work that has been carried out on medical
image synthesis. In medical settings, there is a shortage of large datasets suitable for
supervised learning, so this review will consider studies which use supervised learning,
unsupervised learning, or both.

2. Methodology
2.1. Search Strategy

This search was completed using the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. The focus was establishing what work had
been carried out in terms of developing machine learning models which can translate
medical images into different modalities. Therefore, the machine learning frameworks used
and dataset details, including body parts studied and modalities studied, were variables
of interest. Articles were included for this review if they conducted original research
using machine learning methods to translate medical images from one modality into a
different modality. Keywords were developed in three categories—machine learning, image
generation, and medical imaging—to address these criteria. The keywords in each category
are shown in Table 1.

Table 1. Search terms used for the electronic databases.

Category Search Terms

Machine Learning machine learning, GAN, generative adversarial network,
convolutional neural network, artificial intelligence, deep learning

Image Generation synth*, generat*, pseudo*, transform*

Medical Imaging MRI, MR, CT, PET
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2.2. Screening Process

Articles published in journals up until July 2023 (inclusive) were searched using
PubMed. Additionally, relevant preprints were identified using ArXiv. Search queries
were developed by combining keywords from the same category with the OR operator
and combining the categories using the AND operator. The first screening phase involved
screening articles based on their title and abstract to remove articles which were not
relevant to the scope of the review or due to the exclusion criteria. In the final screening
phase, papers were assessed based on the full text. Included papers then underwent data
extraction. Reasons for exclusion included papers which were not written in English; were
not able to be accessed; did not comprehensively describe an original study; were theses,
reviews, or notes; did not give sufficient details on the dataset used to train the model;
focused on reconstructing medical images to improve resolution; or focused on translating
images into the same modality but with different acquisition parameters.

2.3. Data Extraction

From the included papers, the title, author details, year of publication, dataset size,
part of the body the dataset contained, input modality, output modality, motivations stated
for medical image synthesis, machine learning methods, and evaluation methods were
extracted. Categories were developed to allow the included papers to be grouped based
on the extracted data, and the categories are described in Table 2. Data extraction was
performed on two separate occasions and compared to decrease the chance of human
error. Studies in the same article were counted separately if they used different datasets for
training or synthesized different modalities.

Table 2. Descriptions of the Synthesis Type and Motivations categories.

Extracted Variable Categories Description

Synthesis Type

CT to MRI Using a CT to generate an MRI

MRI to CT Using an MRI to generate a CT

Cross MRI Using one MRI sequence to generate a different MRI modality. For
example, using a T1w MRI to generate a T2w MRI.

MRI to PET Using an MRI to generate a PET

PET to CT Using a PET to generate a CT

Motivations

Aid Diagnosis Synthesizing unobtained scans to provide extra information
for diagnosis

Missing Data Improving paired datasets by synthesizing missing scans

Memory Efficiency Improving the memory efficiency of synthesis models so that high
quality scans can be synthesized

Attenuation Correction Synthesizing scans of a modality which can aid in attenuation
correction of PETs

Multimodal Registration Synthesizing scans of a modality which is simpler to register to
the target.

MRI-only Radiation Therapy Synthesizing a CT so that a patient only requires an MRI before
radiation therapy

Reduce Radiation Synthesizing a scan which would otherwise expose the patient
to radiation

Segmentation Synthesizing scans of a modality which can help segmentation models
either in training or in segmenting the scan

3. Results

Figure 1 shows the PRISMA flowchart for this review. A total of 392 articles were
identified from PubMed, and 297 articles were identified from ArXiv. A further 15 articles
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which had already been identified as relevant were included from various sources. After
title and abstract screening, 138 papers remained, and after screening of the full text,
99 articles were included, which documented 103 studies (Table 3).
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Figure 1. The PRISMA diagram detailing this systematic review.

Table 3. A summary of the data extracted from the reviewed literature.

Paper Year Synthesis
Type Motivations Body Part Model

Framework
Number of

Patients Evaluation Methods

[5] 2020 Cross MRI Aid Diagnosis Brain GAN 274 SSIM, PSNR, NMSE

[6] 2022 Cross MRI Aid Diagnosis Brain GAN, CNN Unspecified SSIM, MSE, PSNR, VIF,
FID

[7] 2020 Cross MRI Aid Diagnosis Brain CNN 15 PSNR, SSIM, HFEN

[8] 2022 Cross MRI Aid Diagnosis Brain CNN Unspecified MAPE, RSMPE, SSIM

[9] 2020 Cross MRI Increase Data Brain GAN 1113 Estimated Divergence

[10] 2020 Cross MRI Memory
Efficiency Brain GAN 274 SSIM, MAE, PSNR, MSE

[11] 2022 Cross MRI Aid Diagnosis,
Increase Data Brain GAN 127 MAE, SSIM, PSNR, MI

[12] 2019 Cross MRI Aid Diagnosis Brain CNN 15 SSIM

[13] 2023 Cross MRI Aid Diagnosis Brain GAN 128 MAE, SSIM, PSNR

[14] 2022 Cross MRI Segmentation Brain GAN 210 DSC, ASSD

[15] 2022 Cross MRI Aid Diagnosis Brain GAN 285 SSIM, PSNR, Experts
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Table 3. Cont.

Paper Year Synthesis
Type Motivations Body Part Model

Framework
Number of

Patients Evaluation Methods

[16] 2023 Cross MRI Increase Data Brain GAN 372 MSE, SSIM

[17] 2021 Cross MRI Increase Data Brain GAN 199 MSE, SSIM, PSNR

[18] 2022 CT to MRI Aid Diagnosis Lumbar GAN 285 SSIM, PSNR, Experts

[19] 2020 CT to MRI Increase Data Brain GAN, CNN 34 MAE, SSIM, PSNR

[20] 2021 CT to MRI Increase Data Pelvis GAN, CNN 17 PSNR, SSIM, Experts,
DSC

[21] 2021 CT to MRI Increase Data Head and
Neck GAN 202 Segmentation

[22] 2020 CT to MRI
Multimodal
Registration,

Aid Diagnosis
Brain GAN, CNN 34 MAE, MSE, SSIM, PSNR

[23] 2019 CT to MRI Segmentation Pelvis GAN 140 Segmentation

[24] 2021 CT to MRI Segmentation Head and
Neck GAN 118 Segmentation

[25] 2023 CT to MRI
Aid Diagnosis,

Multimodal
Registration

Brain GAN, CNN 181 MAE, MSE, PSNR, SSIM,
Registration, DSC

[26] 2019 CT to MRI Segmentation,
Aid Diagnosis Brain GAN 94 DSC, HD

[27] 2022 CT to MRI Aid Diagnosis Brain GAN 103 Experts

[28] 2021 CT to MRI,
MRI to CT Aid Diagnosis Prostate GAN 271 KID, FID, DSC

[29] 2022 MRI to CT Attenuation
Correction Whole Body CNN 46 MAE, Regional

Analysis, Correlation

[30] 2021 MRI to CT Aid Diagnosis Lumbar CNN 30 Regional Analysis

[31] 2022 MRI to CT Aid Diagnosis Hip CNN 27 Regional Analysis

[32] 2021 MRI to CT Aid Diagnosis Sacroiliac
Joint CNN 30 Diagnostic Accuracy

[33] 2022 MRI to CT Aid Diagnosis Hip CNN 30 Regional Analysis

[34] 2023 MRI to CT Aid Diagnosis Knee CNN 69 Diagnostic Accuracy

[35] 2023 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN, CNN 104 MAE, Dosimetric

[36] 2020 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 77 MAE

[37] 2022 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck CNN 47 MAE, SSIM, Dosimetric

[38] 2020 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 60 MAE, Dosimetric

[39] 2022 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck GAN 206 MAE, Dosimetric
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Table 3. Cont.

Paper Year Synthesis
Type Motivations Body Part Model

Framework
Number of

Patients Evaluation Methods

[40] 2019 MRI to CT
MRI-only
Radiation
Therapy

Liver GAN 21 MAE, Dosimetric

[41] 2021 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck GAN 56 MAE, SSIM, PCC, FID,

SWD, BD, PSNR, DSC

[42] 2020 MRI to CT
MRI-only
Radiation
Therapy

Pelvis CNN 15 ME, MAE, SSIM, PSNR,
PCC

[43] 2021 MRI to CT
MRI-only
Radiation
Therapy

Pelvis GAN, CNN 20 ME, MAE, PCC, SSIM,
PSNR

[44] 2021 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck GAN, CNN 164 MAE, ME, PSNR

[45] 2021 MRI to CT
MRI-only
Radiation
Therapy

Prostate GAN 113 ME, MAE, PSNR

[46] 2021 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN, CNN 18 MAE, MSE, PSNR, SSIM,
PCC

[47] 2019 MRI to CT
MRI-only
Radiation
Therapy

Liver GAN, CNN 21 NCC, MAE, PSNR

[48] 2019 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 77 MAE, DSC

[49] 2021 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck CNN 23 MAE, Dosimetric

[50] 2023 MRI to CT
MRI-only
Radiation
Therapy

Abdomen GAN, CNN 76 Dosimetric

[51] 2019 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck CNN 34 MAE, ME, Dosimetric

[52] 2021 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 37 Dosimetric

[53] 2020 MRI to CT
MRI-only
Radiation
Therapy

Pelvis GAN 120 Dosimetric

[54] 2019 MRI to CT
MRI-only
Radiation
Therapy

Brain CNN 60 MAE

[55] 2023 MRI to CT
MRI-only
Radiation
Therapy

Abdomen CNN 39 MAE, Dosimetric
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Table 3. Cont.

Paper Year Synthesis
Type Motivations Body Part Model

Framework
Number of

Patients Evaluation Methods

[56] 2022 MRI to CT
MRI-only
Radiation
Therapy

Prostate GAN 39 MAE, ME, MAPE, DSC

[57] 2020 MRI to CT
MRI-only
Radiation
Therapy

Abdomen GAN 12 MAE, Dosimetric

[58] 2022 MRI to CT
MRI-only
Radiation
Therapy

Thorax GAN 60 MAE, ME, Dosimetric

[59] 2022 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 24 MAE, PSNR, SSIM

[60] 2021 MRI to CT
MRI-only
Radiation
Therapy

Brain CNN 30 ME, MAE, MSE

[61] 2021 MRI to CT
MRI-only
Radiation
Therapy

Pelvis GAN 38 MAE, Dosimetric

[62] 2020 MRI to CT
MRI-only
Radiation
Therapy

Pelvis GAN 19 MAE

[63] 2020 MRI to CT
MRI-only
Radiation
Therapy

Abdomen CNN 31 MAE, Dosimetric

[64] 2021 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck CNN, GAN 35 MAE, SSIM, PSNR

[65] 2022 MRI to CT
MRI-only
Radiation
Therapy

Pelvis GAN 40 Dosimetric

[66] 2021 MRI to CT
MRI-only
Radiation
Therapy

Brain CNN 20 MAE, Dosimetric

[67] 2022 MRI to CT
MRI-only
Radiation
Therapy

Brain CNN 21 Dosimetric

[68] 2018 MRI to CT
MRI-only
Radiation
Therapy

Pelvis GAN 91 Dosimetric

[69] 2020 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck GAN, CNN 45 MAE, SSIM, PSNR, DSC,

Dosimetric

[70] 2020 MRI to CT
MRI-only
Radiation
Therapy

Pelvis CNN 23
MAE, ME, DSC,

Regional Analysis,
PSNR

[71] 2021 MRI to CT
MRI-only
Radiation
Therapy

Prostate CNN 30 MAE
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Table 3. Cont.

Paper Year Synthesis
Type Motivations Body Part Model

Framework
Number of

Patients Evaluation Methods

[72] 2019 MRI to CT
MRI-only
Radiation
Therapy

Thorax GAN 60 RMSE, SSIM, PSNR,
Dosimetric

[73] 2022 MRI to CT
MRI-only
Radiation
Therapy

Prostate GAN 57 MAE, PSNR, SSIM,
Dosimetric

[74] 2022 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 54 MAE, SSIM, Dosimetric

[75] 2021 MRI to CT
MRI-only
Radiation
Therapy

Pelvis GAN, CNN 30 MAE, RMSE, PSNR,
SSIM

[76] 2021 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 184 Dosimetric

[77] 2017 MRI to CT
MRI-only
Radiation
Therapy

Brain CNN 18 MAE, MSE, PCC

[78] 2021 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 12 Dosimetric, Registration

[79] 2019 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 24 MAE, PSNR, NCC

[80] 2019 MRI to CT
MRI-only
Radiation
Therapy

Prostate GAN 17 MAE, Dosimetric

[81] 2020 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck GAN 173 MAE, Dosimetric

[82] 2019 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck CNN 33 MAE, ME

[83] 2023 MRI to CT
MRI-only
Radiation
Therapy

Head and
Neck GAN 79 MAE, PSNR, SSIM

[75] 2021 MRI to CT
MRI-only
Radiation
Therapy

Thorax GAN, CNN 30 MAE, RMSE, PSNR,
SSIM

[75] 2021 MRI to CT
MRI-only
Radiation
Therapy

Abdomen GAN, CNN 30 MAE, RMSE, PSNR,
SSIM

[79] 2019 MRI to CT
MRI-only
Radiation
Therapy

Pelvis GAN 20 MAE, PSNR, NCC

[19] 2020 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN, CNN 34 MAE, SSIM, PSNR
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Table 3. Cont.

Paper Year Synthesis
Type Motivations Body Part Model

Framework
Number of

Patients Evaluation Methods

[84] 2021 MRI to CT Multimodal
Registration

Head and
Neck GAN 25 Registration

[85] 2021 MRI to CT Reduce
Radiation Lower Arm GAN 8 Surgical Planning Errors

[86] 2022 MRI to CT Reduce
Radiation

Head and
Neck CNN 39 MAE, MSE

[87] 2020 MRI to CT Multimodal
Registration

Head and
Neck GAN, CNN 9 MAE, PCC, SLPD

[88] 2022 MRI to CT Segmentation Abdomen GAN 34 Segmentation

[89] 2018 MRI to CT Attenuation
Correction Brain CNN 7 PSNR, Correlation

[90] 2020 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 15 MAE

[91] 2022 MRI to CT Aid Diagnosis Pelvis GAN, CNN 19 SSIM

[92] 2018 MRI to CT Attenuation
Correction Brain CNN 20 MAE, PET

Reconstruction

[93] 2017 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 24 MAE, PSNR

[94] 2018 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 45 MAE, PSNR, SSIM

[95] 2021 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 45 MAE, PSNR, SSIM

[96] 2021 MRI to CT
MRI-only
Radiation
Therapy

Abdomen GAN 89 MAE, DSC

[97] 2023 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN 95 MAE, GPR

[98] 2019 MRI to CT Attenuation
Correction Brain CNN 400 MAE, PET

Reconstruction

[99] 2021 MRI to CT
MRI-only
Radiation
Therapy

Brain GAN, CNN 86 MAE, SSIM, PSNR

[100] 2021 MRI to PET Increase Data Whole Body CNN 56 AC

[101] 2022 MRI to PET Aid Diagnosis Brain CNN 120 PSNR, SSIM

[102] 2021 MRI to PET Aid Diagnosis Brain GAN 481 MAE, SSIM, PSNR

[103] 2022 PET to CT

Reduce
Radiation,

Attenuation
Correction

Whole Body GAN 34 NRMSE, PSNR, PCC,
SSIM

3.1. Modalities Synthesized

Figure 2 shows the breakdown of the types of synthesis in the included studies. Most
studies (76) investigated MRI to CT synthesis, with the majority of these being motivated
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by MRI-only radiation therapy. Thirteen studies investigated Cross-MRI synthesis, which
included T1 to T2 and T2 to FLAIR; often, these studies used a dataset with more than two
MRI modalities and performed synthesis between many of the different modalities. All
Cross-MRI synthesis studies used datasets of the brain. Eleven of the studies investigated
CT to MRI synthesis, three studies investigated MRI to PET synthesis, and one study
investigated PET to CT synthesis.
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3.2. Year of Publication

Although no restriction was placed on the year of publication in the literature search,
all included papers were published since 2017 (Figure 3). Between 2017 and 2021, the
number of papers published appears to grow exponentially, with a drop from 31 studies in
2021 to 24 studies in 2022. Nine studies were from 2023, however, the literature search only
included papers until July 2023.

Bioengineering 2023, 10, x FOR PEER REVIEW 9 of 18 
 

 
Figure 3. Year of publication of the reviewed studies. 

3.3. Evaluation 
A total of 36 different methods were used to evaluate model performance (Figure 4). 

MAE (mean absolute error), PSNR (peak signal-to-noise ratio), and SSIM (structural sim-
ilarity index) were the three most used evaluation metrics. It was common for studies mo-
tivated by MRI-only radiation therapy to use dosimetric evaluation; this was present in 27 
studies. Dosimetric evaluation compared the radiation dosage plan based off the synthetic 
CT to that which the patient received based on the true CT. 

 
Figure 4. Methods for evaluating the synthetic images. 

3.4. Motivations 
There were multiple motivations mentioned across the surveyed studies (Figure 5). 

The most common motivation was to achieve MRI-only radiation therapy, which was a 

Figure 3. Year of publication of the reviewed studies.



Bioengineering 2023, 10, 1078 11 of 19

3.3. Evaluation

A total of 36 different methods were used to evaluate model performance (Figure 4).
MAE (mean absolute error), PSNR (peak signal-to-noise ratio), and SSIM (structural sim-
ilarity index) were the three most used evaluation metrics. It was common for studies
motivated by MRI-only radiation therapy to use dosimetric evaluation; this was present
in 27 studies. Dosimetric evaluation compared the radiation dosage plan based off the
synthetic CT to that which the patient received based on the true CT.
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3.4. Motivations

There were multiple motivations mentioned across the surveyed studies (Figure 5).
The most common motivation was to achieve MRI-only radiation therapy, which was a
motivation for 60 studies—these studies all synthesized CTs from MRIs. Fourteen studies
were motivated by synthesizing unobtained scans to aid diagnosis. Eight studies were
motivated by increasing the size of paired datasets by synthesizing missing modalities.
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3.5. Deep Learning Used

GANs were the main type of deep learning algorithm used, with 72% of studies
incorporating a GAN and 48% studies incorporating a CNN (Figure 6).
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3.6. Dataset Sizes

The number of subjects in the dataset had a mean of 91 and median of 39 (Figure 7).
Some of the studies with smaller datasets used the leave-one-out method where the model
is trained on all the data but one instance and then tested on the one instance that is left out.
This is then repeated, leaving each piece of data out in turn. The mean number of patient
in the dataset for cross-MRI synthesis was 274, much larger than the means for MRI to CT
(56) and CT to MRI (134).
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4. Discussion

This systematic review analyzed the current state of medical image synthesis using
deep learning. The year of publication; type of synthesis; machine learning framework;
dataset size; motivation; and evaluation methods used were analyzed.

The most common synthesis was MRI to CT synthesis, and almost every study per-
forming this synthesis was motivated by MRI-only radiation therapy. The benefits of
MRI-only radiotherapy are that the patient does not have to be exposed to the radiation
of the CT scan, and that time and money are saved. Other motivations included turning
datasets of MRIs into paired MRI/sCT datasets and completing datasets by synthesizing
missing CTs. Minimal research has been conducted on MRI synthesis from CT scans. Since
CTs are often the first or only scans taken for neurological issues, the time advantage and
additional information from CT-synthesized MRI would be clinically beneficial. MRI gives
superior tissue contrast for the diagnosis of several brain diseases and disorders, such as
stroke and traumatic brain injury. CT-synthesized MRI could improve the speed and quality
of treatment for stroke patients and provide a solution for the cross-modality registration
problem in the context of comparing patients’ CT scans to MRI brain atlases. Depending
on the training dataset, the generation of T1, T2 weighted, or even FLAIR images from
CT could be investigated. These different types of MR modalities provide complementary
information which can be utilized for diagnostic purposes and for registration to different
brain atlases. Eleven papers [18–28] studied MRI synthesis from CT which demonstrates a
knowledge gap in this area.

The lack of paired MRI/CT datasets is a significant problem that inhibits the use
of supervised learning for cross-modality synthesis. It is therefore suggested that future
studies investigate whether within-modality synthesis models could be used to generate
paired datasets. Paired MRI/CT datasets are useful for a variety of applications, including
training models for cross-modality synthesis and training models to perform other tasks
that require paired data.

In part due to the lack of consensus on which metrics to use for evaluation, there
does not appear to be a consensus on the level of accuracy required for synthetic medical
images. The quality of the generated images in some publications is an area of particular
concern, as some models output blurry images which mask the details of smaller-scale
features. A benchmark image quality for the models for use in a clinical setting is much
needed. This task will be hampered, however, by different motivations, since different
studies may require different levels of accuracy and image quality. Research that helps
provide a consensus or that gives guidance on the best evaluation methods is warranted to
improve the progress towards clinically useful synthesized medical images.

There were a range of research motivations across the different studies; however,
most papers did not mention more than one of these. The motivations for MRI synthesis
from CT were quite different to the motivations for CT synthesis from MRI. A focus
for future research should be establishing how different motivations for medical image
synthesis affect how the synthesized images should be assessed and evaluated. This would
help establish which methods perform best for medical image generation in different
contexts. The motivations of the studies strongly affected the methods of evaluation used.
A common evaluation method for the CTs generated from MRI for the purpose of MRI-only
radiotherapy was dosimetric evaluation, which does not make sense for other types of
synthesis. Research investigating clinical uses for synthetic medical images would therefore
be significant.

The studies reviewed did not provide much insight into how different machine learn-
ing frameworks compare for medical image translation. The research has instead been
focused on demonstrating that synthesizing medical images with deep learning is feasible.
Studies used GANs and CNNs, but no particular focus was put on finding out which of
these frameworks is more suited to the problem. Many of the papers used GANs, and a
selection of these introduced novel contributions to the GAN model that they implemented
to improve image synthesis. A much smaller selection of the papers used CNNs, and most
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of these did not implement novel features to adapt the models for this type of synthesis.
It is recommended research be carried out on how CNNs can be adapted for this type of
synthesis.

GANs are renowned for image generation, and this is presumably why they have been
used so often in this area. The reason they are so popular for image generation is because
they produce high-quality images due to matching the training distribution. With a dataset
of medical images, the distribution statistics will be affected by the percentage of scans
with artifacts such as lesions. This leads to the possibility of hallucinating or erasing lesions
or other artifacts. Even in the case of supervised models such as Pix2Pix, the models still
fit to the distribution of the training data [104]. CNNs only fit to the one-to-one pairings
between the paired data input. This means they require a lot more data than GANs for
stable training, however, this ensures the model learns the relationship between the input
and output modalities. The papers including CNNs mostly used UNet and variations of
UNet. Despite UNet being normally used for segmentation, a model of this architecture
has proved to work well for image synthesis. A few papers did compare GANs against
CNNs, however, no consistent consensus on their relative performance was found.

More studies are required to determine which deep learning architectures and imple-
mentations work best for medical image synthesis. To assist the development of this area,
it is recommended that future research test and compare different methods of evaluating
synthesized medical images, in order to determine the level of accuracies required for the
synthesized images to be clinically useful in different contexts. Finally, it is recommended
that the feasibility of a model generating pairs of synthetic CTs and synthetic MRIs be
investigated. This has not been previously done and would have helpful implications for
using deep learning for synthesis, segmentation, and a variety of other clinical tasks if
feasible. Lack of available large medical datasets is an ongoing issue; it is therefore recom-
mended that a global consortium be established to collate currently available datasets and
coordinate with researchers and medical professionals to encourage ongoing collaboration.

5. Conclusions

In conclusion, this systematic review has revealed a knowledge gap within the field
of medical image synthesis. Specifically, very limited research has been conducted on
synthesizing MRIs from CT scans, despite a variety of motivations. Since MRIs give
superior tissue contrast and are preferred for the diagnosis of several brain diseases and
disorders, synthesis of such data from CTs (which are more commonly obtained) would be
clinically beneficial. All studies reviewed on medical image translation have been published
since 2017, making this a relatively new area—as such, there is little consensus around
methods of assessing and testing the performance of models for this task. We therefore
recommend that more research be conducted into MRI synthesis from CT scans. Current
advances in deep learning have shown clinical utility for stroke and traumatic brain injury
patients, making this approach promising as a candidate for solving the cross-modality
registration problem. Recommendations were given for the directions of future research in
this field, including on a related application (not yet discussed in the literature) of using
image synthesis techniques to generate pairwise datasets. It was concluded that more
research is required to determine which deep learning methods are most effective and
accurate in synthesizing medical images for use in a clinical setting.
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Abbreviations

MAE Mean absolute error
PSNR Peak signal-to-noise ratio
SSIM Structural similarity index measure
ME Mean error
MSE Mean squared error
DSC Dice score
PCC Pearson correlation coefficient
FID Fréchet inception distance
RMSE Root mean squared error
NCC Normalized cross correlation
MAPE Mean absolute percentage error
VIF Visual information fidelity
BD Bjøntegaard-Delta
HD Hausdorff distance
HFEN High-frequency error norm
MI Mutual information
NRMSE Normalized root mean squared error
RSMPE Root mean squared percentage error
SD Sharpness difference
SLPD Sum of local phase differences
SWD Sliced Wasserstein discrepancy
NMSE Normalized mean squared error
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