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Abstract: The current manuscript addresses the problem of parameter estimation for kinetic models
of chemical reaction networks from observed time series partial experimental data of species con-
centrations. It is demonstrated how the Kron reduction method of kinetic models, in conjunction
with the (weighted) least squares optimization technique, can be used as a tool to solve the above-
mentioned ill-posed parameter estimation problem. First, a new trajectory-independent measure
is introduced to quantify the dynamical difference between the original mathematical model and
the corresponding Kron-reduced model. This measure is then crucially used to estimate the parame-
ters contained in the kinetic model so that the corresponding values of the species’ concentrations
predicted by the model fit the available experimental data. The new parameter estimation method
is tested on two real-life examples of chemical reaction networks: nicotinic acetylcholine receptors
and Trypanosoma brucei trypanothione synthetase. Both weighted and unweighted least squares
techniques, combined with Kron reduction, are used to find the best-fitting parameter values. The
method of leave-one-out cross-validation is utilized to determine the preferred technique. For nico-
tinic receptors, the training errors due to the application of unweighted and weighted least squares
are 3.22 and 3.61 respectively, while for Trypanosoma synthetase, the application of unweighted and
weighted least squares result in training errors of 0.82 and 0.70 respectively. Furthermore, the problem
of identifiability of dynamical systems, i.e., the possibility of uniquely determining the parameters
from certain types of output, has also been addressed.

Keywords: systems biology; mathematical modeling; mass action kinetics; model reduction; least
squares optimization; parameter identifiability

1. Introduction

An important step in understanding the dynamics of a chemical reaction network
(CRN) is its mathematical modelling. The dynamics of a CRN are usually determined by a
system of ordinary differential equations (ODEs) known as the kinetic model of the CRN.
The set of parameters of such a system is usually partially or even entirely unknown and
is often estimated from various types of observational data obtained from biochemical
experiments. Typically, the experimental data available for estimating the parameters are
time series, i.e., the data are collected at discrete points in time.

The bottom-up approach (see, e.g., [1,2]) is a modelling method widely utilized in vari-
ous research domains, including systems biology. In this method, accessible experimental
data are employed to construct a comprehensive mathematical model of a system. The
bottom-up modelling technique in systems biology comprises four primary stages. The
initial stage is draft reconstruction, which involves the compilation of appropriate data from
biological experiments. The second stage involves manually curating the gathered data, for
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example, by inserting absent values and removing irrelevant data. In the third stage, the
knowledge concerning the biological interactions occurring in the CRN is transcribed into
a mathematical expression. In the fourth stage, the parameters of this mathematical expres-
sion are numerically approximated from the observed experimental data, culminating in a
comprehensive mathematical model.

The final stage of the bottom-up approach, namely parameter determination, can be
executed using various approaches. The fundamental concept behind any method for
parameter estimation is to compare the available experimental data with the corresponding
values produced by the mathematical model. To guarantee a well-defined parameter esti-
mation problem, it is essential to possess complete experimental data of external variables.
This means having data corresponding to measurements of all external variables in the
mathematical model. In the instance of CRNs, the choice of the most suitable technique
generally relies on the qualities of the data amassed from biological experiments and
the structure of the CRN being considered. Several mathematical techniques have been
explored in the literature for parameter estimation of kinetic models of CRNs utilizing
experimental data of species concentrations. A prevalent approach to solve the parameter
estimation problem for scenarios where all species concentrations can be experimentally
measured is the well-known (weighted) least squares technique (see, e.g., [3,4]). The ap-
plication of this optimization approach minimises the (weighted) summation of squared
residuals, i.e., the (weighted) summation of squared differences between the observed
experimental concentration values and the corresponding values foreseen by the model.
Some of the widely recognized methodologies such as maximum likelihood estimation,
finite differences, quasi-linearization procedure, etc. have been deliberated in [5]. For
an exhaustive overview of available mathematical techniques, consult [6–9]. In specific
instances, experiments provide data corresponding to reaction rates (see, e.g., [10–13]).
Recently, in [14], a method for parameter estimation from this form of experimental data
for enzymatic CRNs was proposed. It is based on the approximation of the vector of
species concentrations with parametric Bézier curves [15,16], which, in combination with
the general least squares approach, leads to a complete mathematical model.

Bayesian-based parameter estimation techniques have also been widely developed for
systems of ODEs (see, e.g., [17–22]). In such cases, the vector of parameters involved in the
system of ODEs is usually treated as a random variable. A probability distribution (known
as prior distribution) such as the normal distribution, the uniform distribution, the Poisson
distribution, etc., (see, e.g., [23]) is therefore assigned to the vector of parameters. The tech-
nical core of the Bayesian parameter estimation approach is to construct the joint probability
distribution (for the vector of parameters and the available data corresponding to the vector
of dependent variables) and to perform computations to determine the posterior distribution
(the conditional distribution of the parameters, given the experimental data corresponding
to the dependent variable). Even though Bayesian-based approaches are useful techniques
for parameter estimation and are extensively applied to CRNs (see, e.g., [24–28]), such
approaches have many shortcomings. One of the main shortcomings is that most of these
methods use only the available experimental data and do not consider, for the most part, the
structure of the system of ODEs. Moreover, such an approach is mostly not straightforward
to apply and may require huge computational efforts. Another shortcoming is the ambi-
guity in the construction of appropriate probability specifications since there is no explicit
strategy for properly assigning a prior distribution. Depending on the characteristics of the
available experimental data, it cannot always be assured that the model-predicted values
corresponding to the obtained Bayesian estimates will be a satisfactory fit for the available
experimental data. In such cases, a separate analysis of the fit of the model is required.

In most cases, not all concentrations can be measured experimentally. This incom-
pleteness of the data makes the problem of parameter estimation more challenging, both
mathematically and computationally, as we do not have a well-posed parameter estimation
problem in this case. As expected, there is no general direct solution to this problem in
the literature. Therefore, new mathematical techniques are necessary for estimating the
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parameters included in mathematical models using this type of data. In this manuscript, we
address the problem of parameter estimation for CRNs from observed time series partial
experimental data of species’ concentrations. We are mainly interested in CRNs governed
by the mass action kinetic rate law (MAKRL), since this is the law that governs most real-life
CRNs. We assume that measurements of concentrations are available for some of the
species at discrete time points, which may not necessarily be equidistant. Direct estimation
of the parameters of the mathematical model using the available partial experimental data
is usually not feasible. This is because we do not have a well-posed parameter estimation
problem, since not all concentrations involved in the mathematical model are measured
experimentally. Therefore, we employ the Kron reduction method [29] to transform the
ill-posed parameter estimation problem into a well-posed problem.

Before performing parameter estimation, it is important to understand whether the
parameters are identifiable given a particular type of output, i.e., whether there is a unique
parameter vector corresponding to the given output vector. We address the parameter
identifiability issue of dynamical systems described by a system of ODEs. The uniqueness
of the parameter vector depends on the structure of the system under consideration and
the type of the available outputs. First, we recall two known definitions of parameter
identifiability and then demonstrate the link between them

Our parameter estimation technique consists of three major steps. The first of these
involves reduction of the known original model of the biochemical reaction network with
unknown parameters using the technique of Kron reduction [29]. Of the several available
techniques for model reduction of CRNs in the literature (see [30,31] for a thorough review
of such techniques), we chose Kron reduction method for two particular reasons. The first
and foremost is that Kron reduction preserves the kinetics of the original model. Thus, if the
original network is governed by MAKRL, the reduced model obtained by Kron reduction
also corresponds to another CRN, whose variables are concentrations of chemical species
that are a subset of the species of the original network and moreover, the reduced CRN is
also governed by MAKRL. This kinetics preservation property does not hold for several
other known reduction techniques. The second reason is that by using Kron reduction
method, it is possible to arrive at a reduced model of a CRN, whose dependent variables are
exactly the set of concentrations of compounds whose time-series data are available. The
(unknown) parameters of this reduced model are functions of the parameters of the original
mathematical model. The availability of this reduced model with unknown parameters
together with the time-series data of all the dependent variables of this model leads to
a well-posed parameter estimation problem. The solution of this parameter estimation
problem is the second step of our procedure. Because of its simplicity and computational
feasibility, we apply the least squares optimization technique to deal with this estimation
problem. In the final step, we solve an optimization problem in which the parameters of
the original model are determined in such a way that the original mathematical model and
the Kron reduced model have minimum difference between a key characteristic property
associated with them. It is shown that this key characteristic property is related to the
settling time of the corresponding CRN in case the given model is linear. The entire
procedure has been automated and the corresponding MATLAB library is provided as
Supplementary Material.

We apply our new techniques to two realistic examples of CRNs from the Biomodels
database [32]. We consider a model of nicotinic acetylcholine receptors [33] and a model
of Trypanosoma brucei trypanothione synthetase [34]. For each of these models, we first
generate partial time series data of the species’ concentrations using the parameter values
given in the corresponding reference. We then explain how to derive the Kron-reduced
mathematical model obtained by deleting a subset of complexes and determine the values
for its parameters such that the dynamics of the Kron-reduced model in the least squares
sense most closely approximate the available time series data. Using these estimated values
for the parameters of the Kron-reduced model and their dependence on the parameters of
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the original mathematical model, we finally determine the estimates for the parameters
contained in the original model.

2. Background

In this section, we give a compact description of the mathematical tools that are
necessary for demonstrating the main results of the current manuscript.

2.1. Notations

We introduce the notations that will be used throughout the rest of the manuscript.
For a vector v ∈ Rm, vi refers to its ith entry, i.e., v = [vi]

m
i=1. Γv = diag(v) denotes the

m×m diagonal matrix, whose diagonal entries are the entries of the vector v. Mij is the
entry of the matrix M corresponding to the ith row and the jth column. The eigenvalues
of the m× m square matrix M are denoted by λ1(M), . . . , λm(M). The spectrum of the
square matrix M is denoted by σ(M), i.e., σ(M) = {λi(M); i = 1, . . . , m}. ū is the complex
conjugate of the complex number u ∈ C. <(u) and =(u) denote the real and imaginary
parts of the complex number C, respectively. |I| is the cardinality of the set I. Vectors
of length m composed entirely of ones and zeros are respectively denoted as 1m and 0m.
Furthermore, 0m×n is the m× n matrix with all its entries set to zero.

2.2. Mathematical Models

We outline the process of deriving a mathematical formulation that describes the
dynamics of a CRN. Let Xi, i = 1, . . . , s, be the set of s distinct chemical species of the
considered CRN with r unidirectional reactionsRj, j = 1, . . . , r. The connection between
the species and the reactions is established through an s× r stoichiometric matrix denoted
as S. Its elements are determined as Sij = β ji − αji, with αji representing the number of
moles of the ith species Xi within the substrate of the jth reaction Rj, and β ji indicating
the same for the product of the reaction. Denote by ν ∈ Rr

+ the vector of unidirectional
reaction rates. This vector is dependent on both the species’ concentration vector x and
the parameter vector κ ∈ Rq

+ inherent to the model. The fundamental framework that
characterizes the evolution of the species concentration vector is given by the stoichiometric
representation of the balance laws as:

dx
dt

= Sν(κ, x). (1)

Graphs are crucial tools for modelling various types of relations and processes in
numerous scientific domains including systems biology. In chemical reaction network
theory (CRNT), directed graphs are commonly used in the process of modelling CRNs to
display the link between individual reactions. The complexes of a CRN are defined as the left-
hand (substrate) and right-hand (product) sides of the reactions. Let Cn, n = 1, . . . , c, denote
the set of distinct complexes of the considered CRN. The complexes can be inherently linked
with the vertices of a directed graph, where the directed edges align with the reactions
present within the CRN. More precisely, if there is a reaction for which the complex Ci is the
substrate and the complex Cj is the product, then in the corresponding graph of complexes
there is a directed edge having the vertex associated with the complex Ci as the tail vertex
and the vertex associated with the complex Cj as the head vertex. A linkage class of a CRN
is a connected component of the corresponding graph of complex, i.e., a maximal set of
complexes such that every complex in the set is connected by a directed edge to at least one
other complex.

Any CRN can be uniquely described by a system of ODEs given in (1), independent
of its governing laws. In this manuscript, we consider only mass action kinetics rate law,
since it is the governing law of a wide range of real-life CRNs. According to this rate law,
the rate of a reaction is directly proportional to the concentration of each species involved
in the substrate of the reaction, raised to a power equal to the number of its moles in
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the expression of this substrate. More precisely, the reaction rate νj of the jth reaction,
j = 1, . . . , r, is given in the following form

νj = k j

s

∏
i=1

x
αij
i , (2)

where, as earlier, k j, j = 1, . . . , r, is the rate constant of the jth reaction and αij, i = 1, . . . , s,
is the number of moles of the species Xi in the substrate of the jth reaction. Note that in this
case, the only parameters contained in the mathematical model are the rate constants of the
reactions, i.e., κ = k and the number of unknown parameters is q = r. Next, we obtain an
expression for the vector of reaction rates ν ∈ Rr

+ given in terms of matrix multiplication,
which is a useful approach for automated modelling purposes. Define the s× r the substrate
composition matrix Ω and the substrate expression function ϕ : Rs

+ → Rr
+ of the CRN as:

Ωij =

{
−Sij, if Sij < 0

0, otherwise
, ϕ(x) =

[
s

∏
i=1

xi
Ωij

]r

j=1

.

The conductance matrix Γk of the CRN is a r× r diagonal matrix whose ith diagonal
entry is the rate constant of the ith reactionRi, i.e., if k ∈ Rr

+ is the vector of rate constants,
then Γk = diag(k). Then observe that the vector of reaction rates can be expressed in the
following matrix multiplication form:

ν(k, x) = Γk ϕ(x). (3)

Example 1. To elucidate the outlined modelling process, we apply it to the subsequent example of a
CRN. Consider a scenario where five chemical species, denoted as Xi, for i = 1, . . . , 5, are engaged
in three distinct unidirectional reactions, given as follows:

X1 +X2 
 X3 −→ X4 +X5. (4)

For i = 1, . . . , 3, let ki be the rate constant of the ith reaction. Observe that the second reaction
can be interpreted as the reverse of the first reaction. In our modelling approach, we treat each
reversible reaction as a pair of distinct unidirectional reactions. There are three distinct complexes Ci,
i = 1, . . . , 3, involved in the CRN, which are given as C1 = X1 +X2, C2 = X3, and C3 = X4 +X5.
For the first reaction, since the complex C1 is the substrate and the complex C2 is the product, in the
graph of complexes corresponding to the CRN shown in (4) there is a directed edge having C1 as the
tail vertex and C2 as the head vertex. Similarly, we can construct the edges of the graph of complex
corresponding to the other reactions. The resulting graph of complexes is thus C1 −⇀↽− C2 −→ C3.
Note that this graph of complexes consists of only a single linkage class.

Given the assumption that the reactions (4) are governed by MAKRL, the reaction rates can be
computed by Equation (2) as follows:

ν1 = k1x1x2, ν2 = k2x3, ν3 = k3x3.

The vector of reaction rates can be written in the matrix multiplication form (3) with the
substrate composition matrix Ω and the substrate expression function ϕ given by

Ω =


1 0 0
1 0 0
0 1 1
0 0 0
0 0 0

, ϕ(x) =

x1x2
x3
x3

.
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Thus, in this case the balance laws (1) can be written as:

dx1

dt
=

dx2

dt
= −k1x1x2 + k2x3,

dx3

dt
= k1x1x2 − k2x3 − k3x3,

dx4

dt
=

dx5

dt
= k3x3.

(5)

2.3. The Weighted Directed Laplacian Matrix

In CRNT, the (weighted directed) Laplacian matrix is a matrix representation of the
reactions occurring between the different complexes. Here we explain how to construct the
Laplacian matrix of the CRN using the (weighted directed) adjacency matrix corresponding to
its graph of complexes. The adjacency matrix A is a c× c matrix, with c being the number
of complexes of the CRN, such that its entry Aij is equal to k if there is a reaction having
the jth complex of the network as substrate and ith complex of the network as a product
with k being the rate constant of the reaction. The (weighted directed) degree matrix D of
the graph of complexes corresponding to a CRN is a c× c diagonal matrix such that its
ith diagonal entry is equal to the sum of the elements of the ith column of the weighted
adjacency matrix A. The c× c Laplacian matrix associated with the graph of complexes of
the considered CRN is defined as follows:

L = D− A.

If there is a reaction for which the complex Cj is the substrate and the complex Ci is
the product, then the off-diagonal element Lij is equal to the rate constant of the respective
reaction taken with the negative sign. For useful properties of Laplacian matrices, we refer
to [35]. Any directed graph is defined by an incidence matrix [36], which represents the
connections between its vertices and edges. In the case of CRNs, the c× r incidence matrix
B of the graph of complexes is defined as follows:

Bij =


−1, if the complex Ci is the substrate of the reactionRj,

1, if the complex Ci is the product of the reactionRj

0, otherwise.

(6)

Define the c× r outgoing matrix ∆ of the considered CRN as follows:

∆ij =

{
0, if Bij = 1
Bij, otherwise.

It can be shown that the Laplacian is given in matrix multiplication form as follows:

L = BΓk∆>. (7)

For automatic modelling purposes, it is convenient to construct the Laplacian matrix using
the simple matrix multiplication form given in (7).

Next, we show how to represent the balance laws (1) in terms of the weighted directed
Laplacian matrix L. The c complexes of the considered CRN are described by an s × c
complex composition matrix Z, whose columns express the complexes of the CRN in terms of
their species. More precisely, the element Zij of the complex composition matrix Z is the
number of moles of the ith species Xi in the expression of jth complex Cj. As explained
in [29,37], it can be shown that the balance laws of a mass action CRN can be rewritten
as follows:

dx
dt

= −ZLψ(x), (8)
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where ψ : Rs
+ → Rc

+ is the complex expression function defined as:

ψ(x) =

[
s

∏
i=1

xi
Zij

]c

j=1

.

Example 2. With reference to the CRN example (4), the 3× 3 weighted adjacency matrix A and
the 3× 3 weighted degree matrix D are:

A =

 0 k2 0
k1 0 0
0 k3 0

, D =

k1 0 0
0 k2 + k3 0
0 0 0

.

The 3× 3 weighted directed Laplacian L of the CRN (4) is therefore given by

L =

 k1 −k2 0
−k1 k2 + k3 0

0 −k3 0

,

On the other hand, the Laplacian matrix can be computed using Equation (7) with the incidence
matrix B and the outgoing matrix ∆ given by:

B =

−1 1 0
1 −1 −1
0 0 1

, ∆ =

−1 0 0
0 −1 −1
0 0 0

.

The balance laws (5) can be rewritten as Equation (8) with the 5× 3 complex composition matrix Z
and the complex expression function ψ given by:

Z =


1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

, ψ(x) =

x1x2
x3

x4x5

.

In the following theorem we recall certain important spectral properties (see, e.g., [38])
of the weighted directed Laplacian matrix associated with the graph of complexes corre-
sponding to a CRN governed by MAKRL.

Theorem 1 (Spectrum of the weighted directed Laplacian matrix). If the graph of complexes
of a CRN governed by MAKRL has a single linkage class, then the eigenvalues λi, i = 1, . . . , c, of
the weighted directed Laplacian matrix L associated with the CRN can be ordered in such a way that:

0 = λ1 < <(λ2) ≤ <(λ3) ≤ . . . ≤ <(λc). (9)

First note that 0 ∈ σ(L). This is simply because of the fact that the sum of each column
of L is equal to zero according to the definition of the Laplacian matrix, i.e., L>1c = 0c.
Moreover, from the generalization of the matrix-tree theorem it follows that the multi-
plicity of the zero eigenvalue is equal to the number of connected components, which is
c− rank(L). Using Greshgorin’s circle theorem [39], it can be shown that the real parts of
non-zero complex eigenvalues of L are strictly positive, i.e., if λ ∈ σ(L) and λ 6= 0, then
<(λ) > 0. For a detailed explanation of the proof of Theorem 1 we refer to [40].

2.4. Kron Reduction of Chemical Reaction Networks

The Kron reduction for mathematical models of CRNs [29,37,41] is performed by
assuming that certain intermediate complexes are complex balanced and is carried out
by computing the Schur complement of the weighted Laplacian matrix associated with
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the corresponding graph of complexes. We therefore first recall the definition of Schur
complements (see, e.g., [42]) of a given square matrix.

Definition 1 (Schur complement). Let A1 ∈ Rn×n, A2 ∈ Rn×m, A3 ∈ Rm×n, and A4 ∈ Rm×m

be constant matrices such that the latter is invertible. Consider the following (n + m)× (n + m)
block matrix:

L =

[
A1 A2
A3 A4

]
.

The Schur complement of the block matrix A4 is the n× n matrix L̂ defined as:

L̂ = A1 − A2 A−1
4 A3.

Let I be the set of indices corresponding to the complexes of the CRN, i.e., I = {1, · · · , c}.
Suppose our objective involves removing the complexes associated with the subset of in-
dices denoted as Ī. Note that it should be ensured that |Ī| < c. The removal of complexes is
accomplished through the computation of the Schur complement L̂ ∈ R|̂I|×|̂I| of the block
matrix of the Laplacian matrix L corresponding to the set of indices Ī. Here, Î = I \ Ī is the
set of indices corresponding to the complexes remaining in the reduced graph of complexes.
L̂ is again a Laplacian matrix since it satisfies the properties of Laplacian matrices ([29],
Proposition 1). Furthermore, it has been proven that the equation

dy
dt

= −ẐL̂ψ̂(y),

describes the dynamics of a CRN governed by MAKRL, with a smaller number of com-
plexes. Here, y ∈ Rs

+ is the vector of species’ concentrations in the reduced mathematical
model (which contains a subset of the elements of x.), Ẑ is the complex composition matrix
of the reduced CRN, and

ψ̂(y) =

[
s

∏
i=1

y
Ẑij
i

]|̂I|
j=1

.

As explained in [29,37], a well-chosen Ī will result in a reduction of dependent variables
within the corresponding mathematical model. Note that the parameters contained in
the Kron-reduced mathematical model can be represented as a function of the parameters
involved in the original model. More precisely, if p ∈ Rr̂

+ denotes the vector of parameters
of the reduced model with r̂ being the number of reactions in it, then there is a function
f : Rr

+ → Rr̂
+ such that p = f (k). In general, the manual derivation of the explicit form of

the function f is not straightforward. However, we use MATLAB symbolic variables to
derive the explicit form of f in a fully automated fashion. We refer to the function f as the
parameter dependence function, since it specifies the dependence of the vector of parameters
p of the reduced model on the vector of parameters k of the original model.

In order to determine the structure of the reduced CRN, we need to find the incidence
matrix and the complex composition matrix of the reduced network. This can be done
according to the automated procedure described in [37]. The incidence matrix B̂ is deter-
mined by making use of its Laplacian matrix L̂. According to this procedure, if L̂ij < 0,
i 6= j, then in the reduced graph of complexes there is a reaction for which the jth complex
of the reduced CRN is the substrate and ith complex of the reduced CRN is the product
complex. Therefore, the entries of the incidence matrix B̂ of the reduced graph of complexes
are defined according to (6). The complex composition matrix Ẑ of the reduced CRN is
obtained by simply removing the columns of the incidence matrix Z of the original CRN
that correspond to the set of indices Ī. As mentioned earlier, the incidence matrix describes
the reactions occurring between the complexes and the complex composition matrix gives
the expression of complexes in terms of the species. We therefore use B̂ and Ẑ to determine
the reactions corresponding to the reduced graph of complexes.
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Example 3. To illustrate the Kron reduction method for CRNs, we demonstrate it for the example
given in (4). Assume that we want to delete the complex C2 from the graph of complexes by applying
the Kron reduction method. In other words, Ī = {2} and Î = {1, 3}. The elimination of C2 is
carried out by computing the Schur complement of the Laplacian matrix corresponding to the set of
indices Ī, which results in the following 2× 2 weighted directed Laplacian matrix associated with
the reduced graph of complexes:

L̂ =


k1k3

k2 + k3
0

− k1k3

k2 + k3
0

.

As explained in [37], the complex composition matrix Ẑ of the reduced CRN is obtained by eliminat-
ing the second column of the complex composition matrix Z of the original CRN, i.e.,

Ẑ =


1 0
1 0
0 0
0 1
0 1


Thus the balance laws of the Kron-reduced model are as follows:

dy1

dt
=

dy2

dt
= − k1k3

k2 + k3
y1y2,

dy3

dt
= 0,

dy4

dt
=

dy5

dt
=

k1k3

k2 + k3
y1y2.

Using the Laplacian matrix L̂ of the Kron-reduced model we obtain the incidence matrix B̂ of the
reduced complex graph:

B̂ =

[
−1

1

]
.

Taking into account Ẑ and B̂ we derive the reactions of the reduced CRN:

X1 +X2
p−→ X4 +X5,

where the parameter p is given in terms of the parameters of the original model as p =
k1k3

k2 + k3
,

i.e., in this case for the explicit form of the function f we have f (k) =
k1k3

k2 + k3
. Note that after

deleting the complex C2 from the graph of complexes by the Kron reduction approach, the species X3
is not involved in the resulting reduced CRN, since its concentration x3 is conserved in time.

In [29,37], the optimal combination of complexes for deletion is selected by making
use of an error integral, which quantifies the difference between the dynamical behaviors
of the original model and the corresponding reduced model. This error integral is measure
that is based on a particular trajectory corresponding to the original model.

2.5. The Least Squares Optimization Method

We explain how to apply the (weighted) least squares optimization technique to es-
timate the parameters κ ∈ Rp

+ involved in the kinetic model (1) describing the dynamics
of the given CRN. For the general least squares optimization method we refer to, for
example, [3,4]. This optimization method plays a crucial role in our parameter estima-
tion method.
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Assume that biological experiments provide complete experimental data of species’
concentrations, i.e., measurements that correspond to all of the species’ concentrations.
For j = 1, . . . , n, let x̂(j)

i,m, i = 1, . . . , s; m = 0, . . . , Nj, be the observed value of the ith

concentration at time instant t(j)
m , which is the mth time point corresponding to the jth

experiment. We aim to identify the best-fitting parameter values of the mathematical
model (1) corresponding to the above-mentioned observed time-series experimental data
of species’ concentrations. For every j = 1, . . . , n, consider the following initial value
problem (IVP): 

dx
dt

= Sν(κ, x)

x(t(j)
0 ) = x̂(j)

i,0

. (10)

Since the available experimental data corresponds to the measurements of all the species’
concentrations, for every parameter vector κ ∈ Rp

+ the IVP given in (10) generates data for
the species’ concentrations. More precisely, the IVP (10) can be numerically solved with
respect to time. However, this numerical integration is not always possible if the available
experimental data corresponds to only some of the concentrations.

For every j = 1, . . . , n, let xi(t
(j)
m , κ), i = 1, . . . , s; m = 0, . . . , Nj, denote the model-

predicted value of the ith concentration obtained by numerically solving the IVP (10).
In this case, the least squares error is defined as the sum of squared residuals, which
are the differences between the observed experimental values of concentrations and the
corresponding model-predicted values provided from the IVP given in (10):

ε(κ) =
n

∑
j=1

s

∑
i=1

w(j)
i

Nj

∑
m=0

(
xi(t

(j)
m , κ)− x̂(j)

i,m

)2
. (11)

Here, for i = 1, . . . , s and j = 1, . . . , n, w(j)
i denotes the weight of the corresponding

measurement. In this case, it is assumed that the measurements have different uncertain-
ties. Each weight can be taken, for example, equal to the reciprocal of the variance of
the measurement:

w(j)
i =

1[
σ
(j)
i

]2 , i = 1, . . . , s; j = 1, . . . , n.

We will refer to this approach as the weighted least squares (WLS). If the measurements
have equal variance, then the weights can be taken equal to one. We will refer to the corre-
sponding approach as the unweighted least squares (UWLS). The (weighted) least squares
optimization technique finds the optimal parameter values by minimizing the error (11).
This minimization can be done, for example, by the standard Levenberg-Marquardt algo-
rithm [43,44], or the modified Levenberg-Marquardt algorithm [45]. We denote by κ̂ ∈ Rp

+
the solution to the aforementioned optimization problem, i.e., κ̂ = arg min

κ
ε(κ).

3. Parameter Identifiability

In this section, we first recall the definitions of least squares parameter identifiability
and parameter identifiability, and in addition demonstrate the link between these two
identifiability concepts. Consider a dynamical system described by a system of ODEs that
is given in following the form: 

dx
dt

= f (κ, x)

y = g(κ, x)
, (12)
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where f is an s-dimensional vector-valued function depending on the structure of the
system and g is n-dimensional. Here, κ ∈ Rp

+ is the parameter vector, x : R+ → Rs
+ is

the vector of states of the system and y is the n-dimensional output vector. For a given
vector of initial states x0 ∈ Rs

+, let y(t|κ, x0) denote the output trajectory of the system (12)
corresponding to the parameter vector κ ∈ Rp

+ and initial states x0 ∈ Rs
+.

Assume that, in an experimental setup, the output has been continuously measured
over the time interval [0, T], for some pre-specified T > 0. Let ŷ : R+ → Rn be the resulting
measured output. Consider the cost function εx0 : Rp

+ → R+ defined as:

εx0(κ) =
n

∑
i=1

∫ T

0
(yi(t|κ, x0)− ŷi(t))

2dt, (13)

We recall the definition of least squares parameter identifiability of dynamical systems
given in the form (12), which was first introduced in [46].

Definition 2 (Least squares parameter identifiability). The dynamical system (12) is least
squares parameter identifiable, if for every given vector of initial states x0 and for every given
measurement function ŷ, the cost function (13) admits a unique minimum.

If there exists at least one vector of initial states x0 and a measurement function ŷ such
that the cost function (13) has multiple minima, then the dynamical system (12) is least
squares parameter nonidentifiable.

Each vector of parameters κ ∈ Rp
+ determines a set Yκ of admissible output trajectories

of the system (12). We recall the definition of parameter identifiability of dynamical systems
provided in [14].

Definition 3 (Parameter identifiability). The dynamical system (12) is parameter identifiable, if
for parameter vectors κ, κ ∈ Rp

+ such that κ 6= κ, we have Yκ 6= Yκ .

Equivalently, the dynamical system (12) is parameter identifiable, if Yκ = Yκ for two
parameter vectors κ, κ ∈ Rp

+, implies κ = κ. If there are two distinct parameter vectors
κ 6= κ for which Yκ = Yκ , then the dynamical system (12) is parameter unidentifiable.

We finally turn our attention to the main contribution of this section. In the following
theorem we specify a link between the two identifiability concepts given above.

Theorem 2. If the dynamical system (12) is parameter unidentifiable, then it is also least squares
parameter unidentifiable.

Proof. We assume that the dynamical system (12) is parameter unidentifiable and we prove
that it is also least squares parameter unidentifiable. Since the dynamical system (12) is
parameter unidentifiable, there are two parameter vectors κ, κ ∈ Rp

+, such that κ 6= κ and
Yκ = Yκ . This means that there is at least one vector of initial states x0 ∈ Rs

+ for which
y(t|κ, x0) = y(t|κ, x0), t ∈ [0, T]. Choose a measurement function ŷ : R+ → Rn as:

ŷ(t) := y(t|κ, x0) = y(t|κ, x0), t ∈ [0, T].

Note that this choice results in εx0(κ) = εx0(κ) = 0. For two parameter vectors κ 6= κ there
is a vector of initial states x0 ∈ Rs

+ and a measurement function ŷ : R+ → Rn such that
εx0(κ) = εx0(κ) = 0. Note that zero is the minimum value of εx0 since it is a non-negative
function. We conclude that the minimum of εx0 is not unique in this case and thus the
dynamical system (12) is least squares parameter unidentifiable.

4. Parameter Estimation Procedure

In this section, we describe the main contribution of the current manuscript. We show
how to use the Kron reduction method for kinetic models described in the previous section,
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as a tool for estimating the parameters involved in the corresponding mathematical model
from time-series partial experimental data of species’ concentrations.

4.1. Problem Statement: Available Experimental Data

Typically, biological experiments provide measurements of species’ concentrations or
reaction rates. In this manuscript, we assume that in an experimental setup some of the
species’ concentrations are measured. Suppose that the output of a biological experiment
corresponding to the mathematical model (8) is of the form:

z = Hx,

where H ∈ Rn×s is a constant matrix known as the measurement matrix. In general, H can
have an arbitrary structure. However, in general only some of the species’ concentrations
are measured experimentally. Thus, we assume that each row of H has only one non-zero
element, which is equal to one and is placed in the position corresponding to the particular
species. For instance, with reference to the CRN (4), if the species that are measured
experimentally are X1, X2, X4 and X5, then

H =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

. (14)

Further assume that we have l different sets of time-series data of z collected from biological
experiments on the same CRN. For j = 1, . . . , l; i = 1, . . . , n and m = 0, . . . , Nj, let ẑ(j)

i,m be

the observed value of the ith output at time instant t(j)
m corresponding to the jth experiment.

For compactness, we consider the following observed experimental time-series data sets:

Λ(j) =
{(

t(j)
m , ẑ(j)

i,m

)
| i = 1, . . . , n; m = 0, . . . , Nj

}
, j = 1, . . . , l. (15)

We aim to identify the best-fitting parameters corresponding to the mathematical model (8)
of the considered CRN from observed time-series data Λ(j), j = 1, . . . , l, collected from
biological experiments.

4.2. Trajectory-Independent Error

We propose a trajectory-independent alternative method to the computation of the
error integral defined in [29] for comparing the dynamics of the Kron-reduced model to
the one of the original mathematical model. In our parameter estimation procedure, this
error will be used as an objective function for minimization. It is based on matching the
so called relaxation constant of the Kron-reduced mathematical model to the one of the
original mathematical model. We define the relaxation constant τ(L) of a CRN as the smallest
non-zero real part of the eigenvalues of its Laplacian matrix, i.e.,

τ(L) = min
λ∈σ(L)

λ 6=0

<(λ).

The quantity τ(L) illustrates a key characteristic property of the CRN that is represented
by the Laplacian matrix L. In the case when each complex is a single-species complex,
i.e., Z = Is, it can be shown that relaxation constant τ(L) is an exact indicator of the settling-
time of the CRN, i.e., the time instant after which the concentrations of all the species fall
and remain within some specified percentage of their corresponding steady-state values.
This case is encountered commonly as in one of our demonstrative real-life examples
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considered in the next section. In this case, the solution to the balance laws (8) is of the form:

x(t) =
q

∑
i=1

pi−1

∑
j=0

tjw(ij)(t)e−<(λi)t, (16)

where pi is the multiplicity of the eigenvalue λi and

w(ij) = b(ij) cos(=(λi)t) + c(ij) sin(=(λi)t) with a, b(ij), c(ij) ∈ Rs.

Since the real parts of eigenvalues of the Laplacian matrix L are all nonnegative, from (16)
it follows that the settling-time of the CRN is determined by the slowest decaying term
within the summation sign in the right hand side of the equation. Observe that for ev-
ery i = 1, . . . , q the terms tjw(ij)(t)e−<(λi)t, j = 1, . . . , pi − 1, decay faster than the term
w(i0)(t)e−<(λi)t whose time constant is equal to <(λi)

−1. Among the terms w(i0)(t)e−<(λi)t,
the slowest decaying term is the one with the biggest time constant, i.e., the one with the
smallest value of <(λi). Thus, for comparing the settling-time of the Kron-reduced model
with the one of the original model it is reasonable to compare the relaxation constant τ(L̂)
of the Kron-reduced model with the relaxation constant τ(L) of the original mathematical
model. In general, irrespective of whether the complex composition matrix Z is the identity
matrix or not, we quantify the difference between the dynamics of the original mathemati-
cal model and the one of the Kron-reduced model using the trajectory-independent spectral
based error δ : Rr

+ → R+ defined as:

δ(k) =
∣∣∣τ(L)− τ(L̂)

∣∣∣. (17)

Note that the spectral based error δ defined in (17) is a function that only depends
on the vector of parameters k contained in the original model. This is due to the fact
that the entries as well as the eigenvalues of both the original Laplacian matrix L and the
Kron-reduced Laplacian matrix L̂ are functions of the parameter vector k.

Remark 1. In the physical sciences, the term “relaxation" usually refers to the return of a system
to equilibrium. Each relaxation process can be categorized by a relaxation time (see, e.g., [47–49]).
Since the quantity τ(L) is an indicator of the settling time of the CRN, i.e., its relaxation, we refer
to the constant τ(L) as the relaxation constant of the CRN described by the Laplacian matrix L.

4.3. Estimation Procedure

We turn our attention to the parameter estimation procedure. We assume that in
an experimental setup certain measurements Λ(j), j = 1, . . . , l, of the form given in (15)
are collected. The principal goal is to find estimates for the parameters k of the original
model (8) such that the corresponding model-predicted values fit the available time-series
partial experimental data (15).

As explained in Section 2.5, since we do not have complete data on species’ concentra-
tions, direct estimation of the parameters involved in the balance laws (8) is not possible. In
order to convert the problem to a well-posed parameter estimation problem, we first derive
the Kron-reduced mathematical model obtained after deleting a certain subset of complexes
from the corresponding graph of complexes. For this purpose, we identify this subset of
complexes by making use of the complex composition matrix Z and the measurement
matrix H. The latter specifies the set of indices J corresponding to the species that are mea-
sured experimentally. For instance, if the measurement matrix H is the one given in (14),
then the above-mentioned set of indices is simply J = {1, 2, 4, 5}, i.e., only the species Xi,
i = 1, 2, 4, 5, are measured experimentally. Furthermore, the complex composition matrix Z
identifies the set of complexes Ī that have at least one unmeasured species. We now delete
the complexes corresponding to the set of indices Ī using the Kron reduction method. The
ŝ× ĉ complex composition matrix Ẑ and the ĉ× r̂ incidence matrix B̂ are computed using
the procedure explained earlier.
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Subsequently, we determine the parameter dependence function f : Rr
+ → Rr̂

+. In
order to express the vector of parameters p ∈ Rr̂

+ of the Kron-reduced model as a function of
the vector of parameters k ∈ Rr

+ of the original model, i.e p = f (k). In general, the explicit
form of this function is complicated and its manual derivation is not straightforward.
However, the usage of MATLAB symbolic variables allows us to derive the explicit form of
the parameter dependence function f . Using the properties of the Kron reduction method
for CRNs governed by mass action kinetics rate law, we conclude that the dependence
function is a vector-valued rational function of its argument.

We now consider the parameter estimation problem for the Kron-reduced mathemati-
cal model from the available observed time-series experimental data of species’ concentra-
tions (15). It is a well-posed parameter estimation problem since the available experimental
data corresponds to all the concentrations involved in the Kron-reduced mathematical
model. We apply the least squares optimisation technique to determine the best-fitting
values of parameters p̂ ∈ Rr̂, i.e., the parameter values for which the available observed
time-series experimental data Λ(j), j = 1, . . . , l given in (15) fits the Kron-reduced model.

Finally, we determine the values of parameters k̂ ∈ Rr for which the trajectory-
independent spectral-based error function δ given in (17) admits its minimum value subject
to the constraint

f (k) = p̂. (18)

In other words, we have the following well-posed constrained optimisation problem

min
k∈Rr

+

δ(k) subject to f (k) = p̂.

We use the method of Lagrange multipliers to solve the above-mentioned problem using
MATLAB Optimization Toolbox. We developed a MATLAB library for the automation of
our estimation procedure. The inputs required for our parameter estimation procedure are
the s× c complex composition matrix Z, the c× r incidence matrix B, the n× s measurement
matrix H, and the observed time-series experimental datasets Λ(j), j = 1, . . . , l. The output
of the parameter estimation method is the vector k̂ ∈ Rr

+ of the best-fitting parameter
values corresponding to the experimental time-series observed data given in (15).

5. Application to Real-Life Examples

We demonstrate the applicability of our automated parameter estimation algorithm from
observed time-series partial experimental data of species’ concentrations on two real-life com-
putational models of biological processes retrieved from the BioModels database [32]. We
consider a model of nicotinic acetylcholine receptors [33] and a model of Trypanosoma brucei
trypanothione synthetase [34]. For each of these models, we first generate partial time-series
data corresponding to the species’ concentrations using the values of parameters provided
in the corresponding reference. Next, we perturb these generated data with white Gaussian
noise with zero mean and sufficiently small standard deviation. We then apply our estimation
technique to determine the best-fitting values of parameters in a fully automated manner. The
corresponding MATLAB library is provided as Supplementary Material.

5.1. Nicotinic Acetylcholine Receptors

We consider a model of nicotinic acetylcholine receptors (NAR) developed in [33].
Nicotinic receptors are receptor polypeptides (short chains of amino acids) that respond
to the neurotransmitter acetylcholine (a signalling molecule secreted by a neuron) as well
as to drugs such as the agonist nicotine. They are found in the central and peripheral
nervous systems, muscles, and several other tissues of different organisms. A schematic
representation of the network corresponding to the mathematical model of NAR is provided
in the left-hand panel of Figure 1. A detailed description of the mathematical model can be
found in [33].
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Figure 1. Schematic representation of the original model (left-hand panel) of nicotinic acetylcholine
receptors and the corresponding Kron-reduced model (right-hand panel) obtained by deleting the
single-species complexes BL, AL, IL, DL, BLL, ALL, ILL, and DLL from the graph of complexes.

5.1.1. The Considered Model and the Available Data

In the considered model of NAR, there are 12 chemical species participating in 17 re-
versible mass action reactions. All complexes here are single-species complexes. There
are thus 12 complexes in the corresponding graph of complexes. As mentioned earlier, for
the purpose of automated modelling purposes we regard each reversible reaction as two
separate unidirectional reactions. Table 1 provides an overview of the primary compounds
participating in the reaction system.

Table 1. An overview of the primary compounds participating in the considered model of the
nicotinic acetylcholine receptors.

Species Notation Species Name Species ID

A State of higher affinities with
open channel Active

B Activatable resting closed state Basal

I Inactivatable state of higher
affinities with closed channel Inactivatable

D Desensitised state of higher
affinities with closed channel Desensitised

The rest of the compounds are intermediate enzyme complexes participating in the reaction
network. The network consists of the following reactions, all of which are reversible.

B
k1−⇀↽−
k2

BL,

BL
k3−⇀↽−
k4

BLL,

BLL
k5−⇀↽−
k6

ALL,

A
k7−⇀↽−
k8

AL,

AL
k9−⇀↽−
k10

ALL,

B
k11−⇀↽−
k12

A,

BL
k13−⇀↽−
k14

AL,

I
k15−⇀↽−
k16

IL,

IL
k17−⇀↽−
k18

ILL,

A
k19−⇀↽−
k20

I,
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AL
k21−⇀↽−
k22

IL,

ALL
k23−⇀↽−
k24

ILL,

D
k25−⇀↽−
k26

DL,

DL
k27−⇀↽−
k28

DLL,

I
k29−⇀↽−
k30

D,

IL
k31−⇀↽−
k32

DL,

ILL
k33−⇀↽−
k34

DLL.

The values of the parameters ki, i = 1, . . . , 34, provided in [33] are given in Table 2. We
assume that the species that are measured in an experimental setup are the ones having a
greater impact on the reactions, which are the activatable resting closed state B (the Basal
state), the state of higher affinities with open channel A (the Active state), the states of
higher affinities with closed channels I (the Inactivatable state) and D (the Desensitized
state). In other words, the corresponding measurement matrix is:

H =
[
I4 04×8

]
.

We generate data for these species using the values of parameters provided in [33].
Additionally, we perturb the obtained data with white Gaussian noise of zero mean and
standard deviation 0.0001. We explain how to estimate the parameters involved in the
corresponding mathematical model from the above-mentioned time-series partial data of
concentrations using our parameter estimation method.

5.1.2. Proving Parameter Unidentifiability

Before we perform the parameter estimation, we show that the parameters of the
mathematical model under consideration cannot be uniquely determined from the available
partial time series data of the species’ concentrations. The reason is that we are able to
provide two different vectors of parameters, both leading to the same system of ODEs
corresponding to the measured concentrations of the species. Consider two vectors of
parameters k, k ∈ R34

+ with the following properties:

ki = ki, i = 1, 7, 11, 12, 15, 19, 20, 25, 29, 30,

ki = ki = 0, i = 2, 8, 16, 26,

ki 6= ki, otherwise.

Any two vectors of parameters k and k with these properties lead to the same ODE
system corresponding to the measured concentrations of the species, and thus to the same
sets of admissible output trajectories. Note that it may be cumbersome to derive these
properties manually. Therefore, we have used MATLAB symbolic variables to derive these
properties in an automatic way. We conclude that the corresponding mathematical model
is parameter unidentifiable. From Theorem 2 it follows that the considered mathematical
model is also least squares parameter unidentifiable.

5.1.3. Parameter Estimation Procedure

According to our procedure, we first determine the Kron reduced mathematical model
obtained by deleting the complexes involving at least one species that is not measured
experimentally. By making use of the complex composition matrix and the measurement
matrix we identify the single-species complexes BL, AL, IL, DL, BLL, ALL, ILL, and DLL to
be the ones that should be deleted from the original mathematical model. These are the
precisely the species whose concentrations are not measured. We consequently obtain a new
mathematical model in which only the concentrations of the measured species are involved.
The reactions corresponding to the Kron reduced mathematical model are given below:
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B
p1−⇀↽−
p2

A,

A
p3−⇀↽−
p4

I,

I
p5−⇀↽−
p6

D,

A
p7−⇀↽−
p8

D,

B
p9−⇀↽−
p10

D,

B
p11−⇀↽−
p12

I.

Table 2. The values of the rate constants of the model of the nicotinic acetylcholine receptors
provided in [33], the estimated values obtained using our method (for both WLS and UWLS), and the
corresponding confidence intervals calculated using bootstrapping.

Parameters Provided Values Estimated Values
(UWLS)

Estimated Values
(WLS) Confidence Intervals

k1 3000.0000 2985.3982 2999.1102 [2975.0001, 3004.0154]

k2 8000.0000 7997.6479 7992.4287 [7658.0406, 8106.2202]

k3 1500.0000 1499.4586 1486.9596 [1400.0112, 1587.4735]

k4 16,000.00 15,995.28 15,978.15 [15,116.77, 16,007.37]

k5 30,000.0000 29,991.0951 29,956.5732 [2821.5981, 3033.6088]

k6 700.0000 700.4901 722.1788 [675.6376, 896.1618]

k7 3000.0000 3011.9891 3038.551 [2999.0560, 3066.3532]

k8 8.6400 2.0077 36.7439 [1.4659, 237.2756]

k9 1500.0000 1499.3846 1496.7745 [1424.2376, 1608.9460]

k10 17.2800 18.0771 5.4371 [2.3910, 26.9894]

k11 0.5400 0.7522 0.0934 [2.82× 10−5, 0.7812]

k12 10,800.00 10,809.95 10,822.44 [10,800.01, 10,833.63]

k13 130.0000 129.8977 0.01295 [0.0002, 145.5059]

k14 2740.0000 2739.3315 2736.4242 [2546.3118, 2843.7101]

k15 3000.0000 3000.5636 2848.1724 [2772.8053, 3000.0009]

k16 4.0000 3.2436 162.0834 [1.1588, 211.1424]

k17 1500.0000 1500.0776 1491.0929 [1488.1059, 1513.4998]

k18 8.0000 11.4275 378.6929 [6.9902, 503.0242]

k19 19.7000 19.6393 0.6956 [0.1307, 12.2759]

k20 3.7400 4.0754 5.5581 [1.8582, 27.4541]

k21 19.8500 18.9582 104.6638 [17.6869, 190.2117]

k22 1.7400 0.2558 66.9278 [0.0327, 77.2369]

k23 20.0000 17.8055 0.0246 [0.0014, 23.0991]

k24 0.8100 0.0019 0.01142 [0.8588, 2.6275]

k25 3000.0000 2999.178 2998.2315 [2880.6353, 3012.3044]

k26 4.0000 4.0298 4.4320 [1.4111, 5.6222]

k27 1500.0000 1499.6145 1500.2207 [960.5602, 1739.9138]

k28 8.0000 5.7722 14.2218 [3.6051, 18.2161]

k29 0.0500 0.0041 0.0566 [3.93× 10−6, 0.0567]

k30 0.0010 0.3051 0.4618 [0.0002, 6.9397]

k31 0.0500 4.99× 10−6 0.0015 [5.15× 10−7, 68.9054]

k32 0.0010 0.0006 0.0577 [0.0001, 1.8794]

k33 0.0500 6.78× 10−8 0.0028 [1.3× 10−8, 0.5321]

k34 0.0010 1.60× 10−6 0.0009 [0.85× 10−6, 0.0021]



Bioengineering 2023, 10, 1056 18 of 30

The Kron reduced network is schematically illustrated in the right-hand panel of
Figure 1. Recall that the vector of parameters p is a function of the vector of parameters k.
We now possess a complete time-series data of species’ concentrations corresponding to
the Kron reduced mathematical model. In other words, we have a well-posed parameter
estimation problem from species’ concentrations, which is solved using the well known
least squares method. In order to test the performance of our parameter estimation method,
we use both UWLS and WLS to determine the corresponding values of the parameters for
which the Kron reduced mathematical model fits the available data of species’ concentra-
tions. These estimates are given in Table 3.

Table 3. The best-fitting parameter values (for both WLS and UWLS approaches) of the Kron reduced
mathematical model of the nicotinic acetylcholine receptors corresponding to the available time-series
experimental data.

Parameters Estimated Values (UWLS) Estimated Values (WLS)

p1 2060.8744 0.2430

p2 947.0466 0.6338

p3 1385.3214 1.73× 10−5

p4 13,732.9647 13,783.3992

p5 1061.5483 53.9256

p6 8.6512 1.1069

p7 2860.8880 2762.7458

p8 313.8923 16.0378

p9 0.0192 0.2593

p10 1617.0009 340.8659

p11 2769.5029 3.8327

p12 1.3036 88.8853

Figure 2 represents the comparison of the available time-series data of species’ concen-
trations of the model of NAR and the corresponding predicted values (for both WLS and
UWLS approaches) obtained from the Kron reduced mathematical model with estimated
parameters provided in Table 3.
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Figure 2. The available time-series data of species’ concentrations of the model of nicotinic acetyl-
choline receptors and the corresponding predicted values (using WLS and UWLS) obtained from the
Kron reduced mathematical model with estimated parameters provided in Table 3.
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Note that, while Kron reduction method effectively reduces the complexity of the
original mathematical model, it may not fully capture all relevant dynamical properties.
As can be seen from Figure 2, the Kron reduced mathematical model is not a good fit
for the available time-series data. Finally, we determine the values of parameters k̂ (for
both WLS and UWLS) that minimize the eigenvalue-based error δ defined in (17) subject
to the constraint defined in (18). These best-fitting values of parameters are provided in
Table 2. The comparison of the available time-series data of species’ concentrations and the
corresponding model predicted values obtained from (8) with estimated parameter values
k̂ (for both WLS and UWLS approaches) is given in Figure 3.
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Figure 3. The available time-series data of species’ concentrations of the model of nicotinic acetyl-
choline receptors and the corresponding model predicted values (for both WLS and UWLS ap-
proaches) with parameters estimated by our method. These estimated parameters are given in Table 2.

We observe that our parameter estimation method is able to derive a complete mathe-
matical model that is able to make accurate predictions about the dynamics of the CRN.
Note from Table 2 that the estimated values of some of the parameters, e.g., ki, i = 21, . . . , 24
and i = 31, . . . , 34, differ by a large percentage from their corresponding values provided
in [33]. However, the mathematical model with the estimated values of parameters is a
reasonably good fit (as can be seen in Figure 3) for the generated time-series data of species’
concentrations. The reason behind this, as discussed earlier, is the fact that the parameters
involved in the considered mathematical model of NAR are not least squares identifiable
from the output corresponding to the compounds B, A, I, and D, as proved in Section 5.1.2.

Recall that in our parameter estimation method, we make use of the least squares
optimization technique. As mentioned above, we used both WLS and UWLS to determine
the best-fitting values of parameters corresponding to each of these approaches (see Table 2).
We perform LOOCV in order to understand which one of these approaches is a preferable
technique for data-fitting in our proposed parameter estimation procedure. We first give
a short summary of LOOCV. It involves splitting the data set into two parts: a single
datapoint, that is used for validation (excluded datapoint); and the remaining datapoints
(training dataset), that make up the set used for parameter estimation. The parameter
estimation procedure is applied using the training dataset, and a model-predicted value is
computed for the excluded datapoint. We then compute the mean squared error between
the excluded datapoint and its corresponding model-predicted values. Since the excluded
datapoint is not used in the fitting process, this error provides an unbiased estimate for the
test error. On the other hand, it is a poor estimate for the test error since it is based upon a
single datapoint. We can repeat the procedure by excluding each datapoint of the given
data exactly once and compute the mean squared error between the excluded datapoint
and its corresponding model-predicted values. The LOOCV training error is the average of
these test error estimates.
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We used WLS in our parameter estimation procedure and computed the LOOCV
training error. Subsequently, we used UWLS in our parameter estimation procedure and
again computed the LOOCV training error. These training errors are provided in Table 4.

Table 4. Leave-one-out cross-validation training errors for the mathematical model of the nicotinic
acetylcholine receptors corresponding to weighted and unweighted least squares optimization methods.

Unweighted Least Squares Weighted Least Squares

Training error 3.2164 3.6108

As we can see from this table, using UWLS in our parameter estimation procedure
results in a smaller LOOCV training error than using WLS. We thus conclude that, for this
particular dataset, UWLS is a preferable approach of data-fitting in our proposed parameter
estimation procedure.

We calculated the 95% confidence intervals for the estimated values of parameters
corresponding to UWLS by performing bootstrapping (see, e.g., [50–53]) for our parameter
estimation method. The procedure for this calculation is as follows. We first construct
2000 resampled datasets (of the same length as the available data) by randomly choosing
datapoints from the available data. Note that the same datapoint can be chosen multiple
times. Secondly, we use our parameter estimation method to determine the best-fitting
values of parameters corresponding to each of the resampled dataset. As a result, for each
of the parameters we obtain a set of 2000 estimates. The 95% bootstrap confidence intervals
were constructed by choosing 2.5% and 97.5% percentiles of the corresponding bootstrap
estimates. These confidence intervals are included in Table 2.

5.2. Trypanosoma Brucei Trypanothione Synthetase

Subsequently, we demonstrate the applicability of our new parameter estimation
method on a very different type of a CRN. We consider a kinetic model of Trypanosoma
brucei trypanothione synthetase (TBTS). This mathematical model of TBTS was developed
in [34] and describes the entire kinetic profile. Trypanosoma brucei is a species of parasitic
kinetoplastid (an organism whose cells contain a cell nucleus and that is not an animal, plant,
or fungus). Unlike other parasites (normally infecting blood and tissue cells) it is exclusively
extracellular and inhabits the blood plasma as well as body fluids. It causes deadly
diseases in humans such as African trypanosomiasis or sleeping sickness. A trypanothione
synthetase is a catalytic enzyme. A schematic representation of the model of TBTS is shown
on the left-hand side of Figure 4.

Figure 4. Schematic representation of the original model (left-hand panel) of trypanosoma brucei
trypanothione synthetase and the corresponding Kron-reduced model (right-hand panel) obtained
by deleting the single-species complexes EA, EB, EC, EQ, ER, E_Q, EAB, EAC, EAQ, EBC, EBQ,
EABQ, EABC from the graph of complexes.
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5.2.1. The Considered Model and the Available Data

In the considered mathematical model of TBTS, there are 22 species participating in
59 unidirectional reactions in terms of 24 distinct complexes. Table 5 provides an overview
of the primary compounds participating in the reaction system.

Table 5. An overview of the primary compounds participating in the considered model of the
Trypanosoma brucei trypanothione synthetase.

Species Notation Species Name Species ID

E Enzyme E

P Adenosine diphosphate ADP

Q Glutathionylspermidine GSP

R Bis(glutathionyl)spermine T(SH)2

C Spermidine Spd

B Glutathione GSH

A Adenosine triphosphate ATP

X Glutathione spermidine Enzyme E.GS_P

The remaining compounds occurring in the network are intermediate complexes of
the enzymes E and X. The reactions occurring in the network are given as:

E
k1−⇀↽−
k2

EA,

EA
k3−⇀↽−
k4

EAB,

E
k5−⇀↽−
k6

EB,

EB
k7−⇀↽−
k8

EAB,

EAB
k9−⇀↽−
k10

EABQ,

EA
k11−⇀↽−
k12

EAQ,

EB
k13−⇀↽−
k14

EBQ,

E
k15−⇀↽−
k16

EQ,

EQ
k17−⇀↽−
k18

EAQ,

EAQ
k19−⇀↽−
k20

EABQ,

EQ
k21−⇀↽−
k22

EBQ,

EBQ
k23−⇀↽−
k24

EABQ,

EABQ
k25−→ P+XQ,

XQ
k26−⇀↽−
k27

ER,

ER
k28−⇀↽−
k29

E,

XQ
k30−⇀↽−
k31

XQB,

XQ
k32−⇀↽−
k33

XQR,

E
k34−⇀↽−
k35

EC,

EC
k36−⇀↽−
k37

EAC,

EAC
k38−⇀↽−
k39

EABC,

EC
k40−⇀↽−
k41

EBC,

EBC
k42−⇀↽−
k43

EABC,

EA
k44−⇀↽−
k45

EAC,

EB
k46−⇀↽−
k47

EBC,

EAB
k48−⇀↽−
k49

EABC,

EABC
k50−→ P+XC,

XC
k51−⇀↽−
k52

E_Q,

E_Q
k53−⇀↽−
k54

E,

XC
k55−⇀↽−
k56

XCB,

XC
k57−⇀↽−
k58

XCR,



Bioengineering 2023, 10, 1056 22 of 30

P
k59−→ S.

where ki is the rate constant of the ith reaction. The values of these parameters provided
in [34] are listed in Table 6.

Table 6. The values of the rate constants of the model of the trypanosoma brucei trypanothione
synthetase provided in [34], the estimated values obtained using our method (for both WLS and
UWLS), and the corresponding confidence intervals calculated using bootstrapping.

Parameters Provided Values Estimated Values
(UWLS)

Estimated Values
(WLS) Confidence Intervals

k1 53.4178 44.1002 42.8180 [36.3628, 53.1468]

k2 9.06800 16.7531 12.4590 [8.4905, 15.9902]

k3 1.1917 8.7110 3.9547 [1.6893, 7.7521]

k4 3.6300 16.4578 4.8968 [3.7351, 7.9581]

k5 67.8700 58.5546 68.7404 [51.6995, 69.8990]

k6 9.5200 62.8531 0.3219 [0.0410, 10.7708]

k7 7.9700 13.8148 0.2034 [0.0662, 6.8344]

k8 4.5000 52.2816 5.1613 [4.6057, 10.0443]

k9 1.7600 1.8273 5.2016 [0.0798, 7.7487]

k10 5.5000 11.7959 11.5207 [5.9256, 13.4458]

k11 5.0734 85.8926 0.5021 [0.0919, 8.6912]

k12 5.0396 54.9415 11.2865 [6.5235, 11.8915]

k13 92.9616 86.3749 22.6051 [16.9820, 91.2826]

k14 69.6700 74.2373 0.2118 [0.0664, 67.9548]

k15 58.2800 51.5885 48.5051 [45.9896, 70.1724]

k16 81.5400 89.7101 76.2469 [68.4823, 95.0394]

k17 7.9000 85.8912 0.2689 [0.0213, 7.9164]

k18 8.8900 101.0203 14.0437 [9.2273, 16.0937]

k19 13.0500 2.9113 8.5301 [0.3245, 12.0491]

k20 6.5400 93.7566 9.0591 [4.4476, 12.4538]

k21 6.2615 52.6466 0.2456 [0.0223, 7.9409]

k22 9.5536 106.5830 15.6348 [5.1120, 16.2136]

k23 2.7479 29.7198 0.7268 [0.0109, 5.7346]

k24 7.9500 53.8979 13.1923 [8.4006, 19.5529]

k25 8.1300 67.2479 4.1898 [1.9219, 12.9717]

k26 2.7800 0.0056 0.1197 [0.2465, 4.5403]

k27 4.8100 24.7439 9.0857 [5.8291, 13.3738]

k28 0.0900 100.8293 3.4949 [0.0506, 1.8452]

k29 5.4700 18.1014 0.3826 [0.1967, 1.7861]

k30 5.5200 1.7397 0.5090 [0.0.4621, 1.7866]

k31 7.8669 4.1334 0.8026 [0.7527, 3.0838]

k32 8.6056 5.0141 0.8054 [0.7705, 3.3345]

k33 2.6729 1.1504 0.2569 [0.2016, 0.9534]

k34 6.6400 56.1957 0.6883 [0.6682, 6.4683]
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Table 6. Cont.

Parameters Provided Values Estimated Values
(UWLS)

Estimated Values
(WLS) Confidence Intervals

k35 8.3500 21.4817 10.9232 [8.8105, 12.3105]

k36 2.6000 60.6397 3.9687 [2.0922, 7.0713]

k37 6.0900 68.2011 10.5792 [7.4107, 13.1953]

k38 5.9800 71.0124 5.3738 [3.3981, 30.2118]

k39 7.0800 90.1295 9.6122 [7.1826, 11.6251]

k40 4.2300 97.8241 5.0378 [3.7236, 6.6922]

k41 6.9012 77.2770 9.0691 [7.0122, 10.3685]

k42 5.1458 55.6608 4.9221 [3.0766, 9.6034]

k43 9.8363 94.6713 12.5293 [9.9403, 20.2133]

k44 8.0100 55.9309 11.7194 [8.6101, 12.8384]

k45 1.7000 5.8116 5.0751 [1.6858, 6.1590]

k46 2.0900 10.3061 0.2928 [0.1207, 19.6999]

k47 6.2700 87.7272 7.2096 [6.2626, 33.9641]

k48 8.4300 48.0844 8.3244 [8.5120, 11.2713]

k49 4.4900 84.9190 6.1626 [4.3403, 9.6653]

k50 0.9400 1.7720 0.2076 [0.0253, 0.8675]

k51 5.2317 51.0507 0.8873 [0.8291, 1.6575]

k52 2.8599 62.8507 5.3629 [0.7383, 6.4126]

k53 3.2270 2.2573 10.4618 [3.2739, 15.3034]

k54 6.4700 1.6055 0.1016 [0.0154, 0.7756]

k55 3.2400 1.3503 0.6410 [0.2601, 1.5042]

k56 4.9500 2.4355 0.8050 [0.7399, 2.1214]

k57 8.9600 5.6437 0.8007 [0.0290, 3.5065]

k58 1.2500 0.4722 0.3622 [0.0869, 0.4206]

k59 2.3100 0.9681 0.8058 [0.7560, 1.1369]

Note that, unlike the previous example, not every complex is a single-species complex.
We assume that the species that are measured experimentally are P, S, XQ, XC, XQB, XQR,
XCB, XCR and the main enzyme E. We generate data corresponding to the concentrations of
the above-mentioned species using the balance laws (8) and the parameter values provided
in [34]. These parameters are given in Table 6. Additionally, the obtained data have been
perturbed with white Gaussian noise of zero mean and standard deviation 0.02.

5.2.2. Proving Parameter Unidentifiability

We show that the parameters of the considered mathematical model cannot be uniquely
determined from the available partial time series data of the species’ concentrations. Sim-
ilar to the case of the mathematical model of NAR, we provide two different vectors of
parameters, both leading to the same system of ODEs corresponding to the measured
concentrations of the species. Consider two vectors of parameters k, k ∈ R59

+ with the
following properties:

ki = ki, i = 1, 2, 5, 6, 15, 16, 19, 25, . . . , 35, 50, . . . , 59,

ki 6= ki, otherwise.
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Any two vectors of parameters k and k with these properties lead to the same ODE
system corresponding to the measured species’ concentrations, and thus to the same sets of
admissible output trajectories. These properties have been derived in an automatic way us-
ing MATLAB symbolic variables. We conclude that the corresponding mathematical model
is parameter unidentifiable. From Theorem 2 it follows that the considered mathematical
model is also lest squares parameter unidentifiable.

5.2.3. Parameter Estimation Procedure

Using the complex composition matrix and the measurement matrix our procedure
selects the single-species enzymatic complexes EA, EB, EC, EQ, ER, E_Q, EAB, EAC, EAQ,
EBC, EBQ, EABC, EABQ to form the set of complexes that should be deleted from the
graph of complexes by applying the Kron reduction method. The reactions corresponding
to the resulting Kron-reduced model are given as:

E
p1−→ P+XQ,

E
p2−→ P+XC,

XQ
p3−⇀↽−
p4

E,

XQ
p5−⇀↽−
p6

XQB,

XQ
p7−⇀↽−
p8

XQR,

XC
p9−⇀↽−
p10

E,

XC
p11−⇀↽−
p12

XCB,

XC
p13−⇀↽−
p14

XCR,

P
p15−→ S.

Here, as usual, for every i = 1, . . . , 15, pi denotes the rate constant of the ith reaction
corresponding to the Kron-reduced model. The schematic representation of the Kron
reduced network is illustrated in the right-hand panel of Figure 4.

Since we have complete data of the concentrations of the species involved in the Kron
reduced model, we may apply the least squares method to find the best-fitting values of the
parameters p̂ ∈ R15

+ . Similar to the case of the mathematical model of NAR, we use both
WLS and UWLS to determine the values of the parameters for which the Kron reduced
mathematical model fits the available data of species’ concentrations. These estimates are
given in Table 7. Figure 5 visualizes the comparison of the available time-series data and
the corresponding model predicted values (for both WLS and UWLS approaches) obtained
from the Kron reduced model with estimated values of parameters p̂. Note that, in this case,
both WLS and UWLS result in similar model-predicted values for the output concentrations.
Also note that the Kron reduced mathematical model is not a good fit for the available
time-series data.

In the final step, we determine the values of parameters k̂ ∈ R59
+ (for both WLS

and UWLS approaches) of the original model that minimize the eigenvalue-based error
δ defined in (17) subject to the constraint defined in (18). These values of parameters are
given in Table 6. The comparison of the available time-series data and the corresponding
model predicted values obtained from the balance laws (8) with the estimated values of
parameters k̂ (for both WLS and UWLS approaches) be seen in Figure 6. Note that our
parameter estimation method resulted in a complete mathematical model that is able to
make accurate predictions about the dynamical behavior of the CRN.

Observe from Table 6 that for some of the parameters, e.g., ki, i = 7, . . . , 14 and
i = 20, . . . , 24, there is a substantial difference between the values provided in [54] and
their corresponding estimated values. The reason behind this is the fact that the parameters
contained in the mathematical model are least squares unidentifiable from the available
time-series partial data of species’ concentrations, as proved in Section 5.2.2.
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Table 7. The best-fitting parameter values (for both WLS and UWLS approaches) of the Kron reduced
mathematical model of the Trypanosoma brucei trypanothione synthetase corresponding to the
available time-series experimental data.

Parameters Estimated Values (UWLS) Estimated Values (WLS)

p1 8.8681 0.3572

p2 2.3387 0.5386
p3 0.0409 0.0893

p4 5.4580 0.9955

p5 4.6200 3.0531

p6 7.8525 4.9069

p7 8.5119 1.9480

p8 2.9776 0.6329

p9 2.5213 7.1061

p10 3.1172 2.7720

p11 3.2643 6.1818

p12 4.9430 3.6137

p13 9.0230 3.2929

p14 0.8362 0.5099

p15 2.2947 1.5590

Table 8. Leave-one-out cross-validation training errors for mathematical model of the Trypanosoma brucei
trypanothione synthetase corresponding to unweighted and weighted least squares optimization methods.

Unweighted Least Squares Weighted Least Squares

Training error 0.8233 0.6977
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Figure 5. The available time-series data of species’ concentrations of the model of trypanosoma brucei
trypanothione synthetase and the corresponding predicted values obtained from the Kron-reduced
mathematical model with estimated parameters provided in Table 7.
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Figure 6. The available time-series data of species’ concentrations of the model of trypanosoma brucei
trypanothione synthetase and the corresponding model predicted values with parameters estimated
by our method. These estimated parameters are given in Table 6.

Similar to the case of the mathematical model of NAR, we perform LOOCV to un-
derstand which one of WLS and UWLS is a more preferable approach for data-fitting in
our proposed parameter estimation procedure. The corresponding LOOCV training errors
are given in Table 8. As we can see from this table, unlike the case of NAR, using WLS
in our parameter estimation procedure results in a smaller LOOCV training error than
using UWLS. We thus conclude that, for this particular dataset, WLS is a more preferable
approach of data-fitting in our proposed parameter estimation procedure. We calculate the
95% confidence intervals for the estimated values of parameters corresponding to WLS by
performing bootstrapping for our parameter estimation method. These confidence intervals
are included in Table 6.

6. Discussion

The Kron-reduced mathematical model with the best-fitting values of parameters
(in the sense of least squares), as we can see from Figures 2 and 5, is generally not an
appropriate approximation, meaning that the corresponding model predicted values are
far from being good fits for the available time-series data. This is because of the fact that, in
general depending on the number of complexes deleted from the graph of complexes, it is
not assured that the Kron-reduced model is a reasonable approximation for the original
mathematical model.

The choice of the Kron reduction technique as a tool for reducing mathematical models
in our parameter estimation method is based on several advantages of this reduction
technique that are particularly appropriate for the problem. First of all, it does not impose
any restrictions on the choice of complexes to be deleted. Thus, we can delete all the
complexes containing at least a single unmeasured species. A second advantage is that
Kron reduction method preserves the kinetics of the CRN, i.e., if MAKRL governs the given
CRN, then the corresponding Kron-reduced model is also governed by this rate law. A third
advantage of the Kron reduction method is that we are able to compare the dynamics of the
original model to the one of the reduced model using the Laplacian matrix of the original
model and the Laplacian matrix of the reduced model. To the best of our knowledge, there
is no other reduction technique that offers all these aforementioned advantages.
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The suggested parameter estimation method is only applicable to a mass action CRN
with a constant Laplacian. This is because of the fact that in the estimation procedure,
the eigenvalues of the Laplacian matrix are used. For a general enzymatic CRN, the
corresponding Laplacian matrix is not constant since it depends on the vector of species’
concentrations. In such cases, it is not straightforward how to use a similar technique
for parameter estimation purposes. The parameter estimation of enzyme kinetic reaction
networks from partial data of species’ concentrations is still an open problem that will be
considered in future work.

As explained in [37,41], a linkage class of a CRN is a connected component of its graph
of complexes. It is also stated in these papers that if a network has a linkage class with only
one reaction, then the removal of a complex involved in such a reaction by Kron reduction
leads to the removal of the reaction. In the case, where the intermediate Kron reduction
phase of our parameter estimation procedure leads to the removal of some of the reactions
of the original model, we would expect that the estimated parameters of the original model
associated with the removed reactions would have larger confidence intervals compared
with those of the other parameters that are associated with the remaining reactions of
the network.

7. Conclusions

In this paper, we have introduced an innovative parameter estimation approach for
mathematical models of mass action CRNs using observed time-series incomplete experi-
mental data of species’ concentrations. As far as we know, there exists no direct technique
for deducing the parameters in a mathematical model from this sort of experimental data.
We have addressed this problem by devising an algorithmic strategy, which involves the
application of Kron reduction technique for kinetic models as an intermediate step in the
overall parameter estimation approach. The complexes that should be deleted using Kron
reduction are chosen in such a way that in the reduced model only the concentrations
of the measured species are involved. Since all the species’ concentrations involved in
the Kron-reduced model are measured we now have a well-posed parameter estimation
problem. We estimate the parameters involved in the Kron-reduced model using the
least squares method to identify the best-fitting values of the parameters involved in the
Kron-reduced model. To estimate the parameters contained in the original mathematical
model, we have devised a new trajectory-independent measure to quantify the difference
between the dynamics of the original model and the corresponding Kron-reduced model.
It is based on comparing the smallest non-zero real part of the eigenvalues of the original
Laplacian matrix with the one of the Kron-reduced Laplacian matrix. The reason behind
the choice of measure is the fact that the smallest non-zero real part of the Laplacian matrix
is related to the settling time of the CRN that is characterized by the Laplacian matrix.
This measure can be regarded as a function of the parameter vector of the original mathe-
matical model since the eigenvalues of both the original Laplacian matrix as well as the
Kron-reduced Laplacian matrix depend only on this vector of parameters. Finally, we find
the estimates of the parameters for which the above-mentioned spectral-based measure
admits its smallest value.

We have devised an automatic process for our parameter estimation approach, crafting
a MATLAB library that can be employed to deduce the parameters from experimental data
of species’ concentrations automatically. This MATLAB library is given as Supplementary
Material. We utilized this MATLAB library to effectively employ our parameter estimation
approach on two real-life CRNs taken from the Biomodels database [32]. For each of
these models, we observed that our parameter estimation method resulted in a complete
mathematical model that could make accurate predictions about the dynamics of the CRN.
While we have exclusively applied and tested our parameter estimation method on a
limited scale, involving only two real-life instances of CRNs, its applicability extends to all
networks regulated by MAKRL. It should be noted that the method places no restriction on
the size or scale of the model as well as the biological purpose of the associated network as
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long as its reactions are governed by MAKRL. Thus the method is applicable for models of
core metabolism (for instance E.coli central carbon metabolism models reviewed in [55]) as
well as models of regulatory networks. It can also be applied for small models like the one
of NAR considered in this paper as well as genome-scaled models as in [56].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10091056/s1, The MATLAB library corresponding
to the parameter estimation method described in the main manuscript.
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