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Abstract: The lack of medical databases is currently the main barrier to the development of artificial
intelligence-based algorithms in medicine. This issue can be partially resolved by developing a
reliable high-quality synthetic database. In this study, an easy and reliable method for developing
a synthetic medical database based only on statistical data is proposed. This method changes the
primary database developed based on statistical data using a special shuffle algorithm to achieve a
satisfactory result and evaluates the resulting dataset using a neural network. Using the proposed
method, a database was developed to predict the risk of developing type 2 diabetes 5 years in advance.
This dataset consisted of data from 172,290 patients. The prediction accuracy reached 94.45% during
neural network training of the dataset.

Keywords: synthetic medical data; type 2 diabetes; prediction of diseases; shuffling

1. Introduction

Currently, AI algorithms are widely used in medicine to solve many problems, such as
classification, disease prediction, risk evaluation, medical image segmentation, and image
detection. However, most AI algorithms, particularly deep learning (DL) methods, require
considerable data. The size of the dataset plays a crucial role in increasing the accuracy of
the algorithms. The highest-performance milestone algorithm relies on a large database.
Moreover, there is also a large open-access database, such as ImageNet, containing more
than 1.5 million images, and the Open Image Dataset includes more than 9 million data
points. However, in the medical field, although there are millions of data collected from
various major hospitals around the world, there are still very few databases open to the
public. As medical data include the personal information of patients, they cannot be shared
for maintaining privacy. However, certain programmers are allowed to use them, keeping
the identity of the patients confidential.

In existing algorithms, the number of recorded patients is either not satisfactory for
training DL algorithms or not labeled. For example, the Pima Indian Diabetes Database,
which is the most widely used program for training diabetes detection algorithms, con-
tains data from only 768 patients (females). Annual survey: The Behavioral Risk Factor
Surveillance System (BRFSS) of the US consists of more than 100,000 annual patient records,
but the data are incomplete. Furthermore, finding an appropriate database for training
AI models is difficult. In particular, it is almost impossible to find a database required
to train predictive algorithms because the data collection process is time consuming and
difficult. For example, there is hardly any open-access database that can be used to predict
diabetes or its potential complications 5–6 years ahead. Therefore, over the past decade,
considerable research has been conducted on the development of synthetic medical data.
There are many reviews of these works [1–5].
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Typically, there are three types of synthetic data: fully synthetic, semisynthetic, and
hybrid. To develop a semi-synthetic database, the main features and statistical distribution
of the specific dataset were imitated, that is, a new database that preserves the statistical
distribution of the real one was developed. The main purpose of this method is to hide
patient data from real databases and thus make the data close to that in the public database
open to everyone without compromising privacy. The second method is a hybrid method, in
which a large database is developed using a specific small dataset. The goal of such methods
is to synthetically increase the amount of data in a small dataset via data augmentation. The
third method involves developing a completely new dataset without using a real database.
This method is typically used in cases where a database is unavailable in a particular field.

While studying the literature, it is clear that most studies have been conducted in the
first and second directions. Only a few methods have been developed in the third research
area, most of which are highly complex. In addition, most of these studies were aimed
at developing electronic health records, and almost no research has been conducted on
predicting the disease in advance.

Furthermore, the traditional approach to generating fully synthetic medical data
involved manual input from medical professionals, who had to painstakingly extract the
necessary rules from the guidelines and books to create datasets. This process was not
only time consuming but also prone to errors and inconsistencies. Additionally, it relied
heavily on the availability and cooperation of medical personnel, which further hindered
its efficiency. To overcome these challenges, our proposed method utilizes neural network
algorithms and shuffling techniques. By leveraging these technologies, we can automate
the process of generating synthetic medical data with minimal human intervention. This
not only saves time but also ensures accuracy and consistency in the generated datasets.

Moreover, our method allows for scalability, making it suitable for large-scale studies
that require extensive amounts of data. It also enables researchers to easily customize the
generated datasets according to their specific research requirements. This method also
addresses privacy concerns associated with sensitive medical data. Since the database
is created using statistical information rather than individual patient records, it ensures
anonymity while still providing valuable insights into disease identification.

The main concept of this method is as follows. Many types of statistical medical data
are currently available. Most of them are open to use, and much of their data are detailed
in special reports or in research papers. In the first stage, a primary dataset was developed
using these statistics. Subsequently, a neural network (NN) was trained using this dataset.
After every five training epochs, the data were shuffled using a special shuffling operation.
The developed dataset was saved after each shuffle. The dataset for which NN showed the
highest accuracy was selected. From the calculations, it was estimated that the resulting
dataset obtained by this method was satisfactory for practical use. The database created
using our method can be a valuable tool in training various AI algorithms for identifying
and predicting type 2 diabetes 5 years in advance. Today, such database does not exist or is
not open for use, but only statistical data are available.

2. Related Works

Medical data can be in the form of images, numbers, texts, or comments. In addition,
they can be single data or time-series data. Therefore, the methods proposed for generating
synthetic medical data differ. For example, generational neural diffusion models, variation
autoencoders, and a generative adversarial network (GAN) are mainly used to develop
synthetic medical images/data [6–8], whereas algorithms such as Bayesian networks [9]
and classification and regression trees [10,11] are used to develop numerical (quantitative)
and non-numerical (qualitative), and recurrent deep learning models are used to build
time-series databases [12]. Because this study aims to develop a numerical database, the
issues of generating images and developing non-numerical databases are beyond the scope
of this study. Further information can be found in [13].
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As we examine methods for generating numerical data, it becomes clear that the major-
ity of the works that have been proposed recently are based on real databases. Their main
purpose is to increase the security of the real database, hide the patients’ personal data,
and, more precisely, change the data to such an extent that the patient’s identity cannot be
recognized; this resembles high-level encryption. Synthetic databases that properly depict
the original data distribution, for instance, would significantly minimize patient privacy
concerns and may be freely shared in place of the original patient data. To develop a differ-
entially private synthetic database, the authors of [14] presented deep learning algorithms
that can capture the relationships between various variables. Ref. [15] has developed a
high-fidelity open generator that generates synthetic data using a probabilistic relational
model. This generator met certain privacy requirements and produced an imitation of the
large French insured patients (SNDS) database. The most common method for generating
synthetic data based on real data is to use GAN. Various modifications of GANs have
been used to generate synthetic medical data, including HC_GAN, medWGAN, AC_GAN,
MC_medGAN, EMR_WGAN [16], and EEG_GAN [17]. A synthetic replica of numerous
databases was produced as a result of the studies described above and made accessible
for public use, such as the NIH National COVID Cohort Collaborative (N3C), the CMS
Data Entrepreneur’s Synthetic Public Use files, and synthetic variants of the French public
health system claims and hospital dataset (SNDS) [18–20].

However, little research has been conducted to construct fully synthetic data. Rubin was
the first to propose a method to develop a fully synthetic database [21]. Ragunathan et al. (2003)
proposed methods based on combining point and variance estimates from multiple synthetic
datasets that were closely related but slightly different from the combining rule for multiple
nonresponse imputations [22]. Later, Drechsler et al. developed an improved version of this
method to overcome its shortcomings [23]. Walonski developed a method for replicating health
records using statistical data and medical records [24]. A statistically valid random shuffle
method was developed to increase the cardinality of the heart failure dataset [25]. Although
this is not a fully synthetic method, it is likely to be an image-augmentation method. Most of
the aforementioned methods for developing a full synthetic dataset are complex; therefore, we
propose a relatively easy method in this study.

3. Methodology

When we searched for studies on diabetes prediction or risk factor assessment, we
found many statistical studies. Most of these authors have conducted large surveys to assess
the risk of diabetes 5–10 years in advance to study the factors that lead to diabetes. For
example, in [26], 260,000 people; in [27], 63,000 people; and in [28], more than 93,000 people
were surveyed/observed over 5 to 10 years. The most important aspect of these studies is
the relationship between risk factors and their possibility of causing the disease is written
down in the smallest detail.

After studying these papers, we developed a synthetic database based on the statistics
presented in this study. The steps for implementing this concept are illustrated graphically
in Figure 1.

1. Development of a primary database based on statistical rules and the given statistical data.
Based on the selected statistics, the general statistical data were converted into individual
patient data. Further details are provided in Section Developing Primary Database.

2. Primary and Secondary shuffling of the data. Usually, the distribution of the data in
the initially generated database is highly unbalanced; therefore, it is difficult to bring
them to the desired point using the proposed shuffling algorithm during the training
process. A primary shuffle should be performed to distribute data uniformly in the
database; this method is discussed in detail in Section 4.

3. The database was fed into a loop consisting of the main shuffling and training pro-
cesses; this step is the main part of our proposed method, in which the primary and
secondary shuffled dataset is trained on the neural network. The dataset was shuffled
using a special shuffle function and fed again to the neural network depending on
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the test accuracy value of the neural network; this process was continued until a
satisfactory value was obtained for the neural network. The database with the highest
performance was selected and saved every time it was tested in the neural network.

4. Evaluation of trained data, and performance enhancement. We will discuss these
processes in detail in Section 5.
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Developing Primary Database

We have chosen the case in [28] for this study; this work contains the most detailed
information and interconnections of the data. In this paper, the China Cardio Metabolic
Disease and Cancer Cohort Study survey was analyzed. This survey was conducted with
93,781 non-diabetic participants nationwide between 2011 and 2016. They examined 14 risk
factors for diabetes. These risk factors include education, occupation, unhealthy diet,
physical inactivity, current alcohol consumption, current smoking, poor sleep, general or
central obesity, insulin resistance, prediabetes, hypertension, and dyslipidemia, gender,
age. Age dependence of 13 risk factors was studied in groups, namely (40–55, 55–65, 65–75,
and ≥75 years old).

However, we selected 8 factors for this study: age, gender, unhealthy diet, physical
inactivity, current alcohol consumption, poor sleep, general or central obesity, and hyper-
tension. We have carefully selected eight factors for our study because they are easily
accessible and can be compiled into a comprehensive database. This allows for future
verification and comparison, ensuring transparency and credibility. To be more precise, the
factors we chose in this work were chosen not because they were the most important, but
because they were easy to implement as a proof of concept. That is, the approach does not
underestimate the significance of other potentially critical factors, such as insulin resistance
and prediabetes. However, just it takes into account that, it is not always possible to find
such data of patients, especially data within 5 years. Therefore, if we used all the factors in
the article, the possibility of comparing our work with the real database and estimating
accuracy would be reduced. Thus we used easily available risk factors. Once a proof of
concept has been established using easily available factors, we can expand our database
by incorporating more elements in subsequent phases effortlessly, as our method is easy
to implement. Moreover, if we want, we can generate a database with more than 14 risk
factors, for example, we can add factors such as ethnicity and cardiac disorder. However,
for this we should use other survey with more statistical information.
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First, the number of patients in each age group was determined. The average age of
the patients, standard deviation, and age limits are given for each group. Patient age was
calculated using the following formula:

F(x) =
1√
2π

∫ x2

x1

e−t2/2dt (1)

where x1 and x2 are the age boundaries for each group at t-time in the year. We used the
following approach to generate the remaining data. The hazard ratios were calculated for
each parameter. For incident diabetes associated with risk factors and risk scores according
to age group, hazard ratios (HRs) and 95% confidence intervals (Cis) were calculated using
Cox proportional hazards models. It is known that the hazard ratio is determined by the
following formula:

HR =

(
Od
Ed

)
Oh
Eh

(2)

where Od is the observed number of events in the group of diabetes, Oh is the observed
number of events in the group of healthy people, Ed is the expected number of events
in the group of diabetes, and Eh is the expected number of events in the healthy group.
Formula (2) was used to arrange the statistical values into groups. It is important to say
that, from the beginning, we divided the patients’ data in each age group into 2 subgroups:
those who developed diabetes within 5 years and those who did not develop diabetes
within 5 years/healthy patients. This study aimed to prevent changes in the statistical
values of the dataset. Next, we recorded the values in each subgroup based on Formula (2),
using the ratio given in the statistics for diabetic and healthy people.

Although in these statistics, the numbers of men and women were given for each age
group, they were adjusted for gender. In other words, the significance of gender has not yet
been studied. When we analyzed other studies on the importance of gender, we ascertained
that the relationship between diabetes and gender was still under investigation. The
risk of developing diabetes among women and men depends on nationality and age [20].
Although it is more common among men in the US, it is also more common among women
in East Asian countries. For this reason, we did not use the HR formula to develop the
gender data but directly developed the data based on the numbers. As we divided the age
group into subgroups and information on the proportion of women and men for subgroups
was not given, we also kept the age group proportion within the subgroups.

In addition, it is important to note that all of our data were in the form of zero or one,
except for age. Information about the age of the participants was in the range of 40–100.
Age was divided by 100 to normalize them to other data.

4. Shuffling the Data
4.1. Primary and Secondary Shuffling

When the synthetic data were generated based on statistics, it was observed that the
data were unevenly distributed. If this database is fed into a loop consisting of a neural
network and a special shuffle function, it is possible to develop a database with the desired
form. Therefore, primary shuffling was performed before feeding into the neural network.
This step includes two shuffling methods: primary and secondary. As the primary shuffling
method, we used the Fisher–Yates shuffling method; as the secondary shuffling method,
we used a new simple shuffling method. Because the dataset consists mainly of zeroes
and ones, shuffling using the Fisher–Yates method does not produce the expected result.
Therefore, in addition to the Fisher–Yates shuffle method, we used a secondary shuffling
method. This secondary shuffle method operates according to Formulas (3) and (4):

a[i] = a[semilength− i] (3)
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a[semilength] = a[i] (4)

4.2. Main Shuffling Algorithm

The main shuffling process begins after the primary and secondary shuffling pro-
cesses. It is worth noting that while the primary and secondary shuffling processes are
accomplished only once, the main shuffling process is accomplished in every cycle.

The input data of the function are subgroup data, and their main parameters are the
percentage (P parameter) and starting point (B parameter). Based on these parameters, the
function shuffles the data within a specific interval of the incoming subgroup database.
More precisely, the starting point of the part to be shuffled was determined by parameter
B, and its ending point was determined by parameter P. Parameter P determines the
percentage of the length of the data to be shuffled. Each time a database is trained and
evaluated in a neural network, its value is modified by a special function depending on the
accuracy of the network. We initially set these two parameters to 0 and 0.1. This special
function is similar to that of the Adam optimizer with slight modifications and is defined
by the following formula:

vt = β1 ∗ vt−1 − (1− β1) ∗ gt (5)

st = β2 ∗ st−1 − (1− β2) ∗ g2
t (6)

∆ωt =

∣∣∣∣η vt√
st + ε

∗ gt

∣∣∣∣ (7)

ωt+1 = ωt + ∆ωt (8)

Here,

η : Initial learning rat
gt : Gradient at time t along ωj

vt : Exponential average of gradients along ωj

st : Exponential average of squares of gradients along ωj

β1β2 : Hyperparameters

We gave the following values to the hyperparameters: Initial Learning Rate = 1,
β1 = 0.95, β2 = 0.99, ε = 0.0001. The coefficient B is increased by 0.12 after each cycle. If the
value of coefficient B exceeds 1, the operation B = B− 1 will be performed. If the endpoint
exceeds the length of the array, the value of coefficient B is set to zero.

After the start and end points of the shuffling were determined, the numbers in
between were shuffled using the main shuffle function. Let the data be expressed in the

form of matrix A where A =

∣∣∣∣∣∣∣∣
a11 a21 . . . a81
a12 a22 . . . a81
. . . . . . . . . . . .
a1i a2i . . . a8i

∣∣∣∣∣∣∣∣. All elements of the array, except for the

first, were 0 or 1. The last row shows the diagnostic values; therefore, the main shuffle
function is only performed on columns 2–7 for each column separately. The values in the
first column were shuffled according to the French–Yates algorithm in a given interval. The
main shuffling function is defined as follows:

aout(j, k) =

∣∣∣∣∣∣∣∣
1
1

. . .
1

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
aj1
aj1
. . .
ajk

∣∣∣∣∣∣∣∣ (9)
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Here, aj,k—is the jth column of the subgroup data obtained in the given interval. This
function converts 0 s to 1 s and 1 s to 0 sin in the given interval. However, the statistical
distribution of the database was distorted. To avoid this, the number of 1 s in a given
interval is compared with the previous interval as follows:

∆a(j, m) = ∑k
m=0 a0(j, m)−∑k

m=0 aout(j, m) (10)

N = |∆a(j, m)|

If ∆a(j, m) is greater than 0, this means there are N more 0 s converted to 1 s than 1 s
converted to 0 s. Therefore, the next interval is selected from the endpoint to the end of
the array, and the N interval within this interval is converted to zero. If ∆a(j, m) is less
than zero, the reverse operation will be carried out, that is, N zeroes within this interval are
converted to one. Therefore, the statistical distribution of the database was preserved.

4.3. Training for Loop

The database contained information on two categories of patients: 87,610 patients
were followed up and remained healthy; 6171 patients developed diabetes during this time.
As shown, the dataset was highly unbalanced. Typically, neural networks are likely to
overfit when trained using such databases. Therefore, we multiplied the data for a small
number of classes several times. Considering that the data are not real and unique and will
be shuffled several times in the next step, we simply added the same data several times.
After increasing the data, the number of people with diabetes was 84,692. Subsequently,
the data were used for the next step. It is worth mentioning once again that the data that
passed through the first step were not in the form of a single dataset but in the form of
separate subgroups. The number of data points in these subgroups is presented in Table 1.

Table 1. Information about subgroup data.

Age Group,
Years 40 to <55 55 to <65 65 to <75 ≥75

Subgroup
Did not
develop
diabetes

Developed
diabetes

Did not
develop
diabetes

Developed
diabetes

Did not
develop
diabetes

Developed
diabetes

Did not
develop
diabetes

Developed
diabetes

Number of
patients 42,825 2306 31,355 2478 11,570 1176 1851 203

Number of
male patients 12,505 673 10,786 852 4766 484 795 87

Number of
female patients 30,320 1633 20,569 1626 6804 692 1056 116

The second step consists of two processes: shuffling the data and training the neural
network on the prepared data. A special main function is used for shuffling.

After shuffling, the subgroup data were combined into a single database and divided
by a ratio of 8:2 into training and test databases. The training dataset was then transferred
to the NN, which comprised 16, 64, and 32 consecutive hidden layers. After each linear
layer, a ReLU activation layer was formed. The neural network was trained over five
epochs and evaluated using the test dataset. These two processes (shuffling and training)
were repeated until the desired results were achieved.

5. Results and Discussion

In each cycle, the neural network was trained for five epochs, and its performance was
assessed using a test database. The test accuracy was sent to the optimizer to determine the
percentage and starting points. When the new values of the percentage and starting point
are determined, the cycle starts again, and the data are reshuffled and transmitted to the
NN. This cycle was repeated 100 times. The training, validation, and test accuracies at the
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end of each cycle are shown in Figure 2. A database was saved after each cycle. Among
these, the one with the highest number of test results was selected. When training NN with
this dataset, the training accuracy was 100%, and the test accuracy was 94.4%.
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As mentioned above, at the end of each cycle, the P- and B-coefficient values change
according to (7). Their values over 100 cycles are shown in Figure 3.
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5.1. Evaluation of the Method

Various methods have been proposed to evaluate synthetic databases. However, because
the proposed method is completely synthetic, these evaluation methods are unsuitable for
evaluating our method. The following methods were used to evaluate the method.

First, the database that exhibited the best results when the neural network that was
trained was selected. Subsequently, the selected database was trained in a completely new
neural network to evaluate the real value of the dataset, as this dataset was intended to
train the AI algorithms. The network architecture is presented in Table 2, and the training
process is illustrated in Figure 4. The database was split randomly with random state 46, in
an 8:2 portion, into the training and test sets.

Table 2. Layers parameters of neural network.

# Layer Name Properties
1 Input layer 8 nodes
2 Hidden layer 16 nodes
3 Dropout layer 0.2 coefficient
4 ReLu
5 Hidden layer 64 nodes
6 Dropout layer 0.2 coefficient
7 ReLu
8 Hidden layer 32 nodes
9 Dropout layer 0.2 coefficient
10 ReLu
11 Hidden layer 16 nodes
12 ReLu
13 Hidden layer 1 nodes
14 Output (Sigmoid) layer
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As shown in Figure 3, the test accuracy reached 90% at the 10th epoch; while at the
20th, it reached 94%; and after that, it remained approximately the same. We extracted the
dataset that showed the highest accuracy (94.4%) in these cycles and uploaded it to Kaggle
for public use.

Second, they were plotted in the form of a histogram to determine the distribution of
the data in the database. For this purpose, we divided the data into two groups: those who
developed diabetes within five years and those who remained healthy. We then obtained
two matrices of the forms (84,692, 8) and (87,598, 8). The first seven columns of these
matrices show the disease risk factors and the last column shows the diagnosis. We initially
added seven columns, separated the resulting columns by values, and represented them
in the form of 100 histograms (Figure 4). For a comparative study of the data distribution,
histograms of the dataset before shuffling and the dataset with the highest results during
shuffling are shown in Figure 5.
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As can be seen from the above, the data of different classes in the synthetic dataset
generated by the proposed method were well distinguished from each other, and because of
this, it was possible to achieve high accuracy when using them to train the neural network.
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5.2. Discussion

In this study, we propose a method for generating a synthetic dataset without complex
mathematical operations or an initial database. This technique is superior to the previously
proposed strategies in numerous respects.

Firstly, most works [22,23] that generated a fully synthetic database calculated the
desired statistical distribution from the real database and then used it to generate synthetic
data. However, it is important to note that using real datasets in research can be challenging
due to privacy concerns and legal restrictions. Accessing and utilizing such datasets may
require permissions and agreements that are not always easy to obtain. Therefore, having a
method that does not rely on real datasets would greatly simplify the process and make it
more accessible for researchers [29–32].

While our proposed method utilizes only the given statistics of the desired database, by
using the proposed method with these given statistics, we can generate synthetic data that
closely resembles the original dataset without compromising privacy or legal constraints.

Moreover, this approach allows for greater control over the generated data. Re-
searchers can manipulate and experiment with different scenarios by adjusting the statisti-
cal parameters provided. This flexibility enables them to explore various possibilities and
test hypotheses without being limited by an existing dataset.

Secondly, although the work in [24] has several advantages and is a highly reliable
method, it uses a complicated method. In order to create the dataset, medical conclusions
and guidelines were used. While this ensures accuracy and credibility, extracting the correct
and necessary medical instructions and rules can be both time consuming and expensive.
One of the main challenges in using medical conclusions and guidelines is their sheer
volume. The vast amount of information available makes it difficult to sift through and
extract only what is relevant for creating the dataset. This requires extensive research and
analysis, which can be a time-consuming process.

Moreover, obtaining accurate medical instructions and rules often involves consulting
experts in the field. These experts may charge high fees for their services, making it ex-
pensive to gather the necessary information for creating the dataset. Additionally, medical
knowledge is constantly evolving with new research findings and updated guidelines
being published regularly. This means that maintaining an up-to-date dataset requires
continuous effort and investment.

However, our proposed method offers the possibility of generating databases in a
semi-automatic way with minimal human intervention, and most importantly, without
the involvement of medical professionals. Thus, it can significantly reduce the time and
effort required. Moreover, eliminating the involvement of medical professionals further
streamlines the process. Additionally, cost plays a crucial role in any project implementation.
Traditional methods involving medical professionals can be expensive due to their expertise
and time commitment. However, with our semi-automated approach, costs are significantly
reduced as there is no need for specialized personnel or extensive training. Furthermore,
speed is a critical factor in today’s fast-paced world. Our proposed method ensures the
rapid generation of databases. This enables researchers and programmers to access up-to-
date databases promptly for analysis and decision-making purposes.

Another advantage is that, in contrast to [25], we used a rule-based shuffle method instead
of a random shuffle method to achieve this goal; this helped us achieve our goals faster.

Now, if we turn to the issue of evaluating the quality of the developed method, it is
known that today various methods have been developed for the evaluation of synthetic
data. However, some are designed to evaluate synthetic images [33], others to determine
the level of security [34], and others to evaluate the difference between the distributions
of synthetic and real images [35]. However, none of the above methods were suitable for
evaluating the proposed method. As we do not have a real database, there is no privacy
issue, and simultaneously, there is no possibility of comparing the statistical distribution
with that of the real dataset. In such cases, certain authors have suggested the use of specific
evaluation methods. For example, a unique evaluation method was used in the work [24],
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and some statistical data in the database were compared with those of other real statistical
information. Similarly, we used a unique approach to evaluate the results of our study. Our
goal was to develop a database for training disease classification and prediction algorithms
with two main goals. The first was to preserve the statistical distribution of the survey used
to construct the dataset, and the second was to ensure that the synthetic data belonging to
two different classes were maximally different from each other. In our method, actions at
all stages of the proposed method assume the preservation of the statistical distribution
of the survey; that is, the generated synthetic dataset is identical to the statistical data of
the survey. We expressed the data distribution as a histogram to evaluate the dissimilarity
between different classes. As shown in Figure 5, the data in the created database are
satisfactorily separated.

One major limitation of the proposed method is relying solely on one survey. Different
surveys often focus on different aspects or variables related to a particular topic. Com-
bining these various perspectives allows for a more comprehensive analysis and provides
researchers with a broader understanding of the subject matter. Additionally, incorporating
data from multiple surveys enhances the generalizability of findings. It helps in identifying
patterns and trends across diverse populations or contexts. This broader scope strengthens
the validity and reliability of the database. To address this limitation, future research should
aim to modify this method to integrate data from multiple surveys seamlessly.

6. Future Work

Currently, much work is being conducted to extract medically important characteristics
from existing datasets [36], the main goal of which is to define and evaluate the main risk
factors that cause the disease and to use them in disease prediction or diagnosis. By contrast,
our proposed method aims to generate a dataset based on given risk factors. In the future,
by analyzing the dependence of risk factors and information in the dataset using these
two methods, it will be possible to develop an algorithm that determines the relationship
between them, which will be an important tool for diagnosis [37–43].

7. Conclusions

In this study, with the help of a special shuffle operator, a synthetic dataset was generated
that fully represented the statistical data of the survey conducted by [44] over five years. This
database contains two classes: data on patients who developed type 2 diabetes and data on
those who remained healthy during a 5-year follow-up. This generated dataset can be used to
train AI algorithms designed to predict type 2 diabetes five years in advance. To assess the
suitability of the database for this purpose, a neural network was trained using this dataset,
and a test accuracy of 94.4% was achieved. From the above, it can be concluded that the
accuracy, reliability, and simplicity of the proposed method are important.

While relying on one survey is the limitation of the method, considering information
from different surveys is crucial. Future research should focus on creating methods that
can encounter several research/survey papers’ information to enhance accuracy, compre-
hensiveness, generalizability, and reliability of the generated database. In conclusion, the
proposed easy and semi-automotive method offers a solution by utilizing a neural network
and special shuffling function. This approach not only reduces the difficulty associated
with generating synthetic medical data but also provides satisfactory results in a more
efficient manner.
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