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Abstract: In recent years, neuro-biomechanical enhancement techniques, such as transcranial direct
current stimulation (tDCS), have been widely used to improve human physical performance, in-
cluding foot biomechanical characteristics. This review aims to summarize research on the effects
of tDCS on foot biomechanics and its clinical applications, and further analyze the underlying er-
gogenic mechanisms of tDCS. This review was performed for relevant papers until July 2023 in the
following databases: Web of Science, PubMed, and EBSCO. The findings demonstrated that tDCS
can improve foot biomechanical characteristics in healthy adults, including proprioception, muscle
strength, reaction time, and joint range of motion. Additionally, tDCS can be effectively applied
in the field of foot sports medicine; in particular, it can be combined with functional training to
effectively improve foot biomechanical performance in individuals with chronic ankle instability
(CAI). The possible mechanism is that tDCS may excite specific task-related neurons and regulate
multiple neurons within the system, ultimately affecting foot biomechanical characteristics. However,
the efficacy of tDCS applied to rehabilitate common musculoskeletal injuries (e.g., CAI and plantar
fasciitis) still needs to be confirmed using a larger sample size. Future research should use multimodal
neuroimaging technology to explore the intrinsic ergogenic mechanism of tDCS.

Keywords: neuro-biomechanical enhancement techniques; foot biomechanical characteristics; foot
performance; ergogenic mechanism

1. Introduction

The foot is a complex structure used in daily activities, such as standing, walking,
running, and jumping [1]. The biomechanical function of the foot plays an important role
in functional performance, growth, and development, fall risk, and foot disease prevention
and treatment [2]. As a structure with direct contact with the ground [3], the foot is one
of the most vulnerable parts of the body; the incidence of foot injuries accounts for about
31% [4]. More than one million people are functionally impaired due to foot injuries (flat
feet, ankle instability, Achilles tendonitis, plantar fasciitis, etc.) every year, resulting in
approximately 1.2 billion in direct health care costs in the United States [5]. Foot injuries
are caused by a number of factors, including impairment of biomechanical function [6].
Therefore, strategies to strengthen and restore biomechanical function have become a
research hotspot in the fields of sports medicine and rehabilitation.

The latest biomechanical paradigm regards the human foot as a foot core system, which
includes active, passive, and neural subsystems [7]. In general, the foot neural subsystem
(sensory receptors) collects information (such as force) and transmits it to the cerebral cortex
for integration and processing with visual/auditory information to form action instructions,
which are fed back to the foot active subsystem (muscles) and ultimately complete a series
of motion controls [8,9]. The regulatory function of the central nervous system, which is the
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core of information integration and processing, is prominent in the foot musculoskeletal
system, especially after musculoskeletal injury [10]. Accordingly, musculoskeletal injury
is accompanied by adaptive changes in the sensorimotor cortex (SM1) [11]. Additionally,
the dyslexic children showed a flat-footed trend and an unstable balance compared with
healthy subjects, indicating that cerebellar dysfunction in dyslexia limits the extent of motor
control and coordination [12]. Although conventional foot strength training can enhance
foot biomechanical function and related physical performance, it cannot effectively regulate
the neural circuitry responsible for the neuromechanical regulation of the foot.

In 2016 and 2017, Nature reported that transcranial direct current stimulation (tDCS)
can enhance the connection between the cerebral cortex and neuromuscular system; this
process, which is called “brain doping” technology, enables athletes to ultimately improve
the jumping force by 70% and their coordination by 80% [13,14]. Since then, tDCS has
been applied to enhance human memory, learning, perception, and other abilities and
preliminarily introduced into the field of biomechanics to explore potential effects on
biomechanical function. Applying tDCS over M1, which controls the foot, is challenging
because the feet are the furthest body part from the brain. Limited evidence has shown
that tDCS can directly regulate the neural excitability of the cerebral cortex to improve foot
biomechanical function and prevent foot injuries [15,16]. As such, the ergogenic effect and
clinical application of tDCS in foot biomechanics should be systematically summarized.

This study aimed to summarize research on the effects of tDCS on foot biomechanics
and its clinical applications and discuss the potential underlying mechanisms for improving
foot biomechanical performance. Results would provide a basis to optimize the implemen-
tation of tDCS, enhance the biomechanical characteristics of the foot, and supply theoretical
evidence for preventing injuries.

2. Methods
2.1. Search Strategy

This narrative review was performed for relevant papers from the first data available
until July 2023 in the following databases: Web of Science, PubMed, and EBSCO. The search
was performed using the terms “foot biomechanics”, “biomechanical characteristics”,
“foot biomechanical characteristics”, “foot biomechanical function”, “toe biomechanics”,
“ankle biomechanics”, “foot”, “toe”, and “ankle” which were separately combined with
“transcranial direct current stimulation” or “tDCS” in all databases. Boolean operators
“AND” and “OR” were used to combine keywords according to the recommendations of
each database. All results found in the search were imported into the EndNote reference
manager (EndNote X9, Stanford, CA, USA) to gather together and automatically find
duplicate records.

2.2. Eligibility Criteria and Article Selection

The inclusion criteria were as follows. (1) The participants were healthy adults or
patients with lower limb musculoskeletal injury. (2) Intervention was tDCS or combined
interventions, regardless of stimulation types, stimulus intensity, duration, and electrode
location. (3) The primary outcomes were biomechanical characteristics, including strength,
perception, flexibility, or other related variables of the foot and ankle. Animal studies and
non-English studies were excluded. Reviews, case reports, letters, opinions, and conference
abstracts were also excluded.

A total of 203 related articles were found in the databases (58 in PubMed, 53 in
EBSCO, and 92 in Web of Science). Only sixteen articles were included for review after
removing duplicate articles and excluding irrelevant studies by reading the titles, abstracts,
and full texts. As shown in Table 1, a total of 368 participants, consisting of 247 males
and 121 females, were recruited with an age of between 18 and 68.8 years. Thirteen
studies recruited healthy participants and three studies included patients with lower limb
musculoskeletal injury (chronic ankle instability [CAI] and plantar fasciitis).
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Table 1. Main characteristics of the included studies.

Study Participants, Gender, Age (Years) Anodal/Cathodal
Location

Electrode
Size (cm2)

Current
(mA)

Session,
Duration (min)

Main Outcomes of
Biomechanical
Characteristics

Zhou, et al., 2018 [17] Healthy, 20 M, 61 ± 4 A: Left C3
R: Right supraorbital region 35 2.0 One session, 20 ↓Standing vibratory threshold of foot sole

Yamamoto, et al., 2020 [18] Healthy, 10 M, 22–34 C: Left C3
R: Right supraorbital region 35 1.5 One session, 10 ↓Tactile threshold of distal pulp of the hallux

Xiao, et al., 2020 [19] Healthy, 14 M, 22.8 ± 1.2 A: Cz
R: C3, C4, Fz, Pz 1 2.0 One session, 20 →Foot flexor strength

→Ankle kinesthesia threshold

Lerma-Lara, et al., 2021 [20] Healthy, 53 M/54 F, tDCS (22 ± 2),
control (23 ± 3)

A: M1
R: Supra-orbital region 35 2.0 One session, 20 ↑Pressure pain threshold

↑Electromyographic activity in the lower limb

Xiao, et al., 2022a [21] Healthy, 30 M, tDCS (20.5 ± 1.8),
control (21.3 ± 1.8)

A: Cz
R: C3, C4, Fz, Pz 3.14 2.0 Twelve sessions, 20 ↑Toe flexor strength

↓Ankle eversion kinesthesia threshold

Xiao, et al., 2022b [22] Healthy, 36 M, tDCS (21.9 ± 2.1),
control (23.5 ± 1.5)

A: Cz
R: C3, C4, Fz, Pz 3.14 2.0 Twelve sessions, 20 ↑Metatarsophalangeal joint flexor strength

↓Ankle inversion and eversion kinesthesia thresholds

Xiao, et al., 2023 [23] Healthy, 8 M/8 F, 25.4 ± 1.8 A: Cz
R: C3, C4, Fz, Pz 3.14 2.0 One session, 20 ↑Ankle plantarflexion force control

Tanaka, et al., 2009 [24] Healthy, 8 M/2 F, 20–35 A and C: M1 (“hotspot” of the TA muscle)
R: Right forehead 35 2.0 One session, 10 ↑Toe pinch force

Devanathan, et al., 2016 [25] Healthy, 6 M/8 F 20–32 A: M1 (“hotspot” of the TA muscle)
R: Right supraorbital region 12.5 1.0 One session, 15 ↓Ankle dorsiflexion choice reaction time

Mizuno, et al., 2017 [26] Healthy, 10 M, 25 ± 3 A and C: Cz
R: Center of the forehead 35 2.0 One session, 10 ↑Ankle range of motion

Shah, et al., 2013 [27] Healthy, 5 M/3 F, 18–26

A and C: M1 (‘hotspot’ of the TA muscle),
left cerebellum

R: Right supraorbital region,
left buccinator muscle

8 1.0 One session, 15 ↑Accuracy index of ankle tracking

Sriraman, et al., 2014 [28] Healthy, 4 M/8 F, 20–32 A: M1 (“hotspot” of the TA muscle)
R: Right supraorbital region 8 1.0 One session, 15 ↑Accuracy index of ankle tracking

Zhu, et al., 2023 [29] Healthy, 15 M, 19.47 ± 1.6 A: C3, C4
R: Ipsilateral shoulders 35 2.0 Two sessions, 20

↑Jump height
↓Maximum ankle torque

↓Ankle positive energy and net energy decreased in
the sham condition

Bruce, et al., 2020 [15] CAI, 9 M/17 F, 18–40 A: M1
R: Right forehead 15 1.5 Ten sessions, 18

↑Dynamic balance and muscle activation
↑Functional performance on a side-hop test
↓Global ratings of perceived disablement

Ma, et al., 2022 [16] CAI, 15 M/15 F, 18–30 A: Cz
R: C3, C4, Fz, Pz 3.14 2.0 Twelve sessions, 20 ↓Joint position senses absolute error at 15◦ inversion

↑Y-balance reach distance

Concerto, et al., 2016 [30] Plantar fasciitis, 4 M/6 F, 68.8 ± 3.3
A: C1, C2

R: Supraorbital area contralateral to the
stimulated area

35 2.0 Five consecutive sessions, 20 ↓Pain intensity
↓Foot function index

Notes: A: anodal; C: cathodal; R: reference electrode; M/F: male/female; M1: primary motor cortex; TA: tibialis anterior; tDCS: transcranial direct current stimulation; CAI: chronic ankle
instability; ↓: denotes a decrease; ↑: denotes an increase; →: denotes no significant difference. C1, C2, C3, C4, Fz, Pz, Cz: the electrodes placement of the 10/20 EEG system.
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3. Discussion
3.1. Effects of Conventional Functional Training on Foot Biomechanical Characteristics

Strengthening intrinsic foot muscles is the main method used to enhance the biome-
chanical function of the foot. Interventions for enhancing foot muscle strength include
flexion of the interphalangeal joint and the metatarsophalangeal joint [31], fast plantarflex-
ion strength training [32], towel curl [33], short foot exercise [33,34], strength training
combined with rehabilitation training [35], and neuromuscular electrical stimulation [36].
After at least four weeks of training, the performance of toe flexion and extension im-
proved [37], the maximum autonomous contraction moment of the foot plantar flexor
increased [32], the foot flexor strength increased, and the length of the left and right foot
arches (static standing position) decreased; moreover, the distance of the left and right
single-leg jumps and vertical jump height increased [31]. Participants performed better in
functional balance and stretching tasks after short foot exercises [34]. Participants had a
larger reduction in the movement of the pressure center in non-dominant limbs during
dynamic balance tests than during towel curling [33].

Minimal shoe training is designed to simulate barefoot running training, which can
improve intrinsic foot muscles, such as the strength and volume of the flexor digitorum
brevis [38]. Minimal shoe training increases the intrinsic foot muscle strength by reducing
the mechanical support for the arch [38,39]. Miller et al. [38] randomly divided 33 partici-
pants into a minimal shoe group and a traditional running shoe group and subjected them
to 12 weeks of running training. The volume of flexor digitorum brevis muscle increased
by 11% and 21% in both groups, respectively. The minimal shoe group had significant
increases in the area and volume of the abductor digiti minimi (18% and 22%, respectively)
as well as longitudinal arch stiffness (60%). After six months of training, the leg and foot
muscle area of the runners significantly increased [40].

Specific activities (e.g., aerobic dance, ballet, and gymnastics) can enhance foot muscle
strength [41]. After 12 weeks of aerobic dance training, the balance control and plantar
foot pressure of the participants significantly improved. In particular, the leg muscle
strength and balance control were significantly higher on a small trampoline than on
a hard wood surface. Similar to aerobic dance, ballet, and gymnastics training could
improve foot biomechanical characteristics, such as foot muscle strength [42,43]. Hence,
the above-mentioned interventions can enhance the biomechanical function of the foot by
strengthening its muscle strength.

Researchers have increasingly focused on foot core exercise (FCE), which is a set of
strength training exercises designed to improve the biomechanical contribution of the foot
by strengthening the intrinsic/extrinsic foot muscles. FCE and minimal shoe training can
effectively increase the volume and strength of the intrinsic foot muscles [44]. Conven-
tional functional training or exercise ignores the contribution of foot sensory function (the
neural subsystem) and fails to affect the neural circuitry responsible for the biomechanical
regulation of the foot and ankle.

3.2. Effects of tDCS on Foot Biomechanical Characteristics

Non-invasive brain stimulation regulates brain activity by placing electrodes (or mag-
netic coils) on the outside of the brain without breaking the skin or placing them inside the
brain. tDCS is one of the most widely used techniques. It can modulate cortical excitability
by delivering low-amplitude current flow between two or more electrodes placed on the
scalp, thereby altering the resting membrane potential to induce depolarization or hyper-
polarization and modifying the excitability and activity of spontaneous neurons [45]. The
effects of tDCS-induced changes in membrane polarity depend on current intensity, which
is commonly set to 1−2 mA [46]. Anodal tDCS can induce neuronal excitation, whereas
cathodal tDCS inhibits it. In this context, the anode electrode serves as the entry point
for positive current into the body, establishing a positive voltage relative to the cathode
electrode. The cathode electrode acts as the exit point for positive current from the body. In
2000, Nitsche et al. [45] found that the excitability of the motor cortex can be regulated by
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applying a weak direct current through the scalp (increased by 40%); the excitability lasted
over several minutes after the current stimulation. This study is the first to systematically
confirm that tDCS could be used as an effective non-invasive tool for regulating brain
excitability. A large number of studies have confirmed the safety and effectiveness of tDCS
and applied it to rehabilitation, sports training, and other fields. The safety of tDCS has
been verified through animal experiments and clinical studies. Many researchers explored
the potential of tDCS in improving physical performance and reported that it can delay
fatigue, increase muscle strength, promote motor skill learning, and induce long-term
improvement effects [47,48]. tDCS can also improve foot biomechanical characteristics,
such as the vibrotactile threshold of the foot sole [17], tactile threshold [18], toe flexor
strength, and toe pinch force [24].

An earlier study reported that a single session of 2 mA tDCS applied over the pri-
mary motor cortex (M1) for 10 minutes significantly increased the toe pinch force [24].
Cathodal tDCS with the same stimulation parameters improved the range of motion
of dorsiflexion [26]. Single-session high-definition tDCS (HD-tDCS) also improved the
flexor strength of the first toe, passive ankle kinesthesia, and static standing balance
performance [19]. Furthermore, two sessions of bilateral tDCS were an effective method
for improving jump height by modulating ankle and knee net energy [29]. In addition,
4 weeks of HD-tDCS and FCE induced distinct benefits on foot sensorimotor function
and standing postural control performance in healthy young adults [22]. These findings
suggest that tDCS, to some extent, can serve as an effective intervention for enhancing
foot movement performance. However, previous studies only examined the effects of
intervention targeting peripheral or central elements on the sensorimotor function of the
foot. Interventions simultaneously targeting peripheral and central elements could induce
greater benefits than traditional “single-target” interventions [49]. Therefore, a novel in-
tervention targeting the peripheral and central elements of sensorimotor regulation was
designed by combining FCE and tDCS (i.e., combined intervention). We found that 4 weeks
of the combined intervention effectively enhanced the biomechanical function of the foot
(i.e., toe flexor strength and passive ankle kinesthesia) [21].

Compared with conventional functional training, tDCS demonstrates advantages in
enhancing foot motor performance and has the potential to promote sensory function. For
example, Zhou et al. [17] found that 20 min of single-session anodal tDCS significantly
reduced the vibrotactile threshold of the foot sole in older adults under weight-bearing
conditions. Cathodal tDCS applied over the left M1 area decreased the tactile threshold of
the left center of the distal pulp of the hallux [18]. Additionally, a single session of tDCS
in isolation appears to produce immediate effects on healthy participants’ sensorimotor
function [20]. To our knowledge, foot sensorimotor function, especially the ability to
precisely regulate muscle force, plays an important role in maintaining balance when
standing, walking, and running [50]. Appropriate force control of the ankle requires the
proper functioning of baroreceptors and the regulation of cortical networks of the brain [51].
A single session of HD-tDCS applied over SM1 enhanced force control by modulating the
beta-band activity of the sensorimotor cortex [23]. Moreover, tDCS can modulate cortical
excitability to influence the neuromuscular reflex, eventually altering the reaction time for
dorsiflexion [25]. Shah et al. [27] and Sriraman et al. [28] investigated the effects of tDCS on
more complex tasks involving plantarflexion−dorsiflexion control. The former found that
cathodal or anodal tDCS targeted the cerebellum; anodal tDCS targeting the M1 improved
the accuracy of plantarflexion−dorsiflexion visuomotor tasks. The latter also improved
the visuomotor tasks induced by anodal tDCS targeting M1. More importantly, in terms
of improving sensory function, HD-tDCS demonstrated more significant improvements
in foot sensory function than FCE, particularly in significantly reducing the kinesthetic
threshold of inversion and eversion [22].



Bioengineering 2023, 10, 1029 6 of 10

3.3. Clinical Applications of tDCS in Foot Biomechanics

Traditional rehabilitation training can effectively restore functional impairments in
patients with musculoskeletal injuries. However, recent neurophysiological evidence sug-
gested that changes in the plasticity of the central nervous system were due to sensory
dysfunction, the bilateral nature of joint dysfunction, and prolonged altered motor control
caused by musculoskeletal injury [11]. Many studies have begun to focus on adaptive
changes in the cerebral cortex after ankle and knee ligament injuries; such changes include
a short-term increase in afferent nerve activity caused by pain and swelling after ligament
injury and long-term impairment of proprioceptive sensations due to the loss of periph-
eral afferent information [52]. These dysfunctions result in the reorganization of cortical
functional areas in the brain, thereby reducing the ability of the central nervous system to
respond promptly to unexpected events. tDCS can help change the excitability pattern of
dysfunction in the brain, revert the control ability of the central nervous system by inducing
neuronal plasticity, and effectively improve the biomechanical function of the foot [53], as
well as further bring a benefit to postural control.

A case report found that 5 consecutive days of tDCS (2 mA, 20 min) decreased the
pain intensity and pain-related anxiety in a diabetic patient with plantar fasciitis [54].
After recruiting a sufficient number of participants, a study found that the stimulation
protocol improved the foot function index [30]. Relevant animal experiments also partially
confirmed the findings. Researchers established a chronic pain model by injecting a drug
into the ankle joint of the rat and found that tDCS effectively restored mechanical allodynia
and thermal hyperalgesia and its effects lasted two weeks [55].

Two studies focused on the effect of tDCS on the rehabilitation of patients with chronic
ankle instability (CAI) by using a combined intervention model. Specifically, 4 weeks
of anodal tDCS (2 mA, 20 min) combined with eccentric strength training improved the
dynamic balance stability, ankle functional performance, and perceived disablement in
individuals with CAI [15]. Another study used HD-tDCS (anode position: Cz, 2 mA,
20 min) combined with short-foot exercise for a 4-week intervention. The dynamic balance
performance and proprioception were improved after intervention in individuals with
CAI [16]. These randomized controlled studies provided evidence that tDCS can enhance
foot biomechanical characteristics in individuals with CAI. However, further studies are
needed to explore the effectiveness of tDCS and investigate its neuroregulatory mechanism
in improving the biomechanical characteristics of the foot in healthy and injured people [16].

3.4. Possible Mechanisms of Foot Biomechanical Responses Induced by tDCS

The underlying mechanism of functional performance improvement induced by tDCS
remains unclear but is mainly concentrated in the following aspects: when tDCS starts,
neurons are exposed to an external electric field for an instant; the external electric field
causes ion displacement inside the neuron, changing the internal charge distribution and
cell membrane potential and, eventually, inducing membrane depolarization or hyper-
polarization [56,57]. In the initial stage of tDCS (about 3 min), the direct effect of the
electric field formed on blood vessels and neural networks is dominated by hemodynamic
responses [58], followed by electric field-induced responses in neurovascular coupling [59].
In the middle stage of tDCS, the aftereffects of neurons lead to changes in cortical spinal
excitability and hemodynamic responses [57]. Finally, the aftereffects of the electric field
may continue to exist for several minutes or even hours after stimulation. The plasticity of
synaptic connections may be reformed and enhanced [60], and repeated stimulation may
produce cumulative effects [61].

tDCS can enhance cortical excitability, which potentially strengthens synaptic con-
nections between activated neural structures and increases the synchronization of motor
unit firing, thereby potentially improving motor performance [62,63]. However, applying
tDCS over M1 is challenging because regions that control the foot biomechanical function
are located in the deeper longitudinal fissures of the central sulci gyri [64]. Nonetheless,
some studies indicated that tDCS can effectively modulate the cortical excitability of the
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lower limb areas, as proved by an increase in the motor-evoked potentials of the extrinsic
foot muscles, such as the tibialis anterior muscle [65]. tDCS also modulated corticospinal
excitability in the lower limb region of the motor cortex and enhanced foot biomechanical
performance [24,27]. Our recent findings suggested that participants exhibited a greater
average percent decrease in beta task-related power spectral density (i.e., greater cortical
activation) following a greater percent reduction in the root mean square of force control
task (i.e., greater improvement in ankle force control task) after application of HD-tDCS;
hence, HD-tDCS could modulate beta-band brain activity to improve ankle force control
task [23]. Regarding improvements in foot neuro-biomechanical function, existing research
suggests that tDCS primarily enhances excitability in the primary sensory cortex (S1). As
S1 is located adjacent to the M1, tDCS applied over M1 can also partially enhance sensory
function [17]. Previous studies confirmed that tDCS can augment activation in the left
posterior central parafollicular lobule, including S1, thereby modulating and enhancing
cortical responses to foot stimulation in healthy adults [66].

Cathodal tDCS can improve foot tactile perception and ankle range of motion [18,26].
Although cathodal tDCS can reduce cortical excitability, its application to the motor cortex
on one side can increase the excitability of the opposite side cortex [67] and improve the
biomechanical performance of the ipsilateral foot [18]. The decrease in cortical excitability
caused by cathodal tDCS may reduce pain sensation and enhance the ankle joint range of
motion [26]. Based on current findings, anodal and cathodal tDCS can regulate cortical
excitability and ultimately affect foot neuro-biomechanical characteristics. Some studies
found that physical performance improved without significant changes in cortical spinal
excitability [68,69]. Therefore, the mechanism underlying the ergogenic effect of tDCS
should be interpreted with caution.

In summary, in the neural-muscular control pathway of the foot, the central cortical
control region, along with multiple secondary neural centers, possibly mediate and inte-
grate the effects of tDCS. These interconnected neural control centers operate at various
levels. Consequently, tDCS may excite specific task-related neurons and regulate multiple
neurons within the system (including task-related brain networks and secondary neural
centers), thereby affecting foot biomechanical characteristics [70].

4. Summary

The concept of the foot core system provided a new paradigm for understanding
the complex structure and biomechanical characteristics of the foot and its subsystems
to provide stability and flexibility and cope with changing foot demands. tDCS has a
positive effect on improving foot biomechanical characteristics, including proprioception,
muscle strength, reaction time, and joint range of motion. tDCS can be effectively applied
in the field of foot and ankle sports medicine and combined with functional training
to effectively improve foot biomechanical performance in individuals with CAI. Hence,
tDCS can effectively improve foot biomechanical characteristics and serve as an effective
rehabilitation method for patients with foot and ankle injuries. The ideal intervention
protocol in the future should enhance the ability of the central nervous system to regulate
foot biomechanical function while strengthening intrinsic and extrinsic muscle strength.

The efficacy of tDCS applied in the rehabilitation of common musculoskeletal injuries
(e.g., CAI and plantar fasciitis) still needs to be confirmed with a larger sample size. Pre-
vious studies provided evidence about the possible mechanisms of tDCS; that is, tDCS
may excite specific task-related neurons and regulate multiple neurons within the system,
ultimately affecting foot biomechanical characteristics. However, the underlying mecha-
nisms of tDCS in improving foot biomechanical performance remain unclear, especially for
different specific tasks. Future research should use multimodal neuroimaging technology
to explore the intrinsic ergogenic mechanism of tDCS.
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