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Abstract: Bone analyses using mid-infrared spectroscopy are gaining popularity, especially with
handheld spectrometers that enable on-site testing as long as the data quality meets standards. In
order to diagnose Staphylococcus epidermidis in human bone grafts, this study was carried out to
compare the effectiveness of the Agilent 4300 Handheld Fourier-transform infrared with the Perkin
Elmer Spectrum 100 attenuated-total-reflectance infrared spectroscopy benchtop instrument. The
study analyzed 40 non-infected and 10 infected human bone samples with Staphylococcus epidermidis,
collecting reflectance data between 650 cm−1 and 4000 cm−1, with a spectral resolution of 2 cm−1

(Agilent 4300 Handheld) and 0.5 cm−1 (Perkin Elmer Spectrum 100). The acquired spectral informa-
tion was used for spectral and unsupervised classification, such as a principal component analysis.
Both methods yielded significant results when using the recommended settings and data analysis
strategies, detecting a loss in bone quality due to the infection. MIR spectroscopy provides a valuable
diagnostic tool when there is a tissue shortage and time is of the essence. However, it is essential to
conduct further research with larger sample sizes to verify its pros and cons thoroughly.

Keywords: bone quality; handheld FTIR spectrometer; attenuated total reflectance spectroscopy;
principal component analyses; Staphylococcus epidermidis

1. Introduction

Bone represents the second most commonly transplanted tissue behind blood [1]. In
orthopedic surgery, the application of human bone allografts is prevalent in promoting
spinal fusion and reconstructing bone defects resulting from trauma, tumors, or revision
arthroplasty [2–8]. Removing loose implants and adjacent fibro cellular membranes is often
necessary in the context of hip arthroplasty revision procedures. To address any resulting
bone loss, particulate bone grafts are commonly employed as a compensatory measure. In
order to induce bone remodeling and prevent early implant subsidence, the morselized
allograft must be compacted [6]. Upon attaining initial stability via impaction procedures,
the graft may be assimilated into the host skeleton through revascularization [9–12]. Ac-
cording to soil mechanics, firmly compacted aggregates should have well-graded particle
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sizes and be rigidly contained [13]. Bone grafts can be employed using tissue from the
same patient (autografts) or the same species (allografts) [14]. These grafts are typically
harvested during surgical procedures and preserved at −80 ◦C for up to five years. Before
use, bone banks conduct rigorous screening of the graft material to ensure the recipient’s
safety from potential infectious pathogens [6]. Moreover, legislative standards for quality
controls addressing contamination and communicable illnesses have been created. It is
highly recommended that bone transplants be washed and treated with antibiotics before
being stored at a temperature of −80 ◦C to guarantee their safety and effectiveness. Aside
from offering mechanical support, bone grafts can also act as a local source of antibiotic
treatment, which can help prevent and treat any possible infections in the vicinity. This
approach has been proven effective and is widely accepted as a standard practice [5,15,16].
Clinicians, patients, and healthcare providers face a significant challenge with orthopedic-
implant-related infections, including infections in joints and fractures. These infections can
lead to high rates of disability and death, impact quality of life, and place a significant fi-
nancial burden on the healthcare system [17,18]. The orthopedic community is increasingly
concerned about controlling implant-associated infections due to the projected increase in
patients suffering from this complication [19]. Treating these infections can be challenging
and often requires surgical procedures [20,21]. It is worth noting that periprosthetic joint
infections (PJIs) can be quite severe, with fatality rates that are comparable to those of breast
cancer and melanoma [8]. The most commonly found microbes in bone and implant-related
infections are Coagulase-Negative Staphylococci (CoNS), mainly Staphylococcus epidermidis.
They are followed by Staphylococcus aureus and mixed flora [14,22,23]. Over time, CoNS
and other microbes have become increasingly resistant to commonly used antibiotics such
as penicillin, oxacillin, ciprofloxacin, clindamycin, erythromycin, and gentamicin, signif-
icantly reducing the effectiveness of these drugs [24]. The capacity of these bacteria to
form biofilms is another factor contributing to this phenomenon and adversely influencing
CoNS’s antimicrobial susceptibility [25]. Moreover, biofilm development explains why
some common flora species historically regarded as “harmless” turn infectious when they
settle on the surface of foreign objects. Detecting colonization bacteria and searching for
concealed biofilms on these allografts is crucial to preventing contamination and biofilm
development during bone grafting [26–33]. Over the years, it has been demonstrated that
laboratory spectroscopy in the mid-infrared (MIR) may be used in diagnosing various bone
diseases in humans [34–42] and bone quality [43]. MIR spectroscopy employs infrared
radiation to engage with molecular vibrations, covering the region of the electromagnetic
spectrum from 4000 to 400 cm−1. In this region, infrared radiation can excite molecular
vibrations, such as stretching, bending, and twisting modes, leading to changes in the
molecule’s dipole moment. The absorption of infrared radiation by a sample leads to the
formation of distinct absorption bands, which can be effectively exploited to identify and
quantify the molecular constituents of the sample [44,45].

In recent years, handheld spectroscopy has gained more attention alongside labora-
tory spectroscopy, as it aims to quickly and accurately characterize on-site materials. This
method encompasses a range of techniques that are highly effective in their applications.
Thus, handheld MIR spectrometers have several advantages over traditional benchtop
spectrometers. They are lightweight, compact, and battery-powered, enabling on-site
analysis in various fields and requiring minimal sample preparation, providing rapid re-
sults [46]. Furthermore, they are relatively affordable compared to benchtop spectrometers.
However, they also have some limitations. They typically have lower spectral resolution
than benchtop spectrometers, limiting their ability to distinguish between closely spaced
absorption bands. Moreover, they have a lower signal-to-noise ratio, which can lead to
inaccurate results. In addition, handheld MIR spectrometers have a limited spectral range,
which can limit their ability to analyze complex samples [47]. Achieving the best bone
graft samples for patients involves performing a spectroscopic quality test. This test can
effectively determine the bone’s typical composition, including phosphate, carbonate bone
mineral, collagen, and contaminants such as Staphylococcus epidermidis. Experts then must
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confidently identify and select only the highest-quality bone grafts through handheld MIR
spectroscopy. This tool provides crucial information about mineralization processes and
can efficiently detect contamination [42,48,49]. In the last ten years, several studies have
highlighted the usefulness of MIR spectroscopy for detecting different bone diseases in
humans [34–41], including the evaluation of bone quality [43]. Bone comprises a variety
of MIR bands, typically composed of phosphate (ν3PO4

3−), carbonate (ν1CO3
2−), colla-

gen matrix, amide III, CH2 of protein, and amide I [41,50–53]. Staphylococcus epidermidis
is the most prevalent pathogen in bone and implant-related infections. Therefore, this
study aimed to compare the efficacy of the small handheld instrument with a benchtop
mid-infrared spectrometer in detecting Staphylococcus epidermidis on bone grafts. The small
Agilent 4300 Handheld Fourier-transform infrared (FTIR) scanner and the larger Perkin
Elmer Spectrum 100 attenuated-total-reflectance infrared spectroscopy (ATR-IR) benchtop
instrument were used, and a principal component analysis was conducted on fresh frozen
bone samples. This study compares mid-infrared handheld and benchtop spectrometers
to detect Staphylococcus epidermidis in bone grafts. The outcome of this study provides
new insights into the potential of small MIR handheld spectrometers in identifying these
pathogens in human bone grafts.

2. Materials and Methods
2.1. Sample Collection

The femoral heads used in our bone bank were sourced from individuals who had
undergone hip replacement surgery due to advanced hip osteoarthritis or femoral neck
fracture. Before their donation, all patients provided written informed consent, ensuring
that their contribution was made willingly and with a full understanding of the process.
The donated bone that did not fulfil the criteria for therapeutic use (e.g., due to incomplete
screening and documentation) was kept at the bone bank and utilized in scientific studies.
In general, severe osteoporosis and contaminated samples caused by various pathogens
were eliminated and not collected, regardless of the research. There were no criteria based
on age or gender. The bone was drained and chilled with 0.9% saline during osteotomy to
prevent heat damage. Cartilage and cortical tissues from the femoral heads were removed
using a bone saw. Bone chips 3–5 mm in diameter were extracted from the residual
spongious tissue (Noviumagus Bone Mill; Spierings Meische Techniek BV, Nijmegen, The
Netherlands) with a bone mill. A total of 40 human bone samples were examined. The local
ethics council approved the retrospective study (EK 1291/2021) per the guiding principles
outlined in the Declaration of Helsinki.

2.2. Development of Biofilm on Bone Allografts

To examine Staphylococcus epidermidis ATCC 12228, Mueller–Hinton broth with confi-
dence and precision was utilized. We carefully incubated the broth at 37 ◦C for 24 h. The
inoculum was diluted to 106 CFU/mL, and 200 µL of the suspension was added to each
well of a multi-well plate. Individual fresh frozen bone allografts and a substrate were
inserted to create biofilms. The plates were then placed in an orbital shaker and incubated
at 37 ◦C for 48 h to form the biofilms. Once completed, the supernatant was removed, and
the bone samples were washed with new PBS to ensure the removal of any planktonic
bacteria. After this procedure, the bone samples were dried in an aspirator (3.2 kPa) for
10 min at room temperature and measured. The drying time was sufficient, as prolonging
the drying time to 24 h caused no differences in spectra quality.

2.3. Benchtop Perkin Elmer Spectrum 100 ATR-IR Spectrometer

The MIR ATR-IR spectra were collected using a Perkin Elmer Spectrum 100 ATR-IR
spectrometer (Perkin Elmer, Waltham, MA, USA). There were eight scans per sample
from three positions, with a resolution of 0.5 cm−1 and a wavenumber range of 4000 to
650 cm−1. The measurement was conducted at a temperature of 22 ◦C under controlled
humidity levels.
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2.4. Agilent 4300 Handheld FTIR

MIR spectra were obtained using the Agilent 4300 Handheld FTIR (Agilent Technolo-
gies, Santa Clara, CA, USA) device. The spectral range covered was from 4000 to 650 cm−1,
with a spectral resolution of 2 cm−1. Each sample was subjected to eight spectra recorded
from three different positions. The measurement was conducted at a temperature of 22 ◦C
under controlled humidity levels.

2.5. Data Processing

Data processing was performed using the Spectrum software version 6.3.1.0134 (Perkin
Elmer, Waltham, MA, USA) and the Unscrambler X 10.5 (AspenTech, Bedford, MA, USA).

Spectral Parameters: The diagnostic parameters were studied using peak intensity
(I) [54–59]. The determination of intensities was made effortless through an Excel spread-
sheet that handles spectroscopic and chromatographic data [60]. A statistical analysis of
the spectral parameters was conducted using GraphPad Prism software (version 9, San
Diego, CA, USA) and compared through a two-sample t-test. A significant result is only
considered if the p-value is less than 0.05.

2.6. Principal Component Analyses (PCA)

PCA models were created using Unscrambler X 10.5, which involved importing spectra
into the program and applying various data pretreatments, such as a reduction factor 36,
Savitzky–Golay smoothing with 15 smoothing points, and area normalization.

3. Results

The main objective of this study was to compare the effectiveness of MIR handheld
and benchtop spectrometers in detecting Staphylococcus epidermidis in bone grafts. Of 40 non-
infected human bone samples, 10 were intentionally infected with Staphylococcus epidermidis
ATCC 12228. Twenty-two females and eighteen males provided non-infected human bones
(n = 40), while the infectious human bones were collected from seven females and three
males (n = 70/30%). The sample characteristics are summarized in Table 1. Figure 1 shows
the advantages and disadvantages of conventional infection diagnosis, MIR handheld, and
benchtop spectrometry. Compared to MIR, the traditional diagnosis of infection can be
time-consuming, resource-intensive, and labor-intensive.

Table 1. Sample characteristics.

Age (Years) Total Number with Gender
(W = Female; M = Male)

Inoculation with Staph.
epidermidis ATCC 12228

>80 W = 1
M = 1

W = 0
M = 0

70–80 W = 9
M = 7

W = 1
M = 2

60–70 W = 4
M = 5

W = 1
M = 0

50–60 W = 6
M = 2

W = 3
M = 0

<50 W = 2
M = 3

W = 2
M = 1
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3.1. Spectroscopy Data Evaluation

When examining non-infected human bones, certain MIR bands are usually observed.
These bands include phosphate (ν3PO4

3−), carbonate (ν1CO3
2−), collagen matrix, amide

III, CH2 of protein, and amide I [41,50–53,61–63]. The phosphate of human bone exhibits
four distinct internal vibration modes. These modes comprise ν1 (~960 to 961 cm−1), ν2
(~420 to 450 cm−1), ν3 (~1035 to 1048 cm−1, and ~1070 to 1075 cm−1), and ν4 (~587 to
604 cm−1) [61,62,64,65]. Organic components, on the other hand, exhibit bands within
the range from ~1200 to 1320 cm−1 (amide III), ~1595 to 1700 cm−1 (amide I), ~1400 to
1470 cm−1, and ~2800–3000 cm−1 (C-H groups) [62,64]. The collagen matrix is assigned to
the peaks at 851, 873, and 917 cm−1, respectively, whereas phenylalanine is characteristic
of the peak at 1001 cm−1 [41,51,52]. Furthermore, the peak at 1450 cm−1 corresponds to
CH2 deformation [58]. Finally, the CO3

2− carbonate group’s internal modes are detected at
1070 cm−1 (B-type carbonate) and 1103 cm−1 (A-type carbonate) [62]. Type-B carbonate
(substitutions of phosphate) and type-A carbonate (substitutions of hydroxide) significantly
impact the properties of apatite crystals, including their perfection and crystallite domain
size. These effects have important implications for material properties in different envi-
ronmental conditions. It is worth noting that type-B carbonate is dominant in forming
apatitic biominerals, while type-A carbonate controls the properties of apatitic minerals
in non-physiological states [66–68]. Figure 2 illustrates a representative spectrum of a
non-infected human bone, using the Agilent 4300 Handheld and Perkin Elmer Spectrum
100 instruments. While the basic shape of the mean spectra was similar between different
measurements for both devices, the recorded MIR spectra exhibited varying absorbance
values. Specifically, the Perkin Elmer Spectrum 100 instrument had spectra ranging from
0 ± 0 to 0.9555 ± 0.01976, while the Agilent 4300 Handheld showed minimum-to-maximum
differences from 0.0004626 ± 7.614 × 10−5 to 0.0007611 ± 5.644 × 10−5. Notably, the posi-
tions and shape of the v3PO4

3− band from 1200 to 900 cm−1, the amide I band from 1730 to
1585 cm−1, and the bending and stretching modes of C-H groups from ~3000 to 2800 cm−1

coincided nicely. However, there were some differences in the Agilent 4300 Handheld,
particularly in the shape of the feature between 650 and 1800 cm−1 (i.e., v3CO3

2− and
amide III), and the amide II feature at around 1650 cm−1 was not displayed in the Agilent
4300 Handheld as it was in the Perkin Elmer Spectrum 100 instrument.
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Figure 2. Representative MIR (a) Perkin Elmer Spectrum 100 and (b) Agilent 4300 Handheld instru-
ment spectrum of a non-infected bone sample. The most important bands are emphasized. Range
numbers for PCA analysis are indicated with dashed lines.

Figure 3 clearly compares the average spectra of non-infected and infected human
bone with Staphylococcus epidermidis. This was achieved through measurements taken using
the Agilent 4300 Handheld and Perkin Elmer Spectrum 100 instruments. The average
spectra were derived from eight spectra by using the Perkin Elmer Spectrum 100 and four
by using the Agilent 4300 Handheld. Notably, infected and non-infected human bones
exhibit distinct spectral features, including the v3PO4

3− band, the amide I band, and C-H
groups from ~3000 to 2800 cm−1. However, significant differences between infected and
non-infected human bones are present in the fingerprint region from 1800 to 650 cm−1, the
v3PO4

3− band, and the amide I band. Specifically, the Agilent 4300 Handheld instrument
demonstrates a substantial loss of the amide I band in infected human bones.

Table 2 concisely overviews the essential parameters scrutinized in MIR spectra. These
parameters encompass the intensities (I) of the most influential bands, culminating in
single-band and multiple-band ratios [54,55,57–59]. They serve as markers that furnish
precise diagnostic data on infections that impact human bones, as depicted in Figure 4.

The results from a two-sample t-test, displayed in Figure 4, indicate a significant
difference in the levels of phosphate, amide I, and CH-Aliphatic content (CHACont)
between infected and non-infected samples, using the Agilent 4300 Handheld instru-
ment. The Perkin Elmer Spectrum 100 instrument revealed a significant difference in
mineral/matrix (MMR), mineral quality and crystallinity, and mineral carbonate content
(MinCarb) between infected and non-infected cases. Additionally, bone quality and strength
can be assessed through the mineral-to-matrix ratio (MMR), which measures mineralization
levels [41,42,69,70]. Calculating the ratio of mineral-specific MIR band intensities (phos-
phate and carbonate bands) to the intensity of the amide I band or the ratio of phosphate
band intensity to the total intensity of proline and hydroxyproline MIR bands is crucial in
determining changes in bone strength. It is important to note that bacterial infection can
result in a higher loss of relative mineral content in bones. This makes weaker bones more
susceptible to fractures than non-infected human bones [71,72]. The ratio of carbonate to
phosphate intensities in MMR indicates certain properties.



Bioengineering 2023, 10, 1018 7 of 15Bioengineering 2023, 10, x FOR PEER REVIEW 7 of 17 
 

 
Figure 3. Representative MIR (a) Perkin Elmer Spectrum 100 and (b) Agilent 4300 Handheld instru-
ment spectrum of non-infected (red) and infected bone sample (blue) are presented. The mineral 
and matrix bands are emphasized. Range numbers for PCA analysis are indicated with dashed lines. 

Table 2 concisely overviews the essential parameters scrutinized in MIR spectra. 
These parameters encompass the intensities (I) of the most influential bands, culminating 
in single-band and multiple-band ratios [54,55,57–59]. They serve as markers that furnish 
precise diagnostic data on infections that impact human bones, as depicted in Figure 4. 

Table 2. Human-bone MIR spectral markers (I: intensity of the band). The p-values < 0.05 are con-
sidered significant. 

Name Description p-Values (Two-Sample t-
Test) 

  Agilent 
4300 

Perkin Elmer 
Spectrum 100 

Phosphate ν3PO43− 
Amount of phosphate 

0.0021 0.1749 

Mineral/matrix (MMR) 
phosphate/amide I 

ν3PO43−/amide I 

Mineral component amount to the 
organic one 

0.4428 <0.0001 

Mineral quality and 
crystallinity 
carbonate/phosphate 

ν1CO32−/ν1PO43− 
Carbonate incorporation extent in 
the hydroxyapatite lattice 

0.0620 <0.0001 

Mineral carbonate con-
tent (MinCarb) ν1CO32−/(C-H) bend; CH2 wag 0.8890 <0.0001 

Amide I 
Amide I of α-helical structures 
Arrangement and quantity of colla-
gen 

0.0032 0.0371 

CH-aliphatic content 
(CHACont) CH2 stretching 0.0080 0.6949 

Figure 3. Representative MIR (a) Perkin Elmer Spectrum 100 and (b) Agilent 4300 Handheld instru-
ment spectrum of non-infected (red) and infected bone sample (blue) are presented. The mineral and
matrix bands are emphasized. Range numbers for PCA analysis are indicated with dashed lines.

Table 2. Human-bone MIR spectral markers (I: intensity of the band). The p-values < 0.05 are
considered significant.

Name Description p-Values (Two-Sample t-Test)

Agilent 4300 Perkin Elmer
Spectrum 100

Phosphate ν3PO4
3−

Amount of phosphate
0.0021 0.1749

Mineral/matrix (MMR)
phosphate/amide I

ν3PO4
3−/amide I

Mineral component amount to
the organic one

0.4428 <0.0001

Mineral quality and
crystallinity
carbonate/phosphate

ν1CO3
2−/ν1PO4

3−

Carbonate incorporation extent
in the hydroxyapatite lattice

0.0620 <0.0001

Mineral carbonate
content (MinCarb) ν1CO3

2−/(C-H) bend; CH2 wag 0.8890 <0.0001

Amide I
Amide I of α-helical structures
Arrangement and quantity of
collagen

0.0032 0.0371

CH-aliphatic content
(CHACont) CH2 stretching 0.0080 0.6949

Additionally, the amide I band can help analyze changes in the collagen network
caused by infection, as it is a typical protein conformation indicator due to its role in cross-
linking and bonding. This band serves as an indicator of the protein structure [42]. Figure 4
clearly demonstrates that bacterial infection in human bones decreases structural organiza-
tion and relative collagen. To measure the organic and inorganic components within the
bone, the CH-aliphatic content (CHACont) is measured, which is typically attributed to the
presence of proteins and lipids [73]. The study results reveal that bacterial infection causes
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a significantly higher loss of CHACont in bones. Co-culturing Staphylococcus epidermidis
with human bone samples results in a significant deterioration of both bone quality and
protein conformation. PCA was conducted to thoroughly describe the full range of spectral
variations, as it is impossible to identify exact correlations with this type of processing.
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3.2. Diagnostic Performance PCA

With the aim of facilitating a prompt diagnosis of the causative agent of infection,
molecular techniques are commonly used in routine diagnostics. Early detection of in-
fections is critical for guiding treatment decisions and improving patient outcomes [74].
The study successfully utilized the Agilent 4300 Handheld and Perkin Elmer Spectrum
100 instruments in the MIR with PCA analysis to expertly distinguish between bone graft
samples infected with Staphylococcus epidermidis and those not infected. The potential
diagnostic utility of PCA analysis of spectroscopic data has been demonstrated in previous
studies [42,75–83]. PCA was utilized on the averaged spectra of Agilent 4300 Handheld and
Perkin Elmer Spectrum 100 instruments to conduct the analysis. Our study involved exam-
ining 40 non-infected and 10 infected bone samples, following the methodology outlined in
previous studies [42,83,84]. Figure 5 presents the results of the spectral analyses conducted
using PCA. It compares non-infected and infected human bone samples through a score
plot of the first and second principal components. Table 3 provides a detailed analysis of
five wavenumber ranges used in PCA.
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Table 3. Principal component analyses (PCAs) for 40 non-infected vs. 10 infected human bone
samples measured with Agilent 4300 Handheld and Perkin Elmer Spectrum 100 were compared.
Figure 4 displays the PCA plots.

Wave Number
Range Number

PCA Perkin
Elmer Spectrum

100

PCA Agilent
4300 Handheld Assignment Spectral Region

I PC-1 (73%)
PC-2 (14%)

PC-1 (62%)
PC-2 (21%)

Full
wavenumber

range
650–4000 cm−1

II PC-1 (95%)
PC-2 (5%)

PC-1 (97%)
PC-2 (2%) Amide III 1200–1390 cm−1

III PC-1 (92%)
PC-2 (5%)

PC-1 (64%)
PC-2 (28%)

Amide III, CH2
deformation
(wagging) of

protein, amide I

1200–1700 cm−1

IV PC-1 (100%)
PC-2 (0%)

PC-1 (98%)
PC-2 (2%) Amide I 1610–1700 cm−1

V PC-1 (91%)
PC-2 (8%)

PC-1 (91%)
PC-2 (8%)

C-H groups
(bending and

stretching
modes)

2800–3050 cm−1

According to the PCA models, the most informative data are located in regions II,
IV, and V, as displayed in Figure 5. The score plots demonstrate the correlation between
PC1 and PC2 for non-infected and infected bone samples within the II, IV, and V ranges,
along with the corresponding loadings of PC1. The red symbols signify non-infected
samples, while the blue symbols represent infected samples. PC1 accounts for 95%, 100%,
and 91% for Perkin Elmer Spectrum 100 instrument and 97%, 98%, and 91% for Agilent
4300 Handheld in the spectral regions of amide III, amide I, and bending and stretching
modes of C-H groups, as depicted in Figure 5 II, IV, and V Both methods are trustworthy
and robust and can be enhanced to discriminate Staphylococcus epidermidis, Staphylococcus
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aureus, and other bacteria. PCA analysis is automated and objective, making it a beneficial
tool for the routine laboratory screening of bone samples for bacterial infections. This
method can significantly improve diagnostic performance for laboratories not specifically
detecting bacterial bone infections.

4. Discussion

Both the Agilent 4300 Handheld instrument and the Perkin Elmer Spectrum 100 are
trustworthy and robust and can be enhanced to discriminate Staphylococcus epidermidis,
Staphylococcus aureus, and other bacteria. However, different wavelengths are responsible
for the comparable outcome of the two instruments: For non-infected bones, the Agilent
4300 Handheld and the Perkin Elmer Spectrum 100 instrument equally detect phosphate,
amide I (region IV), and stretching modes of CH groups (region V) with different intensities,
especially for phosphate (Figure 2). The Agilent 4300 Handheld, however, has a lower
resolution for ν3CO3

2− than the Perkin Elmer Spectrum 100 instrument. Thus, bone quality
and strength cannot be assessed equally through the mineral-to-matrix ratio (MMR), which
measures mineralization levels [41,42,69,70]. Additionally, mineral quality, crystallinity,
and mineral carbonate content (MinCarb) cannot be assessed equally. Concerning bones
infected with Staphylococcus epidermidis, the Agilent 4300 Handheld instrument especially
differentiates the levels of phosphate, amide I (region IV), and CH-Aliphatic content
(CHACont, region V), whereas the Perkin Elmer Spectrum 100 instrument revealed a
significant difference in amide I (region IV), mineral/matrix (MMR), mineral quality and
crystallinity, and mineral carbonate content (MinCarb) between infected and non-infected
bones. In summary, according to the PCA models, the most informative data are located in
regions II, IV, and V (Figure 5). This shows that the Agilent 4300 Handheld instrument does
not perform well between 650 and 1800 cm−1, whereas the result of amide I (region IV)
especially shows comparable data concerning the spectral analysis and PCA. The correlation
between PC1 and PC2 was examined for non-infected and infected bone samples in the
II, IV, and V ranges. The loadings of PC1 were also analyzed, with PC1 accounting for
97%, 98%, and 91% for the Agilent 4300 Handheld and 95%, 100%, and 91% for the Perkin
Elmer Spectrum 100 instrument in the spectral regions of II (amide III), IV (amide I), and V
(bending and stretching modes of C-H groups) (as shown in Figure 5).

Further investigations utilizing the carbonate/phosphate ratio reveal that human bone
samples co-cultured with Staphylococcus epidermidis exhibit a significant reduction in bone
quality and protein conformation. Infected bones, in particular, demonstrate a more pro-
nounced decrease in relative mineral content compared to non-infected bones. Additionally,
changes in the collagen network can be identified through the amide I band. PCA allows
us to detect Staphylococcus epidermidis in multiple spectral regions, primarily from amide
III, amide I, and C-H groups’ bending and stretching modes, thereby validating its pres-
ence. These results using MIR spectroscopy are in line with previously published Raman
investigations [41,42]. Such a direct detection of bone infection via MIR or Raman spec-
troscopy is challenging due to the complexity of bone tissue, low pathogen concentrations,
and spectral overlaps. Nevertheless, with the integration of complementary techniques
and careful optimization of sample preparation and data analysis, there is potential for
MIR spectroscopy to contribute to the laser-independent detection and characterization of
bone infections.

MIR spectroscopy is a speedy, robust, and automatable technique with significant
advantages. MIR spectroscopy also requires a tiny untreated bone sample, making it
suitable for situations with limited bone availability. Finally, this technique may benefit
patients requiring urgent treatment because the analysis results are obtained without
delay. In contrast, intraoperative tissue cultures, which are the current gold standard
in diagnosing periprosthetic joint infections, are resource-intensive, and results can be
expected only 5 to 11 days after tissue samples have been intraoperatively obtained [85].
Similarly, a histopathological workup of tissue samples requires significant resources and
time, while sensitivity and specificity are even lower [86,87]. Another issue of tissue
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cultures is that inadequate processing and transport to the laboratory may result in either
false-positive results due to contamination or culture-negative infections [88]. Overall, the
sensitivity and specificity of intraoperative tissue cultures to detect periprosthetic joint
infection have been reported to range from 0.51 to 0.90 and from 0.67 to 1.00, respectively,
and diagnostic accuracy may be increased by additional sonication fluid cultures from
explanted prosthetic components [89]. Similar values have been reported for spinal implant
infections [90]. However, antibiotic therapy before culture sampling further decreases the
sensitivity of intraoperative tissue cultures and results in culture negativity in a significant
portion of periprosthetic joint infections [91]. MIR spectroscopy not only appears to help
overcome the suboptimal results and well-known limitations of current infection diagnosis
but may also contribute to further reducing the risk of transmitting bacterial contamination
by bone allografts.

Our research has several limitations, including the small sample size and the pre-
specified incubation time of 48 h for bone fragments to promote the bacterial growth of
Staphylococcus epidemridis. Therefore, the pathogen’s limit of detection (LOD) could not
be determined. Further studies to achieve calibration standards with known pathogen
concentrations assisting in LOD determination are warranted. Our findings highlight the
potential of spectroscopic analyses to link molecular changes with pathological conditions.
Based on these findings, we anticipate that handheld and benchtop MIR spectroscopy have
a different potential and will be used to detect bacterial infections in human bone samples
either in biobanks or under surgical conditions, thus adding rapid information to other
microbial diagnostic procedures. Further research with larger sample sizes and various
incubation times are required to control for potential confounding variables and to validate
this technique as a new diagnostic tool for the clinical handling of bones, combining MIR
data and machine-learning analysis.

5. Conclusions

These findings highlight the comparable potential of the Agilent 4300 Handheld and
Perkin Elmer Spectrum 100 for detecting infections in bone grafts. The data are consis-
tent with previous research that suggests MIR spectrometry’s effectiveness in identifying
bacterial infections and extend the work now even for handheld instruments.

The Agilent 4300 Handheld and Perkin Elmer Spectrum 100 Benchtop spectrometers
have unique strengths and limitations. The handheld spectrometer is beneficial for on-site
and immediate clinical use, while the benchtop spectrometer is more suitable for research
and complex analytical tasks in a laboratory setting. Thus, the choice between the two
depends on specific requirements, portability needs and the budget as pros of the Agilent
4300 Handheld instrument, and the resources needed as con for the Perkin Elmer Spectrum
100 instrument. Using a handheld instrument has broad implications for the medical
community, as such instruments allow MIR spectrometry to effectively and efficiently
detect infections in bone grafts, potentially reducing healthcare costs and improving patient
outcomes. Researchers and analysts should carefully consider these factors when selecting
the most appropriate spectrometer for bacterial detection in bone grafts.

In summary, Agilent 4300 Handheld and Perkin Elmer Spectrum 100 instruments are
both promising tools to diagnose human bone infections in situations with limited tissue
availability and high urgency for treatment. However, further assessment is necessary to
further validate the technique’s benefits and drawbacks with a larger sample size and for
more microbes and fungi.
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