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Abstract: The measurement and analysis of fetal heart rate (FHR) and uterine contraction (UC)
patterns, known as cardiotocography (CTG), is a key technology for detecting fetal compromise
during labour. This technology is commonly used by clinicians to make decisions on the mode of
delivery to minimise adverse outcomes. A range of computerised CTG analysis techniques have
been proposed to overcome the limitations of manual clinician interpretation. While these automated
techniques can potentially improve patient outcomes, their adoption into clinical practice remains
limited. This review provides an overview of current FHR and UC monitoring technologies, public
and private CTG datasets, pre-processing steps, and classification algorithms used in automated
approaches for fetal compromise detection. It aims to highlight challenges inhibiting the translation of
automated CTG analysis methods from research to clinical application and provide recommendations
to overcome them.

Keywords: fetal compromise; intrapartum fetal monitoring; cardiotocography; fetal heart rate;
artificial intelligence

1. Introduction

Despite ongoing advances in maternal and fetal healthcare, over 2 million babies are
stillborn worldwide every year [1–3]. Depending on global region, between 6% and 49% of
these stillbirths occur during labour compared to the antepartum period [1]. Many of these
stillbirths could be prevented with monitoring during pregnancy [4] and timely obstetric
intervention for complications during childbirth [5]. The most common cause of stillbirth
globally is intrapartum asphyxia [6], which typically occurs when mechanical pressure
during labour limits blood flow to the baby, resulting in a reduction in oxygen delivery
to the fetus. When oxygen levels are critically low, the fetus changes its metabolism from
aerobic to anaerobic, resulting in hydrogen ion formation in tissues, known as acidosis [7].
In addition to total oxygen deprivation, which may result in stillbirth, this build-up of acid
is extremely damaging, especially to neuronal cells in the fetal brain [8]. This can result in
short- and long-term brain injury, leading to complications, including cerebral palsy and
intellectual impairment for surviving infants [9]. For this reason, the early detection of
fetal compromise is extremely important so that clinicians can intervene before irreversible
harm occurs.

Due to these hypoxic events triggering the fetal sympathetic and parasympathetic
nervous systems, variations in the fetal heart rate (FHR) can be monitored to detect signs
of fetal compromise [8,10,11]. The primary source of FHR surveillance in the early half of
the twentieth century was via the use of intermittent auscultation, and in the late 1960s,
with the development of ultrasound technology, continuous cardiotocography (CTG) was
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introduced for fetal monitoring [12]. CTG extracts both the FHR and uterine contractions
(UC) simultaneously, allowing for the continuous assessment of both signals.

FHR and UC are typically extracted using either invasive or non-invasive methods.
The most widely used method is the non-invasive Doppler ultrasound and tocodynamome-
ter, which uses two external transducers placed on the mother’s abdomen. These signals,
however, are subject to signal dropout due to fetal and maternal movements, and their sig-
nal quality deteriorates with an increase in maternal body mass index (BMI) [13]. Therefore,
more accurate readings are sometimes obtained using invasive monitoring methods such
as the direct fetal electrocardiogram (fECG) acquired via a fetal scalp electrode for FHR and
intrauterine pressure catheter for UC [14,15]. Despite their benefits, these invasive modes
of measurement have an increased risk of infection and can only be used by rupturing
the membranes, making them suitable for use during labour only [14,16]. As a result,
new methods such as the non-invasive fetal electrocardiogram and electrohysterogram are
being introduced to overcome the shortcomings of their predecessors [17]. Throughout
this paper, we use the term CTG to refer to any method that measures both FHR and
UC simultaneously.

Since its introduction, CTG has become a routinely used technique in clinical practice
for fetal monitoring in labour. However, despite the wide use of CTG, it has not been
able to show a significant reduction in fetal mortality [18–20]. In practice, CTG recordings
are visually evaluated and assessed based on guidelines, leading to substantial inter- and
intra-observer disagreement among clinicians [21–23]. Furthermore, the high false positive
rate of visual CTG evaluation is cited as one of the reasons behind the increasing rate of
caesarean sections (CS) and unnecessary operative deliveries [24]. Therefore, there is an
unmet clinical need for a more reliable, reproducible and objective CTG evaluation system.

As CTG evaluation provides an indirect measure of fetal asphyxia, a more direct and
quantitative measure of fetal asphyxia is pH. To evaluate pH, a blood sample is taken from
either the fetal scalp during labour or the umbilical cord immediately after birth [25]. The
pH value measures the level of fetal acidemia arising from the dispersion of accumulated
lactic acid in the fetal circulation [26]. The base deficit (BDecf) is another parameter
determined from the umbilical cord blood, which is closely linked to fetal asphyxia. pH
values below 7.05 and BDecf values above 10 mmol/L are strongly related to adverse
neonatal outcomes [26,27]. Another metric used to assess fetal compromise is the Apgar
score, which evaluates the physical condition of the baby shortly after delivery, where
the 5-min Apgar score has been shown to be a predictor of the risk of neonatal death [28].
Therefore, umbilical artery pH, BDecf and Apgar are common clinical endpoints used to
define fetal compromise.

With the availability of digital CTG records and clinical endpoints defining the pres-
ence of fetal asphyxia, alternative computerised data-driven approaches have been pro-
posed to reduce misinterpretation and improve the accuracy of CTG evaluation. Initially,
these methods tried to approximate expert interpretations based on guidelines provided by
the International Federation of Gynaecology and Obstetrics (FIGO) by analysing baseline
variability, accelerations and decelerations of the FHR [29]. The Dawes–Redman System
and the Porto System are two systems that first adopted these features for automated CTG
analysis in clinical practice [30,31], followed by the INFANT system [32,33]. Thereafter,
additional FHR features from time, frequency and non-linear domains were introduced
in addition to the morphological features. A CTG analysis prototype system called the
OxSys [34] based on one of the non-linear FHR features, decelerative capacity, was recently
introduced to analyse and trigger real-time alerts to clinicians.

Concurrent to these clinical methods, FHR features were also utilised in data-driven
approaches to train machine learning (ML) algorithms to detect fetal compromise [35,36].
Subsequently, modern data-driven methods like deep learning (DL) algorithms were pro-
posed, which independently learn information from the raw CTG waveforms minimizing
the need for human-guided feature extraction and selection [37]. However, comparisons
between the performance of these novel data-driven methods are difficult as different
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outcome measures and different case selection criteria have been used across studies. The
most commonly used biomarker in differentiating CTGs with fetal compromise in these
computer-based methods is umbilical artery pH with a threshold set at 7.05 [35,37–40].
Other alternative cut-off pH values such as 7.10 [41,42], 7.15 [43–46] and 7.20 [47] have
also been employed by previous studies. Nevertheless, these algorithms have shown the
potential to improve the sensitivity of detecting fetal compromise but have not yet been
translated into widespread clinical use.

This narrative review aims to synthesise existing literature on computerised car-
diotocography analysis for fetal compromise detection, with a particular focus on auto-
mated data-driven techniques and a comprehensive overview of their associated challenges.
This complements recent reviews associated with the physiology of FHR variability during
labour [48], signal processing techniques for FHR analysis [49–51], challenges for develop-
ing AI techniques for FHR monitoring [52,53], and computerised CTG analysis in clinical
practice [54]. One of the primary focuses of this paper is to identify a standardised approach
for CTG segment length, pre-processing, and definition of outcomes for fetal compromise
to enable the effective comparison of data-driven analysis methods.

To achieve this, we first provide a brief overview of the physiological basis for CTG
monitoring and then summarise FHR and UC monitoring technologies and associated
challenges with data extraction. Then, we provide an overview of the current state of
the existing computerised CTG systems in clinical practice. Next, we provide a summary
of public and private CTG datasets, followed by a review of pre-processing techniques
reported in the literature. Following this, we comprehensively review the data-driven
computerised approaches for classifying fetal compromise, from proposed methods based
on feature-based machine learning to the latest advancements in deep learning. Finally, the
current obstacles that limit progress within this field are identified, and recommendations
for future research are presented. A summary of the process for the computerised CTG
analysis of fetal compromise detection and the core topics addressed in this review are
shown in Figure 1.

CTG Acquisition
Method

Doppler
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Direct
fECG

Non Invasive
fECG

FHR

Intrauterine
Pressure Catheter
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Figure 1. Summary of the computerised CTG analysis process for fetal compromise detection. The
process begins with the CTG acquisition methods for fetal heart rate and uterine contractions. The
output of these signals is then analysed by two methods: visual inspection or a computerised
approach. The prior is based on clinical guidelines, and the latter uses artificial intelligence to
analyse the FHR. The outcome of the analysis is to predict the status of the baby as normal, suspect
or compromised.
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2. Physiological Basis for CTG Monitoring during Labour

The fetal heart rate is regulated by the autonomic nervous system, primarily through
sympathetic and parasympathetic influences [8,10,55]. During labour, the FHR is influenced
by various factors such as changes in oxygenation as a result of insufficient placental
perfusion, fetal movement and umbilical cord compression. These factors give rise to
distinct FHR patterns, which are typically categorised as changes in baseline, variability,
accelerations and decelerations. The baseline is the average FHR, excluding accelerations
and decelerations. The variability is the fluctuation of the FHR around the baseline,
reflecting the balance between the sympathetic and parasympathetic activity. Accelerations
are transient increases in FHR above the baseline, indicating a healthy fetal response
to stimuli. Decelerations are transient decreases in FHR below the baseline, which can
be either physiological or pathological depending on their shape, timing, duration, and
association with uterine contractions [11,56].

Uterine contractions also play a central role during labour, resulting from the coordi-
nated activity of uterine smooth muscles. Oxytocin stimulates contractions’ frequency and
intensity, while prostaglandins contribute to cervical ripening [57]. These contractions can
impact FHR through changes in uteroplacental perfusion or umbilical cord compression.
Intense or frequent UCs may compromise fetal oxygenation by limiting blood flow, poten-
tially leading to FHR decelerations [55]. Alternatively, UC-induced stress can stimulate fetal
sympathetic activity, resulting in FHR accelerations [26,57]. Therefore, the simultaneous
monitoring of UC and FHR patterns using CTG can aid clinicians in assessing both labour
progression and fetal status.

3. Fetal Heart Rate and Uterine Contraction Monitoring Technologies

Although the FHR and UC signals produced across CTG monitoring systems are
displayed in a consistent format, they may be acquired using different modalities that
have different accuracy profiles, benefits and limitations. These signals are critical for
computerised CTG analysis, and problems with input signal quality can lead to incorrect
predictions in subsequent steps. To highlight the importance of this area, this section
provides a review of various technologies utilised to extract FHR and UC signals. An
overview of fetal monitoring technologies for capturing FHR and UC is shown in Figure 2.

3.1. Fetal Heart Rate Monitoring Technologies
3.1.1. Doppler Ultrasound

Doppler ultrasound is a non-invasive form of monitoring the fetal heart rate. It
comprises an ultrasound transducer strapped to the maternal abdomen, which emits an
ultrasound wave and measures the reflected waveforms resonated with the fetal cardiac
structures. Fetal heartbeats are then approximated using signal modulation and auto-
correlation techniques [58]. Due to the nature of ultrasound monitoring, the extracted
FHR recordings are prone to signal losses caused by the movements of the baby, maternal
movements and transducer displacement. Signal artefacts also occur particularly due
to accidental monitoring of the maternal heart rate [11] and half or double counting fe-
tal heart rate values when using autocorrelation techniques for FHR approximation [59].
These noises are typically seen more often during the second stage of labour [14]. The
quality of the FHR measured using the Doppler ultrasound method is also hampered by
maternal factors like increased BMI [60]. In terms of reliability, the mean positive percent
agreement of the Doppler ultrasound compared to fetal scalp electrode during labour is
between 62 and 73% [61,62]. Despite these limitations, Doppler ultrasound has been widely
used in monitoring FHR during labour since its introduction in the 1960s. According to
a United States (U.S.) national survey, 98% of mothers who gave birth in a U.S. hospital
from 2011–2012 underwent Doppler ultrasound CTG monitoring at some point during
labour [63].
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Figure 2. An overview of fetal monitoring technologies for capturing FHR and UC showing
(a) Doppler ultrasound and tocodynamometer, (b) direct fetal electrocardiogram using scalp electrode
and intrauterine pressure catheter, (c) non-invasive fetal electrocardiogram and electrohysterogram
using external electrodes, and (d) the display unit for monitoring the extracted data in digital or
paper format.

3.1.2. Direct Fetal Electrocardiogram

The direct fetal electrocardiogram is an invasive method where a fetal scalp electrode
is inserted through the mother’s cervix and attached to the presenting part of the fetal scalp.
It enables the measurement of the time difference between two consecutive heartbeats by
identifying the R waves of the direct fECG [11,64], allowing for a more accurate beat-to-
beat FHR to be obtained. However, the electrode can only be placed when the amniotic
sac around the baby has ruptured and the cervix is dilated [64]. This limits its usage to
monitoring FHR only during labour. Further, it is typically avoided in fetuses under the
gestational age of 32 weeks and in mothers who are infected by blood-borne viruses [11].
Additionally, by using this method in clinical practice there is an increased risk of infections,
injury, and bruising of the fetal scalp. This method is also more expensive to use as the
electrodes are disposable [11]. However, the direct fECG monitoring of FHR through a
scalp electrode is the most accurate method for fetal surveillance during labour [14,65].

3.1.3. Non-Invasive Fetal Electrocardiogram

A desire to overcome the limitations of Doppler ultrasound and the invasiveness of
the direct fECG has led to the introduction of an alternate method of monitoring called
the non-invasive fetal electrocardiogram (NI-fECG). This method uses several electrodes
placed on the maternal abdomen to record the electrical activity of the fetal heart which
is used to extract the FHR rhythm. The main challenge faced by this method is the
low signal-to-noise ratio of the fetal ECG compared to that of maternal ECG and the
presence of different dielectric media between the sensors and the electrodes [66–69].
However, the NI-fECG method provides more reliable FHR readings compared to Doppler
ultrasound in labour with a mean positive percent agreement between 81–83% than the
fetal scalp electrode [61,62], with no significant decrease in performance for high BMI
patients [13]. However, there are limitations to these studies, where agreement analysis
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was only performed in a subset of recording segments where fetal heart rate extraction
was successful. The percentage of successful recording segments varied between Doppler
and NI-fECG methods, as well as there were variations in the number of participants
included for analysis during the second stage of labour. As such, further studies are
required to demonstrate that NI-FECG offers comparable performance to direct fetal ECG
scalp monitoring.

3.2. Uterine Contraction Technologies
3.2.1. External Tocodynamometer

An external tocodynamometer (TOCO) is a non-invasive strain gauge placed over
the maternal abdomen to monitor uterine activity. This device provides information on
the frequency and approximate duration of uterine contractions but not their absolute
intensity [16,70]. This method can be used both before and during labour but suffers
from periods of signal loss arising from misalignment following maternal movements.
Furthermore, performance reduces with increasing BMI [71]. Nevertheless, TOCO is the
most commonly used modality to monitor uterine contractions as it is non-invasive and
simple to use [70].

3.2.2. Intrauterine Pressure Catheter

An intrauterine pressure catheter (IUPC) is an invasive device placed inside the
amniotic space during labour to monitor uterine contractions. This method is unaffected
by maternal position and obesity and provides the most accurate measurement of the
frequency of contractions as well as their strength and duration [15]. Therefore, it is
considered the current gold standard for measuring UC. However, it requires the rupture
of the membranes and carries the risk of infection and other complications, which limit its
widespread use [72].

3.2.3. Non-Invasive Electrohysterogram

The electrohysterogram is a promising non-invasive technique that uses abdominal
electrodes to measure uterine electrical activity and derive uterine contractions [73]. The
main benefits of this method are that it gives a reliable measurement of the contractions
even with obese women compared to TOCO [16,71] and unlike IUPC can be used for
continuous UC monitoring in both pregnancy and during labour.

4. Computerised CTG Analysis Systems in Clinical Practice

The first computerised CTG analysis system was introduced by Dawes and Redman [30]
by analysing the morphology of the FHR to alert clinicians of the risk of pathological
outcomes during the antenatal period. In the same year, the Porto system was introduced,
which quantitatively adapts the FIGO guidelines for automated CTG analysis during
labour [31]. Later, this system was commercialised as SisPorto [74] and Omniview-SisPorto
(Speculum, Lisbon, Portugal) [75]. The latest version of this system, SisPorto 4.0 [76],
incorporates the FIGO’s 2015 guidelines and provides real-time alerts to features that
require attention or clinical intervention. INFANT (K2 Medical Systems, Plymouth, UK) is
another decision support system that analyses the FHR and UC patterns to provide alerts
to help clinicians during labour. Recently, a new prototype system primarily based on
the decelerative capacity of FHR called the OxSys was introduced to analyse and trigger
real-time alerts to clinicians [34].

Most of these systems have undergone years of work, rigorous testing, and clinical
validation through randomised control trials (RCTs). The largest RCT on 46,042 women
evaluated the INFANT system and concluded that the incidence of poor neonatal outcomes
was the same regardless of using the decision support system, 0.7% in both groups (adjusted
risk ratio 1.01, 95% CI:0.82–1.25) [33]. Another RCT on 7730 patients evaluated continuous
central fetal monitoring by computer analysis and real-time alerts of the Omniview-SisPorto
3.5 system with visual analysis and concluded that while both study arms reported lower
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than expected rate of newborn metabolic acidosis, no significant reduction in the metabolic
rate or obstetric intervention was achieved using computerised analysis (relative risk 0.69,
95% CI:0.36–1.31) [77]. Two recent meta-analyses also concluded similar findings that
computerised CTG analysis did not improve neonatal outcomes compared to conventional
evaluation [78,79]. In another study, a retrospective database of 22,790 women in labour
was evaluated using the prototype OxSys 1.5 system. They found that the OxSys system
potentially increased the sensitivity of fetal compromise detection (43.3% vs. 38.0% for
severe, p = 0.3 and 36.1% vs. 31.0% for moderate, p = 0.06) while reducing the false positive
rate (14.4% vs. 16.3%, p < 0.001) compared to conventional clinical diagnosis [34]; however,
the sensitivity increase was not statistically significant.

5. CTG Datasets

In order to develop new data-driven methods for CTG analysis during labour, it
can be seen that large datasets are necessary to capture uncommon clinical outcomes.
CTG recordings are typically stored by hospitals in paper format or as digital records
in electronic health systems. Research groups with access to digitally accessible records
have proposed a range of computer-based CTG analyses with varying dataset sizes, data
sampling frequencies, and outcome measures. Nevertheless, there are only two CTG
datasets currently available for public access: (1) The University of California, Irvine (UCI)
Machine Learning repository CTG dataset, consisting of 2126 records, each with 23 features
of FHR and UC signals classified into three classes of normal, suspect and pathological
by three expert obstetricians [80]; and (2) The Czech Technical University and University
Hospital in Brno (CTU-UHB) dataset, consisting of 552 CTG records with raw FHR and
UC signals [81]. It is important to note that the UCI dataset does not contain the raw FHR
and UC signals. Additionally, the Lyon dataset [38] and the Oxford dataset are used in the
literature [37], but these are not publically available. An overview of these four frequently
used datasets is shown in Table 1.

Table 1. Overview of public and private CTG datasets.

Dataset Signal Format Outcome Data Number of
Recordings Availability

UCI ML
Repository [80] FHR and UC features only

Three classes:
Normal (N)
Suspect (S)
Pathological (P)

2126
N = 1655
S = 295
P = 176

Public

CTU-UHB
Dataset [81] Raw FHR and UC at 4 Hz pH 552 Public

Lyon
Dataset [38] Raw FHR and UC at 10 Hz pH 1288 Private

Oxford
Dataset [37] Raw FHR and UC at 4 Hz pH 35,429 Private

6. FHR Pre-Processing Techniques

In routine practice, the FHR is monitored through Doppler ultrasound CTG or direct
fetal scalp electrode, or sometimes a combination of both. For example, FHR records of
the CTU-UHB dataset were acquired by a mixture of Doppler ultrasound CTG and direct
fECG [81]. These signals are contaminated by noises composed of artefacts and periods of
missing FHR values (denoted by zeros) as shown in Figure 3. Fetal/maternal movements
and the displacement of the transducers add noise to Doppler ultrasound CTG monitoring,
while vaginal examinations and maternal pushing contribute to noise in CTG monitoring
by direct fECG [14]. Generally, for Doppler ultrasound-based CTG, median signal loss is
reported to be between 5 and 8% for the first stage of labour and between 9 and 20% for
the second stage of labour. The direct fetal scalp electrode demonstrates lower median
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signal loss between 0.8 and 1% and 3 and 4% in the first and second stages of labour,
respectively [14,82,83]. For the above reasons, raw FHR data require pre-processing before
analyzing with computer-based methods like machine learning because low-quality data
prevent stability and convergence in the learning process [84]. Hence, pre-processing is a
crucial step in the automatic evaluation of FHR signals and generally involves the following
five steps, which may be performed in differing order:

1. Segment Selection
In clinical practice, labour is divided into three stages: Stage I is where the cervix
starts dilating (<10 cm) and frequent contractions occur; Stage II is the period from
when the cervix is fully dilated (10 cm) to when the baby is born; Stage III starts
after the baby is born and continues until delivery of placenta and membranes. In
the segment selection step, a signal segment with sufficient quality that is closer to
the delivery of the baby is typically selected as this is representative of the level of
asphyxia and correlates best with the cord pH at birth. Unfortunately, the FHR signal
is typically most affected by noise and artefacts at this point of labour [85]. FIGO
guidelines require the signal loss to be less than 20% for a signal to be acceptable
for evaluation [14]. Different prior studies have selected signal lengths varying from
10–60 min before birth to analyse, whilst others simply select the segment of trace
during a certain stage of the labour [44].

2. Artefact Removal
A typical baseline heart rate of a normal fetus varies between 110 bpm and 160 bpm,
and accelerations or decelerations occur when amplitude varies 15 bpm above or
below the baseline lasting for more than 15 s respectively [11]. In the artefact removal
step, values below 50 bpm and above 200 bpm are typically considered outliers
and removed [36]. In some studies, consecutive missing values of more than 15 s
(long gaps) are removed from the analysis [36,40,86]. For others, when the difference
between two adjacent FHR values exceeds 25 bpm, the corresponding signal segment
from the previous FHR value to the next stable segment is considered unstable and
removed [45,85]. A stable segment is a signal segment with five consecutive FHR
values having a difference of less than 10 bpm between them [31].

3. Signal Interpolation
The signal interpolation step employs techniques like linear [87] and spline [35]
interpolation to fill the missing FHR values created from the previous steps. Generally,
the interpolation is performed for gaps < 15 s, and the gaps > 15 s in the FHR are
either skipped or removed in subsequent feature extraction and deep learning training
processes [35,39,86]. In linear interpolation, these missing gaps are approximated
using the slope of the data points on either side of the gap. Spline interpolation uses a
set of low-degree polynomials called a spline to estimate the missing gaps to make
the signal smoother and continuous. When polynomials of degree 3 are used in the
spline, the resulting interpolation is called cubic spline interpolation. The Hermite
spline interpolation uses polynomials defined by the values and the derivatives at the
endpoints of the corresponding interval to estimate the missing values.

4. Downsampling
A typical fetal heart beats less than 3 times per second (<180 bpm), making some data
of the original FHR signals sampled at 4 Hz redundant [46,87]. Therefore, in this step,
the FHR signal is sometimes downsampled to reduce the computational complexity
and memory needed to process the input signals. For example, only 900 values are
required to represent a 60 min FHR signal at 0.25 Hz, compared to the 14,400 values
required for the same signal at 4 Hz.

5. Smoothing and Detrending
In some works, the final step in pre-processing was to smooth the FHR signal using a
median filter [44,88] or detrend the signal before using non-linear signal processing
techniques [44,89].
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Figure 3. Segment of CTG 1087 from CTU-UHB showing the artefacts and missing values of a raw
FHR signal. FHR values in the range 50–200 bpm are considered good values, while FHR values
below 50 bpm and above 200 bpm are considered outliers (artefacts). Zero values represent the
missing FHR values.

In addition to these conventional and straightforward steps, more sophisticated methods
also have been proposed for FHR noise removal and the recovery of missing samples [90,91].
An example of typical pre-processing steps applied to an FHR signal is shown in Figure 4,
as well as a summary of different pre-processing steps used by prior studies given in Table
2, demonstrating large differences in the pre-processing implementation across studies.

(a) Raw Signal

(b) Artefacts 
    Removal

(c) Linear 
     Interpolation

(d) Downsampling

(e) Segment
      Selection

Selected segment

Figure 4. Typical pre-processing steps on a FHR signal showing: (a) raw FHR signal at original
4 Hz sampling rate; (b) artefact removal of FHR values outside 50–200 bpm and non-physiological
values with variation among adjacent FHR values > 25 bpm; (c) linear interpolation to fill the missing
gaps—only gaps < 15 s are interpolated, the gaps > 15 s are shown as zeros, which will be either
skipped or removed in subsequent feature extraction or classification stages; (d) downsampled signal
at 0.25 Hz; and (e) last 60 min segment selected for analysis.
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Table 2. Overview of different FHR pre-processing techniques used in terms of segment selection,
artefact removal, signal interpolation, downsampling and signal detrending.

Year Authors Segment Selection Artefact Removal Signal Interpolation
Downsampling
Frequency

Smoothing
and
Detrending

2013,
2014

Spilka et al. [35,36] Not specified
FHR < 50 bpm or FHR > 210 bpm corrected
Long gaps > 15 s not included

Hermite spline None None

2016 Stylios et al. [39]
Last 30 min
of 1st stage of labour

Not specified Hermite spline None None

2017 Georgoulas et al. [40] Not specified
FHR < 50 bpm or FHR > 200 bpm corrected
Long gaps > 15 s not included

Hermite spline None None

2018 Cömert and
Kocamaz [47]

Last 15 min of
2nd stage of labour

FHR < 50 bpm or FHR > 200 bpm corrected
Long gaps > 15 s not included

Cubic Hermite spline None None

2018 Petrozziello et al. [87] Last 60 min of labour Not specified Linear None None

2018 Zhao et al. [43] Not specified

Adjacent 5 FHR values with variability < 10 bpm
and signal with zeros for >10 s not included
FHR ≤ 50 bpm or FHR ≥ 200 bpm corrected
FHR values with differences in adjacent values
exceeding 25 bpm corrected

Linear and
spline

None None

2018 Cömert et al. [44] Last 30 min of
1st stage of labour Outliers and artefacts corrected Cubic spline None

Detrending:
2nd order
polynomial

2018 Cömert et al. [88] Last part of the
1st stage of labour

Long gaps > 15 s not included
Outliers corrected

Cubic Hermite spline None

Smoothing:
Median filter
Detrending:
Not specified

2019 Fuentealba et al. [92] Last 25 min of labour FHR < 50 bpm or FHR > 200 bpm corrected Hermite spline None None

2019 Petrozziello et al. [37] Last 60 min regardless
of labour stage Not specified Linear 0.25 Hz None

2019 Zhao et al. [45,86] Not specified

FHR < 50 bpm or FHR > 200 bpm corrected
Long gaps >15 s not included
FHR values with differences in adjacent values
exceeding 25 bpm are corrected

Linear and
cubic spline

None None

2021 Liang and Li [89] Last 30 min of labour
FHR< 50 bpm or FHR > 200 bpm corrected
Long gaps >15 s not included

Hermite spline 1 Hz
Smoothing:
Median filter

2021 Liu et al. [46] Last 20 min of FHR

FHR < 50 bpm or FHR > 200 bpm corrected
Long gaps > 15 s not included
FHR values with differences in adjacent values
exceeding 25 bpm are corrected

Linear and
Hermite spline

1 Hz None

2021 O’Sullivan et al. [93] Not specified

FHR < 50 bpm or FHR > 210 bpm are corrected
Patients with more than 30% traces missing
are removed from the study
FHR values with a change greater than 30%
from the moving average are corrected

Not specified None None

7. UC Pre-Processing Techniques

Uterine contractions are commonly linked with FHR decelerations [94] and may
provide vital information about the fetus during labour. This requires capturing the
intensity, duration and shape of uterine contractions to make an assessment. However,
the UC signals obtained from CTG often exhibit poor quality due to technical constraints
due to the majority of signals being acquired using TOCO [87]. Clinical practice typically
takes this into account by only utilising UC signals when they are reliable [37]. Therefore,
for computerised CTG analysis methods to avoid utilising poor quality information, the
majority of studies exclude UC signals from their approaches [95]. In limited studies
such as [37,87], the raw UC signals are pre-processed by assessing the quality using an
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established autoregressive model [96]. Then, UC signals of poor quality are replaced by
zeros before using them in the computerised CTG analysis. Therefore, pre-processing
approaches for UC signals in the literature involve one of two methods: (1) the complete
exclusion of UC signals, where they are not considered or analyzed in the study or (2) the
replacement of poor-quality UC values with zeros, effectively removing or discounting
unreliable or noisy data points from the analysis.

8. Fetal Compromise Classification Criteria

Before training computerised CTG analysis approaches, it is necessary to assign labels
to the CTG data to represent the status of the fetus at birth. Different studies have used a
variety of classification criteria. The predominant objective indicator of fetal compromise
that has been used in the literature is the umbilical artery pH. The pH value indicates the
degree of fetal acidemia resulting from the dispersion of accumulated lactic acid in the fetal
circulation [26]. The fetal pH is typically measured from a sample, which may be acquired
from fetal scalp, umbilical arterial or umbilical venous blood. As fetal carbon dioxide is
removed through the umbilical arterial blood, it typically has a slightly higher pH reading
than venous blood. When arterial pH is used to define the class labels, it is important that
we only use the pH readings that are validated to prevent errors in the labels. An arterial pH
value that is measured is considered valid if it is at least 0.02 more than the venous pH [25].
BDecf and Apgar scores are two other predictors of fetal compromise used in the existing
literature. Typically, pH values below 7.05 and BDecf values above 10 mmol/L are strongly
correlated with adverse neonatal outcomes [26,27], whereas a 5-min Apgar score of less
than or equal to 6 indicates an increased risk of neonatal death [28]. Consequently, umbilical
artery pH, BDecf and Apgar scores are widely employed as common clinical endpoints
to define fetal compromise. In addition, Petroziello et al. [37] have used other fetal
outcomes such as stillbirth, neonatal death, neonatal encephalopathy, neonatal intubation,
and admission to neonatal intensive care for 48 h or more to define fetal compromise. Table
3 shows different classification criteria and thresholds used in the literature.

Table 3. Overview of different classification criteria used to define classes and their corresponding
class distribution.

Year Authors Datasets
Classification Criteria
(Denoting All Unhealthy Classes as Compromised
and Healthy Classes as Normal)

Number of Recordings

2013 Spilka et al. [35] CTU-UHB pH ≤ 7.05 as Compromised
Total = 552
Normal = 508
Compromised = 44

2013 Georgieva et al. [97] Subset of
Oxford Dataset

Training:
7.27 < pH < 7.33 as Normal
pH < 7.1 as Compromised

Testing:
7.22 < pH < 7.27 as Normal
pH < 7.1 as Compromised

Training set:
Total = 124
Normal = 62
Compromised = 62

Testing set:
Total = 252
Normal = 126
Compromised = 126

2016 Spilka et al. [38] Lyon Dataset
CTU-UHB pH ≤ 7.05 as Compromised

Training: Lyon DB
Total = 1288
Normal = 1251
Compromised = 37

Testing: CTU-UHB
Total = 420
Normal = 400
Compromised = 20

2016 Stylios et al. [39] CTU-UHB pH ≤ 7.05 as Compromised
Total = 552
Normal = 508
Compromised = 44
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Table 3. Cont.

Year Authors Datasets
Classification Criteria
(Denoting All Unhealthy Classes as Compromised
and Healthy Classes as Normal)

Number of Recordings

2017 Georgoulas et al. [40] CTU-UHB pH ≤ 7.05 as Compromised
Total = 552
Normal = 508
Compromised = 44

2017 Spilka et al. [98] Lyon Dataset pH ≤ 7.05 as Compromised
Total = 1288
Normal = 1251
Compromised = 37

2018 Cömert and Kocamaz [47] CTU-UHB pH < 7.2 as Compromised
Total = 552
Normal = 375
Compromised = 177

2018 Feng et al. [41] CTU-UHB pH > 7.2 as Normal
pH < 7.1 as Compromised

Total = 447
Normal = 358
Compromised = 62

2018 Petrozziello et al. [87] Oxford Dataset pH < 7.05 as Compromised
Total = 35,429
Normal = 33,959
Compromised = 1470

2018 Zhao et al. [43] CTU-UHB pH < 7.15 as Compromised
Total = 552
Normal = 447
Compromised = 105

2018 Cömert et al. [44] CTU-UHB pH ≤ 7.15 as Compromised
Total = 552
Normal = 439
Compromised = 113

2018 Cömert et al. [88] CTU-UHB pH ≤ 7.15 as Compromised
Total = 552
Normal = 439
Compromised = 113

2019 Fuentealba et al. [92] CTU-UHB pH > 7.2 and BDecf < 12 as Normal
pH < 7.05 and BDecf ≥ 12 as Compromised

Total = 372
Normal = 354
Compromised = 18

2019 Petrozziello et al. [37]
Oxford Dataset
CTU-UHB
Lyon Dataset

Normal: pH ≥ 7.15
Severe Compromise: pH < 7.05 and
a composite outcome of stillbirth; neonatal death;
neonatal encephalopathy; intubation or
cardiac massage followed by admission to
neonatal intensive care for ≥ 48 h
Moderate Compromise: pH < 7.05
Intermediate: 7.05 ≤ pH < 7.15

Oxford Dataset
Training: 30,115
Testing: 4429

Normal = 4249
Moderate/Severe compromise
with pH < 7.05 = 180

Testing: CTU-UHB
Total = 552
Normal = 512
Compromised = 40

2019 Zhao et al. [86] CTU-UHB pH ≥ 7.15 as Normal
pH < 7.15 as Compromised

Normal = 447, Compromised = 105
After CWT:
Normal = 2682
Compromised = 630

2019 Zhao et al. [45] CTU-UHB pH < 7.15 as Compromised

Normal = 105, Compromised = 105
After RP 2D:
Normal = 21,000
Compromised = 21,000

2020 Furuya et al. [99] Private 5-min Apgar score < 8
or pH < 7.1 as Compromised

Total = 1301
Normal = 1184
Compromised = 117

2021 Liang and Li [89] CTU-UHB pH ≤ 7.05 as Compromised
Total = 552
Normal = 508
Compromised = 44

2021 Liu et al. [46] CTU-UHB pH ≤ 7.15 as Compromised
Total = 552
Normal = 439
Compromised = 113

2021 O’Sullivan et al. [93] CTU-UHB pH ≥ 7.15 and Apgar 5 ≥ 9 as Normal
pH ≤ 7.0 or Apgar 5 ≤ 6 as Compromised

Total = 333
Normal = 310
Compromised = 23



Bioengineering 2023, 10, 1007 13 of 28

9. Automated Fetal Compromise Classification Methods

The development of automated fetal compromise classification approaches began with
classical feature-based machine learning methods [35,36] and later evolved to modern deep
learning methods [37,86]. Classical methods use additional steps like feature extraction and
selection to identify the most relevant features from the raw CTG signals, while modern
deep learning methods work directly on the raw CTG signals. In this section, we review
the basis of each stream. Figure 5 provides an overview of how the pre-processing steps
and classification methods work in sequence.

Database of CTGs with Labor
outcome

Data Pre-processing

Classical Machine
Learning Approach Deep Learning Approach

Feature Extraction

Feature Selection

Machine Learning
Classifier

Performance Evaluation Performance Evaluation

Deep Learning
Model

Figure 5. An overview of the steps for the computerised analysis of fetal compromise showing the
classical machine learning approach and deep learning approach.

9.1. Feature Extraction

Feature extraction plays a crucial role in fetal compromise detection. This process is
aimed at extracting relevant information or characteristics from the raw CTG signals. These
extracted features serve as indicators of fetal health, allowing healthcare professionals or
computerised methods to monitor and evaluate the condition of the fetus. The extracted
features used in classification algorithms in existing studies can be broadly categorised into
the following categories: (1) morphological and time domain, (2) frequency domain and
(3) non-linear.

9.1.1. Morphological and Time Domain

The basic morphological features defined by the FIGO guidelines for evaluating CTG
signals are baseline, acceleration, deceleration and variability [11]. These are characterised
by the structure of the FHR waveform and are easily visible to the naked eye. Therefore,
these are routinely used by obstetricians and midwives in the visual assessment of CTGs in
clinical practice [43]. Inspired by this, initial automatic classification systems used statistical
techniques to compute new time domain features such as short-term variability (STV) and
long-term irregularity (LTI), which quantify the variability in the FHR in the short term
and long term, respectively, as well as the delta, total delta, mean and standard deviation
of FHR [100].
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9.1.2. Frequency Domain

Frequency domain methods assess the spectral energy content in each frequency com-
ponent of the FHR and use them as features. The range of the FHR signal in the frequency
domain is often divided into four bands: very low frequency (VLF: 0–0.03 Hz, associated
with a long time period and non-linear contributions), low frequency (LF: 0.03–0.15 Hz, re-
lated to fetal sympathetic nervous system activity), high frequency (HF: 0.5–1 Hz, reflecting
fetal breathing) and movement frequency (MF: 0.15–0.5 Hz, correlated with fetal move-
ments and maternal activity) [101]. The power spectral density is estimated in each band
using Fourier transform, autoregressive or wavelet transform-based models [49]. Inspired
by the usage of the ratio of LF/HF in the analysis of adult heart rate variability (HRV), a
similar ratio computed as LF/(MF+HF) has been used as another fetal HRV feature as it
quantifies the balance of parts of the fetal autonomic nervous system [102]. Although the
frequency domain features can inspect periodic trends in heart rate variations, they are
sensitive to artefacts and do not identify non-periodic trends in the FHR variations [49].

9.1.3. Non-Linear Domain

Non-linear features were introduced to investigate and quantify non-periodic varia-
tions of the FHR signals. Almost all non-linear features used for FHR analysis are intro-
duced from adult HRV research. Among them, the most frequently used are approximate
entropy and sample entropy, which contain information on the fetal state [103], as well
as Lempel Ziv Complexity, which is a non-linear feature used to examine the recurring
patterns in a continuous signal [104]. Phase-rectified signal averaging is another non-linear
method that is used to calculate the decelerative capacity of FHR. This feature quantifies the
downward movement of FHR and has shown significantly better performance for acidosis
prediction compared to STV [105]. Symbolic dynamics analysis, fractal analysis, detrended
fluctuation analysis and Poincaré maps are other techniques used in the literature to com-
pute other non-linear features for FHR analysis [49]. However, analysing FHR using these
features has two major limitations: (1) the accuracy of these measures relies on the quality
of the FHR signal and (2) a specific data length needs to be selected to obtain a reliable
estimate of the values for non-linear features [106].

9.2. Feature Selection

All features calculated across these categories might not be as informative as expected
and might contain overlapping information. Therefore, a feature selection or dimensionality
reduction step is often used to determine the most influential features that contain useful
information for classification. An optimal selection of features will in return improve
the computational efficiency and potentially improve the discriminative capability of
the classifier [35]. Principal component analysis (PCA) [107], information gain [95], and
relevance in estimation features (RELIEF) [35] are feature selection methods often used
in literature.

9.3. Classical Machine Learning Classifiers

Initially, research in automated fetal compromise detection was based on simple
logic-based computer software algorithms that resembled the clinical decision-making
process based on the FHR baseline, accelerations and deceleration [29]. Later, with the
advancement of machine learning algorithms, these methods utilised feature extraction and
feature selection steps prior to use in classical ML algorithms such as Bayesian models [108],
support vector machines (SVM) [39,98,109], adaptive boosting (AdaBoost) [43], random
forest (RF) [36,110], decision trees (DT) [43], deep Gaussian processes (DGP) [41], logistic
regression (LR) [93] and artificial neural networks (ANN) [111,112] for detecting fetal
compromise. The following sections summarise feature-based machine-learning methods
used for fetal compromise detection.
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9.3.1. AdaBoost

Adaboost is an ensemble learning algorithm that combines multiple weak classifiers to
create a strong classifier to reduce overfitting and improve performance. Spilka et al. [35]
utilised the nearest mean classifier with AdaBoost to classify pathological cases of FHR
using more than 50 features taken from morphological, frequency and non-linear domain
features. This method utilised the RELIEF technique for feature selection and the synthetic
minority oversampling technique (SMOTE) to tackle the class imbalance of the data before
classification. Zhao et al. [43] proposed new software for computerised analysis of the FHR
signal (CAS-FHR) that extracts 47 comprehensive features covering morphological, time,
frequency and nonlinear domains. The same study compared decision trees, SVM and
AdaBoost machine learning algorithms for assessing fetal state and found that AdaBoost
had a stronger performance for classification.

9.3.2. Artificial Neural Networks

Artificial neural networks are highly flexible and powerful models inspired by the
human brain, capable of learning complex patterns and relationships in data through
interconnected layers of neurons. Georgieva et al. [97] used six clinical features and six
features from the FHR as input data to a feed-forward ANN. PCA was utilised for feature
selection prior to using it as input to the ANN. Classifier performance was improved by
averaging the output of 10 independently trained ANNs and testing on a larger dataset
consisting of 7568 cases. Comert and Kocamaz [113] showed that ANNs gave better results
in classifying FHR signals as hypoxic or normal compared to other ML algorithms like
SVMs, extreme learning machines, radial basis function networks, and RFs. In another
study, Comert and Kocamaz [111] analysed the effects of linear and non-linear features of
FHR on the performance of detecting fetal compromise for three stages of labour. By using
ANN as the classifier, they identified that using linear and non-linear features together
gave the best performance and that the contribution of non-linear features was greatest for
the second stage of labour.

9.3.3. Bayesian Models

Bayesian models provide a probabilistic framework for modelling uncertainty and
incorporating prior knowledge. Dash et al. [108] employed Bayesian models to classify fetal
status based on selected FHR features and found that it demonstrated better performance
compared to SVMs.

9.3.4. Decision Trees

Decision trees are simple yet powerful algorithms that provide an interpretable and
effective approach for fetal compromise detection. Zhao et al. [43] compared decision trees
with other ML algorithms and demonstrated their efficacy in assessing fetal state. However,
its performance was lower than the AdaBoost model compared in the same work.

9.3.5. Deep Gaussian Processes

Deep Gaussian Processes are flexible models that can capture complex relationships
while also providing uncertainty estimates to aid decision-making. Feng et al. [41] used a
different approach by utilizing the UC signal with the corresponding FHR signal in DGPs
to improve the performance of the classification of fetal well-being.

9.3.6. Logistic Regression

Logistic regression is a linear classifier that can be used to model the relationship
between input features and the probability of fetal compromise. O’Sullivan et al. [93]
showed that including electronic health records and the duration of the last two stages
of labour in addition to the CTG features improved the performance of the LR model in
identifying fetal compromise.
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9.3.7. Random Forest

Random forest is an ensemble method that can combine multiple decision trees,
providing robustness against overfitting and the ability to capture complex relationships.
Spilka et al. [36] used latent class analysis to define classes and employed the RF algorithm
for classification as it provides faster training than the boosting classifiers. Afridi et al. [110]
also showed the effectiveness of using RF models for discriminating fetal status.

9.3.8. SVM

Support vector machines are binary classifiers that find the best hyperplane to separate
classes by maximizing the margin between them, allowing for effective handling of both
linear and non-linear decision boundaries. Georgoulas et al. [114] proposed a novel
method to extract scale dependant features of FHR signal using discrete wavelet transform
(DWT) and used SVMs for classification. In [107], Georgoulas et al. used SVMs to predict
the risk of metabolic acidosis using FHR features extracted from the time and frequency
domain in addition to its morphological features. The experimental results of this work
indicated that the SVM classifier with the radial basis function (RBF) kernel shows better
classification performance than using SVMs with polynomial kernels. SVM is also used in
[109] to detect normal or at-risk fetuses based on FHR features extracted through empirical
mode decomposition. A different study by Stylios et al. [39] showed that the least square
support vector machine (LS-SVM) can be used to discriminate compromised from healthy
fetuses. In another study [44], LS-SVM showed increased classification accuracy of the fetal
hypoxic assessment when features found using the novel approach called image-based
time-frequency (ITBF) analysis were used. Similarly, sparse SVM classification managed to
outperform clinical practice in fetal acidosis detection by selecting only a small number of
features [98].

9.4. Deep Learning-Based Classifiers

Deep learning-based classifiers are powerful modern approaches that greatly benefit
from the availability of well-defined, open-access databases as they allow for the learning
of complex characteristics independently from the raw data without relying on the features
derived from human knowledge. In prior works on automatic fetal compromise detection,
the most typically used deep learning algorithms are convolutional neural networks (CNN)
and long short-term memory networks (LSTM). CNNs can capture hidden characteristics
of both spatial and temporal data, while LSTMs are capable of capturing both long- and
short-term dependencies in time-series data [87].

These methods have high computational complexity during the training process, but
once trained they can be configured to predict fetal compromise in real-time. However,
to achieve this, deep learning models should be trained using diverse and large datasets
for the model to generalise better. Otherwise, these methods can overfit the training data
and perform poorly on unseen data. The following sections summarise the recent deep
learning-based methods used for fetal compromise detection.

9.4.1. Convolutional Neural Networks

CNNs are deep learning models specifically designed to automatically extract relevant
features from raw data, enabling the detection of fetal compromise by capturing intricate
patterns and spatial dependencies. One of the main benefits of CNNs is their ability to
simplify the model through weight sharing and subsampling [115]. Nevertheless, CNNs
primarily learn local features and lack knowledge about the global relationships within the
data. Additionally, CNNs require a substantial number of training samples to enhance the
model’s generalisation. In the domain of FHR classification, the effectiveness of 1D CNN
has been demonstrated. This type of CNN can process a time series of FHR signal data,
extracting features by applying various kernels to classify the signal as normal or compro-
mised. Petrozziello et al. [87] compared both LSTM and CNN models using a dataset of
over 35,000 labouring CTGs. The results indicated that both LSTM and CNN outperformed
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clinical practice in predicting fetal compromise and concluded that CNNs surpassed con-
ventional classification methods based on feature extraction. Petrozziello et al. [37] further
explored the use of a multimodal CNN (MCNN) for predicting fetal acidemia at birth. This
approach employed a quality vector, UC, and FHR signals as inputs to the MCNN model.
Their MCNN outperformed the current clinical practice and OxSys1.5 [34] prototype sys-
tem in evaluating fetal compromise during labour. Additionally, a stacked MCNN was
proposed, where the output from the first MCNN, computed on the last 60 min of the
first stage of labour CTG signals, served as input to a second MCNN. The second MCNN
also used the last 30 min of the second stage of labour CTG signals as input, ultimately
providing the final classification outcome. However, the best performance was reported
by the MCNN when analysed on the last 60 min of CTG signal regardless of labour. In a
different study, Li et al. [116] divided a 20-min FHR segment into 10 window segments and
used a CNN to process them in parallel. A majority voting technique was used to provide
the final outcome. They showcased the superiority of the CNN approach by comparing
it with a feature-based SVM and a multilayer perceptron classification. Zhao et al. [86]
presented a different approach using a 2D CNN with 2D images obtained from continuous
wavelet transform (CWT) to automatically predict fetal acidemia. Furthermore, the same
authors utilised a 2D CNN with 2D images constructed using a recurrence plot (RP) to
capture the non-linear characteristics of the FHR signals, aiming to predict fetal hypoxia.

9.4.2. Long Short-Term Memory Networks

LSTMs are a type of recurrent neural network that can effectively model temporal
dependencies in sequential data, making them suited for fetal compromise detection
by capturing long-term dependencies and recognizing patterns over time. The study
by Petrozziello et al. [87] examined CNN and LSTM as two standalone models and
demonstrated that CNNs outperform LSTM in predicting fetal compromise. However,
work by Liu et al. [46] shows that a novel attention-based method combining CNN and
a bi-directional LSTM (CNN-BiLSTM) can achieve satisfactory performance in detecting
fetal compromise. Its CNN-BiLSTM captures complex non-linear, spatial and temporal
characteristics of the FHR, while the attention mechanism focuses on the important features
of the input. However, this architecture showed overfitting, and DWT was used to obtain
another feature to reduce the issue of overfitting.

A summary of computerised fetal compromise detection methods along with their
strengths and limitations is presented in Table 4.

9.5. Performance Evaluation

Fetal compromise detection using CTG data suffers from a high imbalance in classes.
For example, only about 7% of CTU-UHB traces fall under compromised cases when a pH
threshold of 7.05 is used as the outcome measure. Several approaches like under-sampling
the majority class [117], oversampling the minority class [35] and using class weights in the
loss function [37] are used to tackle the disproportion in classes. Under-sampling is usually
not desirable as it may result in the loss of important data [118].

When evaluating an ML or DL model, the whole dataset is separated into two sets:
a training set and a test set. When only a single division of a training set and a test set
is allocated for evaluation, this is called a holdout. Despite the faster evaluation of this
method, the model performance has a significant bias towards the data points allocated
to the test set and therefore will depend on how the division is made. Especially when
smaller datasets are used, the generalizability of the trained model will be lower. Hence,
to overcome this limitation k-fold cross-validation is typically used. Here, the dataset is
divided into k subsets and the holdout method is repeated k times. At each time, one of the
subsets is kept for testing while the remaining subsets are used for training. Finally, the
average performance across all k trials is reported.
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Table 4. Summary of computer-based fetal compromise detection methods and their strengths
and limitations.

Computerised Method Strengths Limitations Computational
Cost

Features

Morphological
and Time Domain

Macroscopic features suitable for visual
inspection Recognised clinical value for
several features

Some features based on statistical
computation with no direct link to
fetal physiology

NA∗Frequency
Domain

Capture periodic trends in
FHR variations

Difficult to observe via visual inspective
Sensitive to artefacts
Does not identify non-periodic trends in
FHR variations

Non-Linear Quantify complex non-periodic
variations of FHR

Sensitive to artefacts
Values depend on the choice of
parameters Some highly depend on the
FHR signal length

Classical Machine Learning Internal operation is more
easily understandable

Human involvement needed for feature
extraction and selection Low–High

ML Classifiers

Adaboost Reduces the risk of overfitting by
combining multiple weak classifiers

Computationally expensive due to the
iterative nature of the algorithm Medium

ANN Learns complex relationships
among features

Prone to overfitting when a higher
number of layers used Medium

Bayesian
Models

Can incorporate prior knowledge and
domain expertise through
prior distributions

Computationally expensive for
large datasets High

Decision Trees Easy to interpret and visualise Prone to overfitting if not
properly regularised Low

Deep Gaussian
Processes

Can learn complex,
non-linear relationships

Can be challenging to interpret and
visualise Computationally expensive for
large datasets

High

Logistic
Regression

Simple and efficient
Provides probabilistic outputs useful
for interpretation

May not capture complex interactions
between features Low

Random Forest Robust against overfitting due to
ensemble of decision trees

Computationally expensive for
large datasets Medium

SVM

Effective in high-dimensional spaces
Works well on small datasets
Can handle linear and non-linear
decision boundaries

Can be sensitive to the choice of kernel
function and hyperparameters
Computationally expensive for
large datasets

Medium

Deep Learning
Feature extraction and selection are
not needed
Learns complex features from raw data

Lack of interpretability and transparency
of operation
High computational complexity

High

DL Classifiers

CNN Reduces the complexity of the model by
weight sharing and subsampling

Does not learn global relationships
Requires more training samples
for generalisation

High

LSTM Widely used for time series forecasting
Learns temporal features

Takes longer time to train
Requires more training samples
for generalisation

Higher

* NA = Not applicable.

To measure the performance of computerised fetal compromise detection algorithms,
various metrics are utilised in the literature. Traditional metrics like accuracy and error rate
are not suitable for evaluating the performance of the classifiers on imbalanced data as they
are sensitive to the distribution of the data. Alternative measures, including sensitivity,
specificity, F-measure, Matthew’s correlation coefficient and geometric mean derived from
the confusion matrix, are typically used to present their performance [118].

Sensitivity and specificity are preferred metrics as the objective of computerised fetal
compromise detection is to maximise the number of the correctly predicted positive class
while minimising the number of the incorrectly predicted negative class. However, sensi-
tivity and specificity are often inversely correlated, so some trade-off in specificity has to be
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tolerated. Often, receiver operating characteristics (ROC) curves are formed by plotting
true positive rates (equivalent to sensitivity) against false positive rates (equivalent to
100%—specificity) for different thresholds. These curves provide a graphical representation
of the performance of the classifier across different sensitivity and specificity thresholds.
A single metric called area under the curve (AUC) is computed after plotting the ROC
to assess the performance of different classifiers. AUC values greater than 0.5 mean that
the model is performing better than random chance, while an AUC value of 1.0 indicates
perfect classification. A summary of the evaluation metrics used in the literature is given
in Table 5. The performance of computerised CTG analysis methods according to these
performance metrics is given in Table 6.

Table 5. Summary of evaluation metrics used in the literature.

Metric Name Equation Description

Accuracy (Acc) Acc = TP+TN
TP+TN+FP+FN

The simple ratio between the number of
correctly predicted points to the total number
of points (probability of correct predictions)
Not suitable for imbalanced datasets

Sensitivity (Se) Se = TP
TP+FN

The proportion of the correctly predicted positive
instances from the total positive instances

Specificity (Sp) Sp = TN
TN+FP

The proportion of the correctly predicted negative
instances from the total negative instances

Precision precision = TP
TP+FP

The proportion of the correctly predicted positive
instances from the total classified positive instances

Geometric mean
(g −mean) g−mean =

√
Se× Sp

Measure of the balance between classification
performances in both the majority and
minority classes

Harmonic mean
(F −measure) F−measure = 2×Se×precision

Se+precision A measure of the effectiveness of classification

Matthew’s correlation
coefficient (MCC) MCC = TP×TN−FP×FN√

(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

Minimally influenced by imbalanced data,
the correlation coefficient between the observed
and predicted classifications (range from −1 to +1),
+1 : perfect prediction
0 : no better than random prediction
−1 : worst prediction

Area under the receiver
operating characteristic
curve (AUC)

Plot of the true positive rate vs. the false positive rate
at all possible thresholds

Higher the AUC, the better the performance of the
model at distinguishing between the classes
Used to compare and evaluate different
classification algorithms

Table 6. Performance of computer-based approaches for fetal compromise detection on the open-
source CTU-UHB dataset. Performance is reported per classifier type when multiple approaches are
used in a single work.

Year Authors Training Method † Sensitivity (%) Specificity (%) AUC Independent
Test/Train Data

Complete CTU-UHB
at Threshold
pH < 7.05 or pH ≤ 7.05

2013 Spilka et al. [35]
ID: FHR features augmented by SMOTE
CT: Nearest mean classifier with AdaBoost
CV: 44-fold

64.00 65.00 Not specified Yes Yes

2014 Spilka et al. [36]
ID: FHR features
CT: RF
CV: 2-fold repeated 5 times

72.00 78.00 Not specified Yes

No, subset of dataset used
and labelled
using clinical
annotations.

2016 Cömert and
Kocamaz [112]

ID: FHR features
CT: ANN
CV: 5-fold

88.70 85.10 Not specified Yes No, subset of 100 records
randomly chosen.

2016 Cömert and
Kocamaz [111]

ID: FHR features
CT: ANN, for 3 stages of labour
CV: 10-fold

I = 95.89
II = 87.06
III = 85.87

I = 74.75
II = 75.90
III = 72.73

Not specified Yes No, complete dataset used but
labelled using clinical annotations.

2016 Spilka et al. [38]
ID: FHR features
CT: Sparse SVM
CV: Train—Lyon Dataset, Test—CTU-UHB

40.00 86.00 0.79 Yes No, subset of dataset which has
less than 50% signal loss.
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Table 6. Cont.

Year Authors Training Method † Sensitivity (%) Specificity (%) AUC Independent
Test/Train Data

Complete CTU-UHB
at Threshold
pH < 7.05 or pH ≤ 7.05

2016 Stylios et al. [39]
ID: FHR features
CT: LS SVM with RBF kernel
CV: 44-fold repeated 15 times

68.50 77.70 Not specified Yes Yes

2017 Georgoulas et al. [40]
ID: FHR features
CT: LS SVM
CV: 44-fold

72.12 65.30 Not specified Yes Yes

2018 Cömert and
Kocamaz [47]

ID: FHR features
CT: ANN, SVM, k-NN
CV: 10-fold repeated 30 times

ANN = 68.52
SVM = 76.83
k-NN = 53.28

ANN = 70.29
SVM = 78.27
k-NN = 66.80

ANN = 0.76
SVM = 0.84
k-NN = 0.64

Yes
No, complete dataset used
but with compromise defined
by pH < 7.2.

2018 Feng et al. [41]
ID: FHR and UC features
CT: Supervised two-layer DGP network
CV: No CV but repeated 5 times

FHR = 73.00
FHR+UC = 91.00

FHR = 91.00
FHR+UC = 82.00 Not specified Yes

No, subset of dataset used
with compromise defined
by pH < 7.1.

2018 Petrozziello et al. [87]
ID: Raw FHR and UC
CT: CNN, LSTM
CV: Train—Oxford dataset, Test—CTU-UHB

Not specified Not specified CNN = 0.82
LSTM = 0.81 Yes Yes

2018 Zhao et al. [43]
ID: FHR features
CT: AdaBoost
CV: 10-fold CV

92.00 90.00 0.91
No, unclear whether
data samples have been
used multiple times.

No, complete dataset used
with compromise defined
by pH < 7.15.

2018 Cömert et al. [44]
ID: FHR features
CT: LS SVM with RBF kernel
CV: 10-fol repeated 100 times

63.45 65.88 0.65 Yes
No, complete dataset used
with compromise defined
by pH < 7.15.

2018 Cömert et al. [88]
ID: FHR features
CT: SVM with RBF kernel
CV: 10-fold repeated 30 times

57.42 70.11 Not specified Yes
No, complete dataset used
with compromise defined
by pH < 7.15.

2019 Petrozziello et al. [37]
ID: Raw FHR and UC, FHR quality score
CT: MCNN, stacked MCNN
CV: Train—Oxford dataset, Test—CTU-UHB

MCNN *
33.00
48.00
58.00
65.00

Stacked MCNN *
33.00
45.00
58.00
65.00

MCNN *
95.00
90.00
85.00
80.00

Stacked MCNN *
95.00
90.00
85.00
80.00

MCNN = 0.81

Stacked MCNN = 0.82 Yes Yes

2019 Zhao et al. [86]
ID: Raw FHR transformed to 2D using CWT
CT: 8-layer CNN
CV: 10-fold

98.22 94.84 0.97 No, data augmented
before data split.

No, complete dataset used
with compromise defined
by pH < 7.15.

2019 Zhao et al. [45]
ID: Raw FHR transformed to 2D image using RP
CT: 8-layer CNN
CV: 10-fold

99.29 98.1 0.98 No, data augmented
before data split.

No, subset of dataset used
with compromise defined
by pH < 7.15.

2021 Liang and Li [89]
ID: Raw FHR
CT: CNN based on a weighted voting mechanism
CV: No CV but holdout test set

80.93 79.85 0.90 Yes
No, performance is reported
on a small holdout set of
the dataset.

2021 Liu et al. [46]
ID: Raw FHR
CT: CNN + BiLSTM + Attention + DWT
CV: 10-fold repeated 10 times

75.23 70.82 Not specified Yes
No, complete dataset used
with compromise defined
by pH < 7.15.

2021 O’Sullivan et al. [93]

ID: FHR and UC features, EHR,
duration of stage I and II labour
CT: Logistic regression
CV: 5-fold

82.60 77.70 0.81 Yes
No, subset of dataset used
with compromise defined
by pH < 7.0 or Apgar≤6.

† ID = input data, CT = classifier type and CV = cross validation. * Multiple sensitivity/specificity pairs given.

10. Discussion

This review highlights that a comprehensive understanding of the complex and het-
erogeneous nature of cardiotocography signals for detecting fetal compromise remains an
open challenge. In addition to questions about the most relevant physiological features of
CTG signals for interpreting fetal state, we draw attention to several additional technical
challenges, as follows.

It can be seen that a common challenge faced by all computerised CTG analysis
methods is the quality of the CTG data acquired. Petrozziello et al. [37] showed that
quantification of signal quality is important and poor signal quality results in the adverse
performance of the models. They achieved the current state-of-the-art AUC of 0.82 on the en-
tire CTU-UHB database in fetal compromise prediction with pH threshold < 7.05 by using
a quality parameter as an input along with FHR and UC in their MCNN model. Although
direct fECG provides superior signal quality, its invasiveness prevents its widespread use.
The performance of the non-invasive Doppler ultrasound-based CTG and NI-fECG meth-
ods also differ significantly from the current gold standard of direct fECG measurement.
According to prior studies, NI-fECG demonstrates a mean positive percent agreement with
the fetal scalp electrode between 81 and 83%, compared to 62–73% for Doppler ultrasound
CTG [61,62]. Despite the lower agreement, Doppler ultrasound-based CTG is still the most
widely used monitoring technique. For instance, about 75% of the CTU-UHB dataset is
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acquired from Doppler ultrasound-based CTG. This raises questions of whether the perfor-
mance of all computerised CTG analysis methods are impacted by the quality of Doppler
ultrasound-based records. We suggest that future work should look at the viability of using
only direct fetal ECG or NI-fECG records for training computerised CTG algorithms for
fetal compromise prediction and compare these to ultrasound-based methods.

Further, it is important to note that the direct fetal ECG or NI-fECG terms in the context
of these studies are more closely related to QRS detection and heart rate trends rather than
true fECG, which entails more comprehensive cardiac waveform display and time intervals.
Therefore, we suggest that future works may also evaluate the potential of the raw fECG
signal and its features for detecting fetal compromise.

As highlighted by Table 3, different classification criteria like base deficit, Apgar scores,
and umbilical cord pH are used to define the fetal compromise where the latter is the most
widely used. According to [119], the umbilical artery base deficit is comparable or inferior
to pH as a perinatal outcome measure. Further, the results of [119,120] show that low
cord pH is strongly associated with poor perinatal outcomes and therefore is a strong
candidate for verifying the performance of computerised CTG analyses. Different pH
thresholds such as 7.05 [35,37–40], 7.10 [41,42], 7.15 [43–46] and 7.20 [47] have been used in
existing studies to define the fetal compromised babies. This use of multiple pH thresholds
hinders the comparison, improvement and criticism among different proposed methods.
Therefore, agreeing on common criteria by the research community is essential to drive
this field forward. As can be seen in Table 3, a pH threshold of 7.05 is the most widely
used criterion to define fetal compromise. Therefore, we propose that future works should
adopt this criterion as the standard to define fetal compromise and use it when reporting
the performance of new computerised methods for fetal compromise detection.

As the performance of the algorithms depends on the data itself, pre-processing plays
a large role in the comparison of different computerised analysis methods. Comparing
different studies without a standard pre-processing procedure may lead to incorrect conclu-
sions about whether a particular classifier or feature set is superior to a previously identified
work. We have summarised the typical pre-processing steps in Figure 4, but there is yet no
conclusive evidence of the optimum signal length, artefact removal, interpolation method,
downsampling frequency or smoothing technique that should be used. Future work should
try to address these questions to define a standard pre-processing methodology. Moreover,
data manipulation, like data augmentation, should be carefully carried out such that no
information is leaked into the test set. If this happens, the results will be subject to bias and
the conclusions could be misleading [121]. For example, we believe that the performances
achieved by the two studies [45,86] are likely not representative of real-world performance
as the data is augmented using CWT and RP before the data is split into training and test
sets. Therefore, care should be taken when pre-processing and splitting the data so that the
independence of the test set is maintained.

Furthermore, existing analysis methods primarily use static and long segment lengths
taken from the end of the CTG recording for detecting fetal compromise [37,89,98]. This
results in predictions only made close to the time of delivery, leaving inadequate time for
the clinicians to make clinical interventions. Therefore, studies such as [98] have suggested
that future work should assess the evolution of FHR over time rather than evaluating
a static segment. A method of this nature will be more clinically relevant as this could
potentially detect fetal compromise events much earlier and enable clinical intervention.

In considering prediction at earlier time points, currently a single label is given to the
overall CTG trace based on a clinical metric typically taken after birth (i.e., pH < 7.05),
making it a ‘weak label’ where it is unclear whether a particular section of the CTG trace
contains an abnormality or not. In particular, if it is assumed that the labels are correct,
the information regarding the specific location of the abnormality on the CTG trace is
not known. Therefore, there is a significant risk of introducing noisy labels unless the
distress is chronic and prevails throughout the extent of the trace. However, different types
of fetal hypoxia exist such as acute, subacute, evolving and chronic, and they generally
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occur in different forms [56]. Some cases show evidence of distress in the CTG but no
acidemia in blood gas analysis. One reason could be the treatment paradox. A treatment
paradox is when the strong predictor of a complication results in rapid intervention and
improved outcomes as a result of effective treatment [122], thereby making the class labels
unreliable. An approach to making the labels more reliable in theory would be to use
clinical experts to annotate the CTGs. This consideration has led to the creation of two new
sets of expert annotated labels for the CTU-UHB dataset, which are also available for public
access [21,123]. Conversely, this would again lead to the primary issue of human bias in
deciding the labels for each recording.

Another aspect studied by researchers is the usage of electronic health records (EHR)
as input to the classifier. The study [93] used clinical variables, including gestation, parity,
hypertension and the duration of stages of labour to show that the classifier performance
can be enhanced by using EHR information. These records can provide valuable informa-
tion on the baby and the mother, but it is essential that we only include health records that
are known prior to or during labour because the end goal is the real-time detection of fetal
compromise during labour.

In evaluating the performance of the computerised approaches for fetal compromise
detection, various metrics have been used in the literature. However, the main objective
of these methods should be to achieve a high sensitivity while maintaining high speci-
ficity. Since specificity decreases when sensitivity increases, a certain degree of specificity
decrease has to be tolerated. The current clinical sensitivity or true positive rate (TPR) in
detecting fetal compromise is about 31–48% at a 16–21% false positive rate (FPR) [34,37,124].
Therefore, the research community should agree to present their performance in terms
of TPR at approximately 10–20% FPR such that it can be compared with current clinical
performance. This then raises an important question of what would be a necessary level to
use in clinical practice. According to Georgieva et al. [34], the performance should exceed
60% TPR at 15% FPR to gain tangible clinical benefits. Nevertheless, this is still debatable,
and consensus must be reached to achieve clinical translation in the future.

As can be seen from Table 6, the current best performance achieved on the com-
plete CTU-UHB dataset with pH threshold < 7.05 is 33–65% TPR at 5–20% FPR by
Petroziello et al. [37]. Although there are other studies that have reported higher per-
formance, they have either used a different class definition criteria or have only used a
subset of the dataset to report performance. A subset of the dataset is chosen by some
studies [38,45] either to balance the distribution of classes or to remove records based on
signal loss. We believe that the imbalanced nature of the compromised and normal classes
should be accepted as it reflects the real world, and choosing a subset of data to balance the
classes is not ideal. Rather, other means of tackling the class imbalance should be sought
such as using class weights [37]. Furthermore, all studies should cross-validate their results
on the complete CTU-UHB dataset such that the reported performances are generalised
and unbiased. However, the validation on CTU-UHB is still small in terms of the number
of recordings compared to large clinical studies as presented in Section 4, which range
between 7730–46,042 participants [33,77].

Another possible reason for the low performance of computer-based approaches could
be the limited number of public CTG datasets. Currently, accessible databases have a
very low number of compromised cases and are typically taken from a single institution.
The CTU-UHB with 552 raw FHR and UC records with pH values is available for public
access as a benchmark dataset to evaluate and compare the performance of new algorithms.
Even so, much larger, multi-centre datasets with well-documented outcomes, including
obstetric clinical information, are needed for the automatic computer-based classification
methods to be robust and reliable in clinical use [125]. This cannot be achieved by a
single stakeholder, and the field should look to create collaborations between multinational
and multidisciplinary research groups to solve this challenge collectively [126]. This
will help further demonstrate the performance of these data-driven methods prior to
prospective clinical validation. Furthermore, a consensus on the pre-processing steps,
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outcome measures and evaluation metrics must be reached to allow for transparency,
reproducibility and comparison among different approaches.

11. Conclusions

To our knowledge, this is the first review to summarise the physiological basis for
CTG, FHR and UC monitoring technologies; computerised CTG analysis systems in clin-
ical practice; public and private CTG datasets; pre-processing steps; and classification
methods used in automated data-driven approaches for fetal compromise detection. The
quality of the CTG data is one of the main obstacles in achieving the performance required
for widespread clinical translation. Therefore, further research on emerging monitoring
technologies such as NI-fECG and EHG is warranted to improve the underlying data qual-
ity for building automated methods. We also believe that a standardised pre-processing
workflow and criteria for the classification of fetal compromise would address criticisms
that impact progress in this field while allowing for reproducibility and comparability.
Furthermore, rather than working on private datasets, we recommend, where possible,
making datasets public as advancing the performance of deep learning methods depends
on large multi-center datasets to improve generalisability.
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