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Abstract: Muscle function reflects muscular mitochondrial status, which, in turn, is an adaptive re-
sponse to physical activity, representing improvements in energy production for de novo biosynthesis
or metabolic efficiency. Differences in muscle performance are manifestations of the expression of
distinct contractile-protein isoforms and of mitochondrial-energy substrate utilization. Powerful
contractures require immediate energy production from carbohydrates outside the mitochondria that
exhaust rapidly. Sustained muscle contractions require aerobic energy production from fatty acids by
the mitochondria that is slower and produces less force. These two patterns of muscle force generation
are broadly classified as glycolytic or oxidative, respectively, and require disparate levels of increased
contractile or mitochondrial protein production, respectively, to be effectively executed. Glycolytic
muscle, hence, tends towards fibre hypertrophy, whereas oxidative fibres are more disposed towards
increased mitochondrial content and efficiency, rather than hypertrophy. Although developmen-
tally predetermined muscle classes exist, a degree of functional plasticity persists across all muscles
post-birth that can be modulated by exercise and generally results in an increase in the oxidative
character of muscle. Oxidative muscle is most strongly correlated with organismal metabolic balance
and longevity because of the propensity of oxidative muscle for fatty-acid oxidation and associated
anti-inflammatory ramifications which occur at the expense of glycolytic-muscle development and
hypertrophy. This muscle-class size disparity is often at odds with common expectations that muscle
mass should scale positively with improved health and longevity. Brief magnetic-field activation of
the muscle mitochondrial pool has been shown to recapitulate key aspects of the oxidative-muscle
phenotype with similar metabolic hallmarks. This review discusses the common genetic cascades
invoked by endurance exercise and magnetic-field therapy and the potential physiological differences
with regards to human health and longevity. Future human studies examining the physiological
consequences of magnetic-field therapy are warranted.
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1. Introduction

Muscle is our largest tissue mass and, as such, has evolved to modulate the regenera-
tive capacity and metabolism of the entire body. To fulfil this role, muscle acts as a feeding
tissue for the rest of the body. This feeding role of muscle is a manifestation of its secretome,
a vast combination of regenerative, metabolic, anti-inflammatory and immunocompetence
factors, released into the systemic circulation as either individual myokines (muscle-derived
cytokines) [1–3] or vesicle-encapsulated factors [4–6]. Mechanistically, an upregulation in
mitochondrial respiratory rate triggers the myokine response pathway [7–10], whereas
extracellular calcium entry [11] as well as mitochondrial respiration [7] stimulate the release
of muscular extracellular vesicles. Physical activity, or exercise, is the most common way
to initiate the myokine [12,13] and extracellular vesicle [6] responses, which are, hence,
blunted in the old and frail who are less capable of undertaking exercise [14–16]. Upon
elevated muscle mitochondrial respiration induced by exercise, components of the muscle
secretome travel via the bloodstream to the collateral tissues of the body that, in turn, may
reciprocate with secretome responses of their own. Collateral tissue systems known to
respond to the actions of the muscle secretome include the bone and joints, the immune
system, the central nervous system, the digestive system, the microbiome, and, in partic-
ular, adipose tissue [3]. The muscle secretome also acts in an autocrine manner, whereby
muscle itself is the target of its own secretome to produce metabolic and regenerative
adaptations. A system of endocrine/paracrine/autocrine cross-talk, hence, ensues, that
adapts the body’s regenerative and metabolic statuses [17].

2. Muscle Metabolic Phenotypes

Oxidative muscles display a predilection for fatty-acid oxidation to provide energy,
whereas glycolytic muscles rely largely on carbohydrates for energy production. Oxidative-
and glycolytic-muscle phenotypes subserve distinct forms of contractile activity, which
mirrors these distinct modes of energy production. Endurance exercise, such as distance
running, predominantly recruits the participation of oxidative muscles. Oxidative muscles
mediate tonic muscle contractures that require sustained mitochondrial aerobic energy
production, predominantly from fatty acids. Consequently, force generation from oxidative
muscle is slower and produces less power. On the other hand, resistance exercise, such as
weight lifting, largely relies on the participation of glycolytic muscles. Glycolytic muscles
mediate sudden bursts of contraction, requiring immediate, albeit relatively short-lived,
energy production from carbohydrates, without the assistance of oxygen (anaerobically)
outside of the mitochondria. Consequently, glycolytic muscles produce more powerful
contractures than oxidative muscles, but exhaust more rapidly. Glycolytic muscles also
accrue a substantial oxygen debt in anticipation of final mitochondrial oxidation of pre-
liminarily catalysed carbohydrates in the form of lactic acid [18]. Extending from their
distinct contractile signatures, oxidative and glycolytic muscles have also earned the names
slow-twitch (type I) and fast-twitch (type II) muscles, respectively (Figure 1). Therefore,
compared to glycolytic muscles, oxidative muscles exhibit greater mitochondrial num-
bers, have a higher reliance on oxidative metabolism [19] and are better able to support
systemic insulin-sensitivity due to their predilection for fatty-acid oxidation [20]. Two
transcriptional cascades predominantly determine the oxidative phenotype, calcium- or
mitochondria-mediated.
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Figure 1. Metabolic and phenotypic characteristics of glycolytic and oxidative muscles in response to
exercise and magnetic fields. Original figure created with BioRender.com.

3. Myoplasmic Calcium Levels

The oxidative-muscle phenotype is characterised by elevated resting calcium levels
(100–300 nM), whereas glycolytic muscles are distinguished by having lower basal calcium
levels (<50 nM), interspersed by high amplitude calcium transients [21,22]. These distinct
calcium signatures are largely established by voltage-gated calcium entry, downstream of
neuronal stimulation, and the ensuing calcium-mediated excitation–contraction coupling
mechanism. In combination, these two calcium pathways serve as a developmental di-
rective for the determination of embryonic muscle types or for the adaptive remodelling
of the metabolic and functional properties of existing muscles. Mechanical loading also
contributes to resting calcium levels, particularly within the functional context of oxidative
muscles [21,22].

Calcium serves an enzyme catalytic role in skeletal-muscle determination. The calcium-
dependent phosphatase, calcineurin (protein phosphatase 2B), is preferentially activated
by the sustained calcium levels that characterise oxidative muscle [21–24]. Activated
calcineurin, in turn, dephosphorylates the nuclear factor of activated T cells (NFAT), thereby
allowing it to be translocated into the nucleus where it acts in cohort with other transcription
factors to promote the oxidative-muscle phenotype in a calcium-sensitive manner [25].
Accordingly, specifically driving muscular calcineurin activity recapitulates the fast-to-slow
muscle fibre switch [26,27], whereas calcineurin genetic knockdown or pharmacological
inhibition of calcineurin decreases oxidative-muscle expression [22]. The activating calcium
for calcineurin may originate from numerous sources, but often, a transient receptor
potential (TRP) family member, such as TRPC1, is involved in a variety of electrically
excitable cell classes [23,24].

4. Mitochondrial Energy Status

The elevated respiratory activity associated with the undertaking of endurance ex-
ercise creates a deficit in mitochondrial respiratory co-factors that is manifested as in-
creases in the ratios of AMP/ATP and NAD+/NADH. These alterations in energy status

BioRender.com


Bioengineering 2023, 10, 956 4 of 21

induce the expression of the transcriptional coactivator peroxisome-proliferator-activated
receptor gamma coactivator-1 (PGC-1α), the master regulator of mitochondrial gene ex-
pression [28,29]. PGC-1α activity is post-translationally regulated by AMP-activated pro-
tein kinase (AMPK) phosphorylation (stimulated by a high AMP/ATP ratio) and NAD-
dependent deacetylase Sirtuin–1 (Sirt1) deacetylation (stimulated by a high NAD+/NADH
ratio) [28,30,31]. AMPK activation will also inhibit the mammalian target of rapamycin
(mTOR) that will interfere with glycolytic-muscle determination [28,29]. Because of the
elevated respiratory rates exhibited by oxidative muscles, muscle mitochondrial content
and oxidative metabolism are enhanced, in conjunction with calcineurin signalling that
consolidates the oxidative-muscle phenotype [32]. Therefore, it is the concomitant activa-
tion of these calcium and mitochondrial responses that establishes the genetic backdrop for
the consolidation of the oxidative-muscle phenotype in response to exercise.

Intermediate subtypes within the glycolytic and oxidative phenotypes exist that are
distinguished from each other based on protein isoforms comprising the contractile fila-
ments. A detailed description of these contractile subtypes goes beyond the scope of this
review and can be found elsewhere [22,33,34].

5. Secretome-Mediated Muscle–Fat Crosstalk

Due to their greater mitochondrial and myoglobin content and denser capillary beds,
oxidative fibres are also sometimes described as “red”, whereas glycolytic fibres, for com-
parison, are often referred to as “white” [32]. Generally, exercise training produces a
glycolytic to oxidative switch in muscle-fibre metabolism and contractile properties [33–35].
Analogously, adipose tissue can be broadly classified as either white or brown, where white
adipose is specialised for energy storage and brown adipose is adapted for energy expendi-
ture and thermogenesis. White adipose cells are larger, contain a single large unilocular
lipid droplet and tend to be proinflammatory, especially in states of prolonged physical
inactivity. Brown adipose cells, on the other hand, have multiple smaller lipid droplets
and greater mitochondrial content. Brown adipose cells are, hence, smaller, darker and less
inflammatory than white adipose cells [36,37]. The oxidative phenotypes of both oxidative
muscle and brown adipose tissue are conferred by direct and indirect exercise-induced ele-
vations in PGC-1α, respectively [32], and are mutually reinforced via an interplay between
the muscle and adipose secretomes [38].

The muscle secretome is mobilised downstream of PGC-1α activation and hence, is
enhanced by exercise [7,17]. Principal amongst the tissues targeted by the muscle secretome
is adipose [38] and key amongst the adipose-regulating factors released by exercise is
irisin [17,39,40] (Figure 2). Irisin is responsible for the induction of spontaneous energy
expenditure by adipose tissue in the form of mitochondrial uncoupled respiration, other-
wise known as adaptive thermogenesis [37,41], which attenuates systemic inflammation
and promotes metabolic health. Irisin descriptively “beiges” white adipose to a browner
phenotype [36,37]. Muscles, hence, get redder (more oxidative) in association with a “beig-
ing” (more thermogenic) of collateral adipose depots. Although these changes are partially
reversed following periods of sedentary behaviour, epigenetic responses to exercise gov-
erning systemic metabolism and longevity have been shown to persist long after training
has stopped [42] and often implicate the PGC-1α-promoter region in humans [43] and
mice [44]. The exercise response is most healthful when routinely reinforced.

PGC-1α is upregulated in adipose tissue [45,46] following its activation by
irisin [17,39]. Irisin-activated adipose, in turn, reciprocally secretes adiponectin, which
bolsters muscle and bone development and metabolism [47–49]. Brown adipose tissue
(BAT) releases a distinct combination of adipokines from white adipose tissues, collectively
known as batokines, that regulate the development and metabolism of muscle and collat-
eral tissues [50]. Conversely, adiponectin is produced and secreted by skeletal muscle in
response to exercise in association with oxidative-muscle expression [47]. Irisin, in turn, is
produced and released by adipose in response to circulating irisin and exercise [39,51,52],
acting to consolidate the exercise response via mutual secretome crosstalk. Irisin generally
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upregulates PGC-1α and the nuclear factor erythroid 2–related factor 2 (Nrf2) in recipient
tissues [10]. In particular, the human visceral fat deposit has a preponderance to be highly
inflamed and is a strong contributor to metabolic disruptions but is highly susceptible to
exercise-induced browning [36]. Visceral fat, hence, represents a valid therapeutic target
for the development of interventions to control the rising global incidence of metabolic
dysfunction. Muscular respiratory activity, hence, elicits a systemwide cascade of PGC-1α-
dependent secretome responses that underlie the metabolic benefits commonly attributed
to exercise.
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6. Fiber Type–Fiber Size Paradox

The signalling cascades elicited for either oxidative or glycolytic determination lit-
erally compete for biosynthetic priority. As a result, muscle size and oxidative capacity
are inversely related. This occurs as a consequence of the balancing of myofibrillar and
mitochondrial protein production, governing contractile and metabolic adaptations, re-
spectively [53]. Specifically, heightened mitochondrial biogenesis downstream of AMPK
and PGC-1α transcriptional cascades results in an overall attenuation of protein anabolism
and smaller muscle fibre size. Indeed, muscle fibres with the highest oxidative capacity
have been shown to have the smallest cross-sectional area [53]. A reduction in muscle
fibre cross-sectional area is hypothesised to represent a metabolic adaptation with the
objective of facilitating oxygen uptake into highly oxidative fibres by effectively increasing
the fibre’s surface-to-volume ratio in association with heightened mitochondrial respiratory
capacity and PGC-1α activity [53,54]. Cold-water immersion is a mode of water therapy
that stimulates PGC-1α activity and it exhibits key aspects of this exercise–muscle size
paradox [55]. Cold-water-immersion therapy post-exercise has been generally shown to di-
minish resistance-training adaptations, such as muscle hypertrophy, whilst aerobic exercise
performance adaptations and secretome release have been shown to be enhanced [56]. Fi-
nally, calcineurin activation is not a prerequisite for the hypertrophic response of muscle [57].
Muscular calcineurin and mitochondrial activation of PGC-1α are, hence, associated with
elevated muscle metabolic capacity and reduced muscle fibre size. Although exercise is the
favoured approach to enhancing oxidative-muscle development, its adoption is difficult
to implement in the old, frail and infirm (also see Section 12. Is Magnetic Mitohormesis a
Substitute for Exercise?). Alternative modes of inducing the oxidative-muscle phenotype in
these demographics are actively being sought to help curb the growing global prevalence
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of metabolic syndrome and to improve the quality of life in the swelling ranks of the
advanced aged.

7. TRPC1 Promotes Oxidative-Muscle Development

The canonical transient receptor potential (TRPC) channel family exhibits a predilec-
tion for regulation by growth factors and is broadly involved in tissue development [58].
TRPC1 is the most ubiquitously expressed member of the family and is thought to act as a
regulator of the other family members. Accordingly, TRPC1 has been implicated in diverse
developmental programs, including that of oxidative muscle [19,59]. TRPC1 exhibits a
capacity to heteromultimerise with the other TRPC family members, theoretically uniting
their distinct activation modes into a single channel complex [60]. Mechanotransduc-
tion [60–63], magnetoreception [64–68], phototransduction [69–71], intracellular calcium
sensing [72] and redox-sensing [73] are all parallel activation modes of TRPC1 that help
subserve its role as an integrator of diverse forms of biophysical stimuli of consequence for
development and disease [60,61,74], particularly with reference to skeletal muscle [75–81].

The weight of evidence indicates that TRPC1 is responsible for the elevated resting
calcium levels that underlies oxidative-muscle determination. Exercise and mechanical
loading promote oxidative-muscle expression, whereas physical inactivity or mechanical
unloading result in oxidative-muscle loss. The elevated and sustained basal calcium levels
that are required for oxidative-muscle development are diminished by physical inactivity
and precede a reversal in oxidative character [21]. Paralleling the calcium signature of
oxidative muscle, TRPC1 expression is highest in oxidative-muscle fibres [82] and wanes
with disuse [19]. Accordingly, silencing TRPC1 expression results in oxidative-muscle
loss [19]. TRPC1-mediated calcium entry activates the calcineurin/NFAT pathway [19,83]
that, in turn, sustains TRPC1 transcription [19,84] as well as supporting PGC-1α function
and oxidative-muscle maintenance [32]. Consequently, NFAT and TRPC1 levels decrease
upon mechanical unloading and revert upon reloading, mirroring decreases and increases
of oxidative-muscle expression, respectively [19]. Evidence thus supports cooperative roles
for TRPC1, calcineurin/NFAT and PGC-1α in oxidative-muscle development, unified via
mitochondrial respiration.

8. Magnetic Mitohormesis

Mitochondria can be considered the stress sensors of the cell and in this capacity serve
to instil survival adaptations in response to oxidative stress produced during mitochon-
drial responses to environmental stimuli [85]. Mitohormesis refers to an adaptive process
whereby low levels of reactive oxygen species (ROS) confer the installation of survival adap-
tations and promote regeneration, whereas greater levels of ROS can stymie cell growth and
survival [86]. Mitohormesis is a manifestation of the ability of the mitochondria to either
adapt to inherent oxidative stress by enhancing their anti-oxidant defences and improved
respiratory efficiency or to succumb to oxidative damage before, or beyond, adaptations.
Vital in the process of integrating mitohormetic adaptations are the PGC-1α (mitochondrio-
genesis) and Nrf2 (anti-oxidant defences) transcriptional pathways [28]. It has been noted
that the concomitant increases in PGC-1α and Nrf2 expression and associated decrease in
insulin/IGF signalling via mTOR signalling, resulting from endurance exercise, provide
the appropriate oxidative milieu to establish mitohormetic survival adaptations [28,29]. As
magnetic fields stimulate mitochondrial respiration, they can be exploited as a method with
which to non-invasively produce mitohormetic responses, via a novel process of magnetic
mitohormesis.

9. TRPC1 Confers Magnetic Mitohormesis

The enzymatic and genetic cascades activated by extremely low-frequency pulsed elec-
tromagnetic field (ELF-PEMF) exposure have recently come into clearer focus [87,88] and
are commonly shown to invoke mitochondrial survival adaptations [89–91] and calcium sig-
nalling pathways [92–97] in a variety of cell classes. These two cellular response limbs need
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not be mutually exclusive from each other [65,90,91,98–101] but likely converge at the level
of the mitochondria via the reciprocal and synergistic capacities of calcium to modulate
mitochondrial respiration [102] and of mitochondrially-derived ROS to modulate the multi-
modal and integrative function of TRPC1 [73]. The manner in which the implicated calcium
pathway interacts with the mitochondria most likely involves classical pathways [100],
whereas the nature of magnetoreception in all likelihood entails magnetically-tuneable
changes in the lifetime of a radical pair formed between a cryptochrome moiety and the
mitochondrial cofactor, flavin adenine dinucleotide [87]; both mechanisms mutualistically
reinforcing the other. Nonetheless, response to ELF-PEMFs has been recently shown to
closely correlate with the developmental expression of TRPC1, whereas pharmacologi-
cal inhibition or genetic silencing of TRPC1 precluded magnetoreception during in vitro
myogenesis [65,68,102], chondrogenesis [64] and neurogenesis [67,103]. When specifically
examined, these magnetically induced developmental responses invoke secretome acti-
vation [68,104]. Indeed, vesicular TRPC1 delivery was shown necessary and sufficient
to reinstate magnetically-induced mitochondrial respiration and enhanced myogenesis
in a CRISPR/Cas9 TRPC1-knockdown skeletal muscle cell line [66]. Finally, muscle cells
that have been shielded from all ambient magnetic fields exhibited downregulated TRPC1
expression and reverted in vitro myogenesis [65]. Available evidence, hence, supports that
TRPC1-mediated calcium entry is involved in transducing magnetic signals into diverse
developmental responses by activating the calcineurin pathway (Figure 3).Bioengineering 2023, 10, 956 8 of 23 
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10. Magnetic Mitohormesis Recapitulates Oxidative-Muscle Development in Mice
10.1. Magnetic Calcineurin/NFAT Induction

In agreement with previous findings [23,24], cyclosporin and TRPC1 channel antago-
nists were both capable of precluding ELF-PEMF-induced in vitro myogenesis, indicating
that calcineurin was being activated by TRPC1-mediated calcium entry [65]. Brief ELF-
PEMF exposure also preferentially enhanced the nuclear translocation of NFATC1, whereas
NFATC3 nuclear localization was reduced [65], indicating a proclivity of myogenesis to-
wards an oxidative phenotype [105]. Accordingly, oxidative-fibre expression was increased
and was associated with a decrease in oxidative-fibre cross-sectional area in mice treated
weekly with ELF-PEMFs and was accompanied by enhanced running performance [106]. A
decrease in the cross-sectional area of oxidative-muscle fibres has previously been reported
in response to myogenin overexpression [54] and has been shown to be inversely correlated
with muscle-fibre oxygen consumption rate [53]. This morphological response is explained
as a physical adaptation aimed at enhancing oxygen transport in highly oxidative fibres.

Provocatively, TRPC1 and mitochondria may reciprocally reinforce the response of
the other via the capacity of calcium to modulate mitochondrial respiration [102] and
of mitochondrially-derived ROS to modulate TRPC1 function [73]. It is intriguing to
speculate that this TRPC1-mitochondrial nexus may represent a manner for the PGC-1α
and calcineurin limbs of oxidative-muscle development to coordinate their developmental
directives. In the exercise scenario, mechanical forces can activate TRPC1-mediated calcium
entry (calcineurin induction) and central-nervous-system drive for movement will activate
mitochondrial respiration (PGC-1α induction).

10.2. Magnetic Modulation of Mitochondrial Energy Status

Additionally, ELF-PEMF stimulation of muscle also was shown to activate mitochon-
drial respiration [65]. Accordingly, the developmental adaptations observed in response
to ELF-PEMF stimulation closely mirrored those commonly attributed to endurance ex-
ercise downstream of PGC-1α activation. Brief (10 min) exposure of muscle cells to low
energy ELF-PEMFs was demonstrated to stimulate in vitro myogenesis in association with
increased mitochondrial number, heightened mitochondrial antioxidant defences and en-
hanced mitochondrial-based survival adaptations [65,68]. These effects were detected in
isolated muscle cells [65] as well as intact muscle [106] and were associated with tran-
scriptional activation of PGC-1α and Nrf2, previously shown to be involved in promoting
mitochondriogenesis and resistance to oxidative stress [28,107], respectively. These same
transcriptional pathways are also known to be activated by endurance exercise and mod-
erate oxidative stress [10,108]. Consistent with an increased expression of PGC-1α, mice
exposed to 1 mT PEMFs for 10 min per week for several weeks [106] exhibited metabolic
and functional adaptations similar to those commonly attributed to oxidative-muscle de-
velopment, including enhanced resting fatty-acid oxidation (reduced respiratory exchange
ratio) [109], reduced resting insulin levels [110], enhanced running performance [109] and
stimulated muscle mitochondrial fatty-acid transport [111,112].

11. Adipogenic Consequences of ELF-PEMF Stimulation

The adipogenic consequences of weekly ELF-PEMF treatment in mice were particularly
robust and associated with elevated PGC-1α expression in both white and brown adipose
samples [106]. In essence, ELF-PEMF treatment, in combination with treadmill running,
increased PGC-1α most strongly in white adipose and was associated with an increase in
uncoupled mitochondrial respiration (adaptive thermogenesis) and adipose mitochondrial
content, as reflected by increases in the expressions of uncoupling protein 1 (Ucp1) and
mitochondrial cytochrome c oxidase polypeptide 7A1 (Cox7a1), respectively [113]. These
responses paralleled previously reported disparate thermogenic responses of the white
versus brown adipose deposits to exercise [114]. The typically exercise-associated reddening
of skeletal muscle and the browning of adipose tissue was therefore recreated in mice
receiving brief weekly ELF-PEMF treatment (Figure 4).
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The high caloric value of lipids makes them the best energy source to fuel the sustained
physical activity commonly reserved for oxidative muscle. Therefore, stimulating muscular
mitochondrial respiration and consequent PGC-1a expression, whether by exercise [115]
or ELF-PEMF exposure [106], increases muscular mitochondrial fatty-acid oxidation and
oxidative-muscle character. In an adaptive response aimed at making lipids more readily
available as fuel to meet enhanced fatty-acid oxidation, intramyocellular lipid content
increases in oxidative muscle in response to either training [116] or ELF-PEMF therapy [117]
in humans. Oxidative muscle, hence, specifically sequesters lipids during periods of
training to accommodate increased energy demand.

On the other hand, reduced physical activity results in the inappropriate ectopic accu-
mulation of adipose tissue within muscle as well as extramuscular sites that is associated
with increased serum levels of ceramides. Muscle ceramide levels are greater in sedentary
individuals where they are strongly correlated with metabolic disturbances [118]. On the
other hand, reducing skeletal muscle ceramide levels is associated with improvements
in systemic insulin sensitivity [119], yet can occur independently of muscle growth [120].
Accordingly, elevated ceramide levels have been shown to undermine muscle maintenance
and metabolism [121]. Importantly, certain long-chain ceramide species have been shown
to be toxic to mitochondria [121,122]. Indeed, blood ceramide levels may be a more precise
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predictor of cardiovascular disease and diabetes than even cholesterol and may underscore
an unmet need for ceramide-lowering therapeutics [122].

Oxidative fibres are enriched in lipids that are reduced during endurance exercise due
to the enhanced oxidation of fatty acids by mitochondria [116]. Accordingly, ceramides
accumulate within oxidative fibres during periods of physical inactivity [118] and are
reduced by endurance exercise [123]. In alignment with the oxidative phenotype, muscular
overexpression of PGC-1α in obese mice similarly reduced ceramide levels but increased
mitochondria content and mitochondrial fatty-acid uptake [124]. Conversely, transgenic
silencing of TRPC1 expression in mice was shown to elevate serum ceramide levels, cor-
roborating a role for TRPC1 in cellular energy homeostasis [125]. These results clearly
implicate oxidative muscle, and its propensity for fatty-acid oxidation, as a therapeutic
target-tissue to control systemic ceramide levels. Notably, a recent human study has shown
that brief (10 min) weekly ELF-PEMF exposure of the operated legs of patients (19–42 years
of age) after having undergone anterior cruciate ligament reconstructive surgery produced
significant reductions in serum ceramide levels compared to a sham control cohort [117].
The intervention period was 16 weeks and additionally produced indications of improved
muscle regeneration and improved systemic metabolic status.

Age-related reductions in physical activity aggravate white adipose inflammation
and promote its redistribution to visceral and ectopic intramuscular sites. Intramuscular
atherogenic adipose accumulation augments ceramide production, resulting in mitochon-
drial dysfunction and enhanced oxidative stress. The reduction in mitochondrial efficiency
depresses fatty-acid β-oxidation, which further exacerbates intramuscular lipid accumu-
lation and ultimately leads to insulin resistance as well as accelerating muscle weakness
and atrophy. Under these debilitating conditions the muscle secretome switches to a more
inflammatory status, upregulating the secretion of pro-inflammatory myokines (e.g., TNF-α
and IL-6), while reducing the secretion of anti-inflammatory myokines (e.g., irisin and
adiponectin). This shift in the muscle secretome towards one that is more pro-inflammatory,
in turn, stimulates the release of pro-inflammatory adipokines and immune cell cytokines,
which further aggravates adipose and system-wide inflammation, setting into motion a
vicious cycle of metabolic and functional decline that characterise the pathogenesis of
sarcopenia [126–129] (also see Section 14, Magnetic Mitohormetic Implications for Lifespan).
The systemic inflammatory milieu that results from the sarcopenic condition is hypersensi-
tive to even minor environmental stressors and plays a major role in the pathophysiology
of age-related frailty in humans [130]. Decisive in the progression of this deteriorating
metabolic scenario is a pro-inflammatory shift in the myokine–adipokine interactions due
to mitochondrial dysfunction and largely downstream of PGC-1α transcriptional deficiency.

Notably, asprosin is a pro-inflammatory adipokine secreted by white adipose tissue.
Adenovirus-induced overexpression of asprosin in subcutaneous white adipose was shown
to reduce adaptive thermogenesis as well as decrease the expressions of UCP1 and PGC-
1α as well as other browning-related genes, while upregulating the expression of genes
associated with general adipogenesis. Asprosin overexpression in mice also suppressed
cold-induction of Nrf2. In vitro, adenovirus-mediated overexpression of asprosin in pri-
mary adipocytes inhibited adipose browning and aggravated lipid deposition and could
be reversed with the Nrf2 agonist, oltipraz. Asprosin, hence, obstructs browning and
promotes lipid deposition in adipose tissue via a Nrf2-mediated mechanism [131].
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Visceral adiposity is particularly inflammatory in nature [36]. Visceral fat is correlated
with elevated serum ceramide levels and insulin-resistance [132]. Another recent study
showed significant reductions in total and visceral fat deposits in a community-based study
examining an older (38–91 years of age) cohort of volunteers. Strikingly, reductions in
intra-abdominal and total fat were observed after eight weeks of ELF-PEMF exposure,
representing only 80 min of total exposure (10 min/week) [133]. This finding aligns with
previous data showing that visceral fat is particularly prone to exercise-induced adaptive
thermogenesis [36,134]. These adipose changes were accompanied by improved functional
mobility as indicated by the Timed Up and Go, Five Times Sit-to-Stand, and 4 m Normal
Gait Speed tests as well as significant increases in lean muscle mass as determined by
bioelectrical impedance analysis, particularly in the more elderly of the cohort. These data
support the notion that human ELF-PEMF therapy may represent a method to recapitulate
a subset of the metabolic benefits commonly associated with endurance exercise in a simple
and non-invasive therapeutic platform and is supported by a growing body of preclinical
studies. These benefits would hold particular importance in the frail and elderly that would
otherwise be incapable of undertaking exercise due to weakness.

At the systemic level, the adipogenic consequences of ELF-PEMF therapy were more
pronounced than the muscular effects [65,106,133]. These adipogenic effects were clearly
apparent in mice despite both white and brown adipose cells in vitro not being responsive
to the same ELF-PEMF signature applied to the animal, and shown to be effective on muscle
both in vitro and in vivo [65,106]. Studies focussed on endurance exercise agree with the
results generated in response to magnetic mitohormetic strategies, demonstrating clear
indices of metabolic improvement, whereas muscle mass was modestly improved [117,133].
Nonetheless, improvements in functional mobility were observed in a frail cohort receiving
ELF-PEMF therapy, likely reflecting increases in oxidative muscular capacity, enhanced
resistance to fatigue and improved metabolism [133].

12. Is Magnetic Mitohormesis a Substitute for Exercise?

Resistance exercise, and endurance exercise to a lesser degree, produce mechanical
stress and microdamage, which may serve as a stimulus to spur muscle regrowth [135,136].
In this respect, physical exercise also creates a biosynthetic regenerative energy debt that
will need to be allocated towards the repair and rebuilding of damaged muscle tissue
(Figure 5). Inadvertently, this will limit biosynthetic energy availability to implement
metabolic adaptations. ELF-PEMF exposure, as it is low energy and non-mechanical,
represents a more focussed form of mitochondrial stimulation. ELF-PEMF exposure may
thus render stronger mitochondrial responses via the PCG-1α and Nrf2 transcriptional
pathways, while producing relatively less impetus for muscle hypertrophic remodelling.
It would thus be better to combine PEMF therapy with exercise, if and when possible,
for greatest physiological synergism. On the other hand, mechanical stress may need to
be avoided by certain frail patient demographics that, by necessity, refrain from physical
exercise and consequently suffer metabolic disruption. Magnetic therapy may serve as
an option for such frail demographics to maintain metabolic balance and to exploit the
systemic regenerative benefits conferred by the muscle secretome. Pain and weakness are
strong deterrents to exercise in the elderly [16]. Because of physical inactivity arising from
such inflammatory circumstances the elder community commonly suffers from metabolic
dysfunction and physical frailty. It was shown that functional mobility improved in
conjunction with reduced pain in a group of elderly subjects receiving weekly ELF-PEMF
treatment [133]. These results suggest that magnetic therapy may represent one manner to
capacitate the elderly to undertake exercise more readily. In support of potential magnetic-
therapy–exercise synergism, it was previously shown that mice, having received ELF-PEMF
treatment, exhibited improved running performance after five weeks (10 min of exposure
per week) [106].
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13. Health Implications of Muscle-Targeted Magnetic Mitohormesis

Human health is intimately linked to muscle health, which improves with exercise, as
do healthspan and longevity. The ability of muscle to adapt to exercise is mitochondria-
dependent. Disruptions in both calcineurin [22,137] and PGC-1α [138] signalling negatively
impact oxidative-muscle development with understandable negative ramifications over
metabolism and disease. Evidence for mechanistic synergism between the calcineurin
and PGC-1α pathways arises from the finding that calcineurin knock-down alters mito-
chondrial turnover and respiration, attenuates exercise capacity, and disrupts adipose
energy storage [139]. Accordingly, the calcineurin and PGC-1α pathways are jointly re-
sponsible for oxidative-muscle determination [32]. Oxidative muscle is characterised by
elevated mitochondrial content and high reliance on fatty-acid oxidative metabolism [32].
Oxidative muscle, hence, exhibits a predilection for fatty-acid oxidation that supports
insulin-sensitivity [20]. The adipogenic consequences of muscle magnetic therapy recapit-
ulates several metabolic features typically attributed to endurance exercise and thus has
far-reaching health implications arising from its proclivity to efficiently promote adipose
browning [106], reduce serum ceramides [117] and reduce total and visceral fat [36,133],
which should serve to ameliorate human metabolic and inflammatory disorders, such as
COVID-19 [85].
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Duchenne and Becker Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is an X-linked, muscle-wasting disease, af-
fecting approximately one in every 3500–4000 newborn males worldwide, making it the
most common form of muscular dystrophy [140]. DMD results from loss-of-function mu-
tations in the dystrophin gene, encoding for the dystrophin protein that is essential for
maintaining the structural integrity of the muscle surface membrane [141]. The muscles
of individuals inflicted with DMD are, hence, highly susceptible to mechanical damage,
leading to premature death [142]. Becker muscular dystrophy (BMD) is a milder version of
the disease and arises from dystrophin mutations that lower dystrophin expression or lead
to the accumulation of an internally truncated dystrophin protein that reduce functional
capacity. Dystrophin deficiency leads to progressive skeletal muscle-wasting accompanied
by increased inflammatory adipose infiltration and fibrosis. Clinical strategies proposed
to restore dystrophin in muscle include various forms of gene and stem-cell therapies,
which would switch DMD patients to a more BMD-like condition, thus lowering the risk
of muscle-wasting and achieving a longer lifespan. Gene therapies aimed at reinstating
dystrophin face major challenges due to its large size (427 kDa) and the requirement for
the effective delivery of the replacement gene to the body’s largest tissue mass, skeletal
muscle [143].

A more practical approach would be to catalytically upregulate the expression of
existing dystrophin homologues. Employing the mdx mouse model of human BMD, it
was shown that stimulating calcineurin signalling upregulated the expression of utrophin,
the autosomal homologue of dystrophin, and was associated with ameliorated muscle
damage [144]. Moreover, overexpressing calcineurin in mdx skeletal muscle decreased
muscle pathology as well as increased the expressions of both utrophin and oxidative
fibres [145], aligning with previous evidence indicating that glycolytic fibres are more
vulnerable to the condition [22]. The preferential calcineurin activation elicited by targeted
ELF-PEMF therapy may, hence, be of clinical consequence in the realm of DMD and BMD.
Furthermore, calcineurin activity in DMD is also compromised by the prevalent oxidative
stress characteristic of the condition [146]. In this regard, magnetic mitohormesis may also
be beneficial in reestablishing oxidative balance and in reinstating calcineurin function.

14. Magnetic Mitohormetic Implications for Lifespan

A biosynthetic penalty seems to exist with reference to lifespan. Its roots extend from
the finding that inhibiting the mTOR pathway, which governs protein accrual and is, hence,
responsible for muscle hypertrophy, with rapamycin ameliorates immunosenescence [147]
and extends lifespan [148]. On the other hand, insulin and the insulin-like growth factor
1 (IGF-1) are potent activators of mTOR and muscle growth [149] and are negatively
correlated with longevity [150]. It is broadly recognised that mitochondrial health and
human health are strongly intertwined and, conversely, that ageing is associated with
impaired mitochondrial maintenance [151]. Notably, the promotion of oxidative-muscle
development by PGC-1α comes at the expense of mTOR activation and muscle hypertrophy
in favour of mitochondrial pathways [28,35,53]. Activation of the AMPK/PGC-1α pathway
extends lifespan while inhibiting the insulin/Akt/mTOR pathway [28,152]. Evidence
also exists that caloric restriction extends lifespan [153–155]. As caloric restriction shares
many of the hallmark features of our magnetic-stimulation paradigm such as Sirt1 and
PGC-1α activation, upstream of mitochondrial biogenesis [65,106], muscle magnetic-field
therapy may offer a non-invasive method to promote longevity. Indeed, Sirt1 and PGC-1α
activities converge at the level of mitochondrial respiration. In response to mitochondrial
low-energy status, manifested by an elevated NAD+/NADH ratio, Sirt1 deacetylates PGC-
1α, rendering it capable of promoting mitochondriogenesis [31]. It is thus intriguing to
speculate that attenuating mTOR-mediated biosynthesis via the magnetic induction of the
calcineurin, PGC-1α and Sirt1 pathways, may serve to help improve the quality of life of the
elderly. Finally, the muscle secretome has recently been shown to contain factors, such as
the DEP-domain-containing mTOR-interacting protein (DEPTOR), that specifically inhibits
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mTOR [156]. Magnetic therapeutic interventions may potentially provide a manner to shift
the relative emphasis of the disparate glycolytic and oxidative-muscle secretomes [157] for
the modulation of human healthspan and lifespan.

Sarcopenia

Sarcopenia is the age-related loss of muscle and physical decline that plague the el-
derly [158]. A selective loss of glycolytic-muscle fibres and their skeletal muscle satellite
cell pool characterise sarcopenia, whereas the number of oxidative-fibre-associated satellite
cells was similar with age [159]. Specifically, sarcopenic glycolytic fibres exhibit a pro-
nounced loss in cross-sectional area (~26%), whereas the cross-sectional area of oxidative
fibres was unchanged relative to the young [160]. Mitochondrial dysfunction was also more
prevalent in glycolytic muscle in ageing mice but was maintained in oxidative muscle [161].
In an intriguing parallel to DMD, oxidative fibres exhibit superior survival potential. One
interpretation of the available evidence is that oxidative muscle confers survival to the
individual during age-related muscle loss, reflecting frailty merely by association, and
may, hence, represent a viable target for therapeutic intervention. Finally, a loss in muscle
mechanosensitivity contributes to the aetiology of sarcopenia [162]. The pertinent ques-
tion, hence, becomes whether sarcopenic muscle maintains developmental sensitivity to
magnetic-field therapy—which could be exploited as a clinical intervention.

For the sake of brevity, detailed descriptions of the plethora of components that
comprise the muscle and adipose secretomes, as well as the diverse subtypes of muscle
and adipose, were excluded from the present review.

15. Conclusions

Magnetic mitohormesis offers a novel way to recapitulate some of the metabolic
responses commonly associated with the undertaking of endurance exercise, yet with a
minimum of mechanical stress. Common to both muscle-targeted magnetic mitohormesis
and endurance exercise is the activation of the PGC-1α transcriptional pathway. It is widely
agreed that aerobic-exercise-induced enhancements in muscle PGC-1α expression sets off a
chain of events that that improve systemic metabolic balance, combat disease and infection,
reduce frailty, improve cognitive function and extend lifespan. Nonetheless, exercise is more
encompassing, albeit more difficult to undertake, than low-energy magnetic-field therapy.
For instance, physical exercise improves central-nervous-system communication with
muscles, a process called motor learning, and increases blood circulation and heart rate as
well as sympathetic drive and physiological responses that will not be immediately altered
by magnetic-field therapy. On the other hand, magnetic-field therapy may provide a viable
option for muscle and metabolic maintenance, or improvement, in the elderly and frail
with limited capacity for exercise, which may ultimately lead to increased independence
and physical capacity in these individuals, as supported by existing studies. Further work
is required to elucidate the unique attributes as well as trade-offs of magnetic-field therapy
relative to endurance exercise. To address these unknowns, additional studies examining
the effects of brief and non-invasive low energy magnetic-field therapy in the areas of
metabolic stabilisation and extended lifespan in humans are warranted.
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