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S1: Convolutional Neural Network Model Selection and Training Schemes 
In our experiments, we adopted the DenseNet121 model architecture, which has 

proven to be a well-performing choice for multiple disease diagnosis on chest X-rays. 
Drawing from previous successful works, we applied histogram equalization and contrast 
enhancement as preprocessing steps to improve the diagnostic accuracy of our model[1]. 
Additionally, on-the-fly image transformations like random rotations, left-right flips, af-
fine shifts, scaling, and random brightness and contrast adjustments were used for data 
augmentation during the training phase.  

We experimented with a lung region segmentation pipeline, as proposed by Zhong 
et al. [2]. This pipeline achieved faithful segmentations of the lung region on most images 
in our dataset. However, a noteworthy observation was that the performance of our model 
decreased after using lung segmentation as a preprocessing step. Two primary reasons 
can be attributed to this outcome. Firstly, the chest X-ray images in our cohort were taken 
in the intensive care unit (ICU) and involved critically ill patients. Consequently, these 
images might often be of poor quality, containing occluding objects or being affected by 
suboptimal patient positioning. As a result, lung segmentations of such images could be 
inaccurate, leading to incorrect predictions by the model. Secondly, a key objective of our 
research was to train our model to predict the "equivocal" class accurately. However, this 
class may only be discernible by a physician when looking at the entire CXR image, rather 
than just a segmented lung region of interest (ROI). By applying lung segmentation as a 
preprocessing step, global context and information might be lost, making it more chal-
lenging for the model to correctly identify equivocal cases. 

Results of Additional Experiments: 
After a thorough review of recent works on CXR classification, we perform addi-

tional experiments as an attempt to improve the accuracy of our model. ResNets are 
widely acknowledged as state-of-the-art for image classification tasks [3] and have been 
frequently employed in medical image analysis. Recently, Vision Transformers have been 
shown to achieve superior performances [4] Nevertheless, it should be noted that Vision 
Transformers often demand substantial amounts of data for effective training. In contrast, 
the ConNeXt architecture, which is based on CNNs, has demonstrated superior accuracy 
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to Vision Transformers on the ImageNet dataset [5]. We train a ResNet34 and a Con-
vNeXt-tiny model on the three-class classification problem and report results in Table S1. 
We subsequently build an ensemble classifier by averaging the predicted probability of 
all three models. It is noticeable that the DenseNet121 model shows superior performance 
to other individual models. However, the ensemble model shows a higher AUROC, 
AUPRC, specificity, and diagnostic odds ratio.  

Table S1. Performance Metrics of the Three Class Model (predicting “present”, “absent” and “equivocal”). The highest values for 
each metric are emboldened.  95% Confidence Intervals are reported and were calculated using non-parametric estimation using 
bootstrapping. 

Model AUROC AUPRC Fscore Precision Sensitivity Specificity 
Diagnostic 
Odds Ratio 

Resnet-34 
0.796  

(0.769, 0.826) 
0.879  

(0.865, 0.887) 
0.716 

(0.688, 0.742) 
0.712 

(0.684, 0.742) 
0.729 

(0.701,0.761) 
0.704 

(0.652, 0.757) 
6.390 

(4.427, 9.821) 

ConvNeXt-tiny 
0.824  

(0.800, 0.850) 
0.907  

(0.821, 0.916) 
0.709  

(0.679, 0.737) 
0.716  

(0.690, 0.744) 
0.743  

(0.718, 0.770) 
0.820  

(0.778, 0.859) 
13.134  

(9.134, 19.865) 

DenseNet 0.828  
(0.803, 0.853) 

0.874  
(0.861, 0.887) 

0.746 
(0.720,0.775) 

0.755(0.731, 
0.782) 

0.761 
(0.735, 0.786) 

0.842 
(0.812, 0.875) 

17.211 
(12.106, 25.976) 

Ensemble 
Model 

0.854  
(0.825, 0.876) 

0.920  
(0.909, 0.931) 

0.716  
(0.685, 0.734) 

0.749  
(0.729, 0.769) 

0.771  
(0.739, 0.798) 

0.950  
(0.921, 0.978) 

35.121  
(22.561, 45.891) 

S2: Cross-Validation Performance 
We employed the bootstrap method to calculate non-parametric confidence intervals 

on our results and report all performance metrics with the 95% confidence interval. This 
accounts for variance in the data distribution. As suggested by the reviewer, we present 
the results of a 10-fold cross-validation on the internal test set in Table S2, along with the 
mean and standard deviation for each metric. 

Table S2. Results of 10-fold cross-validation using the DenseNet121 model trained with uncertainty-aware cross-entropy loss with 
probability targets. 

Cross-
Validation 

Fold 
AUROC AUPRC F-score Precision Sensitivity Specificity Diagnostic 

Odds Ratio 
Balanced 
Accuracy 

Fold-1 0.828 0.874 0.746 0.755 0.761 0.842 17.211 0.802 
Fold-2 0.829 0.891 0.749 0.746 0.764 0.774 11.055 0.769 
Fold-3 0.789 0.844 0.781 0.788 0.660 0.775 5.215 0.718 
Fold-4 0.772 0.852 0.678 0.687 0.698 0.775 7.955 0.737 
Fold-5 0.822 0.885 0.679 0.720 0.727 0.898 23.395 0.813 
Fold-6 0.815 0.857 0.741 0.739 0.743 0.716 5.215 0.729 
Fold-7 0.801 0.881 0.721 0.719 0.737 0.730 7.642 0.733 
Fold-8 0.851 0.907 0.772 0.769 0.787 0.730 15.782 0.759 
Fold-9 0.829 0.843 0.685 0.726 0.748 0.924 35.921 0.836 
Fold-10 0.804 0.876 0.656 0.703 0.724 0.893 22.435 0.809 
Mean 0.814 0.871 0.721 0.735 0.735 0.806 15.183 0.770 

Std. dev. 0.023 0.021 0.044 0.031 0.036 0.077 9.885 0.041 

 

  



Bioengineering 2023, 10, 946 3 of 3 
 

References: 
1. Nasser, A.A.; Akhloufi, M.A. A Review of Recent Advances in Deep Learning Models for Chest Disease Detection Using 

Radiography. Diagnostics 2023, 13, 159. https://doi.org/10.3390/diagnostics13010159. 
2. Zhong, A.; Li, X.; Wu, D.; Ren, H.; Kim, K.; Kim, Y.; Buch, V.; Neumark, N.; Bizzo, B.; Tak, W.Y.; et al. Deep metric learning-

based image retrieval system for chest radiograph and its clinical applications in COVID-19. Med. Image Anal. 2021, 70, 
101993. https://doi.org/10.1016/j.media.2021.101993. 

3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016. 

4. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, 
G.; Gelly, S.; Uszkoreit, J. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv: 
2010.11929.  

5. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. 


