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Abstract: Acute Respiratory Distress Syndrome (ARDS) is a severe lung injury with high mortality,
primarily characterized by bilateral pulmonary opacities on chest radiographs and hypoxemia.
In this work, we trained a convolutional neural network (CNN) model that can reliably identify
bilateral opacities on routine chest X-ray images of critically ill patients. We propose this model
as a tool to generate predictive alerts for possible ARDS cases, enabling early diagnosis. Our team
created a unique dataset of 7800 single-view chest-X-ray images labeled for the presence of bilateral
or unilateral pulmonary opacities, or ‘equivocal’ images, by three blinded clinicians. We used
a novel training technique that enables the CNN to explicitly predict the ‘equivocal’ class using
an uncertainty-aware label smoothing loss. We achieved an Area under the Receiver Operating
Characteristic Curve (AUROC) of 0.82 (95% CI: 0.80, 0.85), a precision of 0.75 (95% CI: 0.73, 0.78),
and a sensitivity of 0.76 (95% CI: 0.73, 0.78) on the internal test set while achieving an (AUROC) of
0.84 (95% CI: 0.81, 0.86), a precision of 0.73 (95% CI: 0.63, 0.69), and a sensitivity of 0.73 (95% CI:
0.70, 0.75) on an external validation set. Further, our results show that this approach improves the
model calibration and diagnostic odds ratio of the hypothesized alert tool, making it ideal for clinical
decision support systems.

Keywords: chest X-ray classification; computer-aided diagnosis; medical image analysis; model
calibration; acute respiratory distress syndrome; deep learning; convolutional neural networks;
uncertainty modeling

1. Introduction

Acute respiratory distress syndrome (ARDS) is a diffuse lung injury characterized by
inflammation leading to increased pulmonary vascular permeability and loss of aerated
lung tissue [1]. Clinical hallmarks include hypoxemia and bilateral radiographic opac-
ities [2]. The 2012 Berlin definition of ARDS has been key in supporting clinicians and
guiding clinical research [2]. However, morbidity, mortality, and healthcare costs remain
unacceptably high, and ARDS remains a diagnostic challenge [3]. Studies show that early
recognition of ARDS can help reduce the progression, severity, and potentially lethal clinical
sequela [4].

Machine Learning (ML) methods can reliably and robustly learn complex relationships
between clinical data, and several research efforts towards using ML for the predictive
modeling of medical diseases are underway [5–8]. Similar research efforts for predicting
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the early onset of ARDS are ongoing to improve clinical recognition of the syndrome [9–12].
Although there is no single diagnostic test that can rule in or rule out ARDS, one significant
limitation both clinically and with ML models is with reading chest radiographs. Interpre-
tation of chest radiographs per the Berlin criteria can be unreliable and subject to inter-rater
variability, often leading to missed or delayed ARDS diagnosis [13]. Therefore, we propose
a robust and reliable ML model that can be trained to identify bilateral pulmonary opacities
on chest X-ray (CXR) images, which could be an invaluable inclusion in the clinical work-
flow [9]. An automatic system that can raise alerts on detecting lung airspace opacities in
chest X-rays of critically ill patients can identify possible ARDS cases, which a physician
can then review. It can reduce the burden of reviewing CXR images in situations where
there is a high patient-to-clinician ratio and can prevent cases of missed diagnoses that
could occur due to human error [14–16].

An important requirement for using data-driven techniques like machine learning to
build models for ARDS is a sizeable set of retrospective patient data with known ARDS
diagnosis and onset times. Hospital billing codes are insufficient to create such a dataset due
to clinical under-recognition [14]. Automated methods to filter patient encounters using
constraints on clinical features from the Electronic Medical Record (EMR) like PaO2/FiO2
ratio, or positive end-expiratory pressure (PEEP) defined by the Berlin criteria are being
approached [17], but are limited by non-standard documentation across EMR [18], and the
heterogeneity of clinical manifestations of ARDS [19]. Thus, clinician adjudication of
retrospective data is needed, which involves meticulous inspection of patient history using
the EMR. An ML model that can flag patients with bilateral pulmonary opacities on chest
radiographs as likely candidates for ARDS would make the adjudication process faster
with higher ARDS-positive yields. Thus, our proposed tool can also speed up retrospective
EMR data adjudication for ARDS cases.

Recently, there has been a surge of interest in using computer vision techniques to iden-
tify common findings on CXR images [20–22]. The availability of large CXR datasets such
as CheXpert [20] and MIMIC-CXR [21] has made it possible to improve the performance of
deep learning models. However, these datasets have labels derived from radiology notes
using Natural Language Processing (NLP) Algorithms. These labels can often be inaccu-
rate, owing to variability in radiologists’ interpretations, the language used, and differing
documentation protocols [23–25]. Label noise can severely impact the true performance
of deep learning models [26], and for clinical decision-making tasks, this degradation in
performance can come at a dire cost. In this work, we have created a unique dataset of
7800 chest X-ray images with labels generated after careful adjudication of the images for
bilateral pulmonary opacities by three blinded, trained physicians.

A review of the recent literature on computer-aided chest X-ray (CXR) classification
was performed for the benefit of this study. Numerous studies have adopted convolutional
neural networks (CNNs) to identify abnormalities on CXR images, such as pneumonia [27–30],
tuberculosis [31–33], and COVID-19 [34–44]. The release of datasets like CheXpert [20] and
MIMIC-CXR [21] has also enabled the training of deep learning models on large amounts of
data to identify multiple CXR findings like atelectasis, edema, consolidation, cardiomegaly,
and pleural effusion. Several high-performing models utilize transfer learning by pretraining
CNNs on the ImageNet dataset and fine-tuning them on the target dataset [45]. Notable
architectures used for this purpose include ResNets [46,47], DenseNets [20,48,49], Swin Trans-
formers [29], and ConvNeXts [37,50]. Irvin et al. [20] use the Densenet121 architecture to
achieve an AUC of 0.90 on the multi-class classification problem. Yuan et al. [48] train models
on the CheXpert dataset with the DenseNet121, DenseNet161, DenseNet169, DenseNet201 ar-
chitectures using a Deep AUC Maximization loss. The DenseNet121 model achieves a superior
AUC of 0.93 for a five-class chest X-ray abnormality classification model. Among other notable
models, DarkCovidNet [38], based on the DarkNet-19 model used in YOLO object detection,
achieves an accuracy of 0.98 for COVID-19 detection. Nahiduzzaman et al. [44] employ a
light-weight convolutional neural network coupled with an extreme learning machine model
to classify chest X-ray images into 14 classes with an average AUC of 0.96. Yao et al. [51] use
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the DenseNet121 as a deep image feature extractor and apply an LSTM (Long Short-Term
Memory) network to exploit dependencies between labels, achieving an AUC of 0.79 on a
14-class classification problem using the ChestX-ray14 dataset. Islam et al. [52] use a combined
CNN-LSTM framework for COVID-19 detection and achieve an accuracy of 0.99.

Many works incorporate attention mechanisms into CNNs to focus on regions of
interest and improve diagnostic accuracy [32,47,49,53]. Many studies use ensembles of
machine learning classifiers to improve disease classification using CXR images [29,40,43].
Zhao et al. [49] achieves an AUC of 0.85 on a 14-class chest X-ray classification task, using
an attention module added to the DensNet121 architecture and the focal loss for combating
class imbalance. Various image processing and augmentation techniques have been used
to improve performance and generalization of deep learning models [36,54,55]. Image
preprocessing steps include morphological operations for region-of-interest segmentation,
machine learning-based lung segmentation, histogram equalization, low-pass filtering,
and contrast enhancement [45]. An emerging field of interest involves using generative
models to create artificial chest X-ray images for augmenting training datasets. Some
researchers have used generative adversarial networks (GANs) for this purpose [56,57],
while others have explored multi-modal diffusion models to generate chest X-ray images
based on text prompts [58]. These approaches show promise in further enhancing the
capabilities of deep learning models for CXR classification.

Research efforts have also been made to specifically diagnose ARDS [10,12,59]. In the
work of Reamaroon et al. [10], an image processing-based feature engineering was used
in conjunction with deep learning for ARDS detection. Sjolding et al. [12] used a CNN to
achieve high performance in identifying ARDS from chest X-rays, and Pai et al. [59] used
a multi-modal ensemble framework combining clinical data with chest X-ray imaging to
predict ARDS in the first 48 h of admission. A method for dealing with ARDS label uncer-
tainty is proposed by Reamaroon et al. [60], where labels used to train the machine learning
model have a confidence score reflecting expert uncertainty in ARDS diagnosis. A similar
approach was also followed in the work of Sjolding et al. [12] for ARDS identification. Ow-
ing to the complex nature of the syndrome and its diagnosis, we do not attempt to identify
ARDS from CXR images in our work but instead identify bilateral pulmonary opacities
from CXR images. Previous studies have also worked towards identifying specific lung
opacities [23,61]. Vardhan et al. [23] quantify the extent of lung opacities in CXR images,
while Kim et al. [61] propose a method to localize opacities in the four quadrants of the lung.
In this work, we trained CNN to predict three classes: “bilateral opacities present”, “bilat-
eral opacities absent”, and “equivocal”. Many previous works in CXR image classification
disregarded equivocal images or treated them as controls. In contrast, we allow our model
to predict the “equivocal” class. We use an uncertainty-aware label-smoothing technique
that improves model calibration. Both these training methods ensure that the CNN does
not make overconfident predictions on images it is unsure about and can defer these to the
physician, making it easy to incorporate in the clinical workflow and potentially improve
the rate of ARDS detection [9]. Thus, our model served as a proof of concept of a valuable
tool for generating proactive alerts, allowing for the early identification of potential Acute
Respiratory Distress Syndrome (ARDS) cases in clinical and research settings.

2. Materials and Methods
2.1. Dataset Generation

This was a single-center retrospective cohort study at an academic institution. We
included de-identified patients diagnosed with sepsis based on the Sepsis 3 criteria, admit-
ted to the Surgical and Medical Intensive Care Units (ICU) at Emory University Hospital
between August 2015 to May 2019. All patients chosen were over 18 years of age. A total of
7800 single-view frontal chest radiographic images and their corresponding radiologist-
dictated reports, corresponding to 664 patient encounters, were extracted from our Elec-
tronic Medical Record (EMR) database. These images were annotated by three blinded
physicians with critical care experience for pulmonary opacities using the labels: “bilateral”,
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“left lung”, “right lung”, or “absent”. Unclear images, images with occluded lung regions,
or images that could not be interpreted with certainty without further information about a
patient’s clinical course, were labeled “equivocal”. Inter-rater disagreements were resolved
conservatively, biased towards limiting false positives. If two annotators agreed, their label
would be considered the “ground truth label”. If all three clinicians agreed that opacities
were present, the image was labeled “bilateral opacities present”. If all three clinicians
disagreed on the image’s label, the image was labeled “equivocal”.

2.2. Training the Convolutional Neural Network
2.2.1. Image Preprocessing

We selected all lung-window single-view chest X-ray scans of patient encounters
in the chosen cohort and converted them from DICOM format to PNG files. To ensure
consistent image analysis, we normalized the image intensity histograms of all chest X-ray
images. During the training process of our network, we applied various on-the-fly data
augmentation techniques, including random rotations, left-right flips, affine shifts, scaling,
and random brightness and contrast adjustments. These augmentation techniques were
employed to simulate the inherently noisy nature of chest radiograph images of critically
ill patients in the intensive care unit (ICU). Such patients may be unable to maintain a
straight posture during the X-ray procedure or may have occluding objects and support
devices that cannot be removed. By incorporating these transformations into the training
process, we aimed to enhance the robustness of our network to handle real-world variations
encountered in ICU CXR scans. During inference and testing, the images were resized to
256 × 256, histogram normalized, and contrast adjusted using γ = 1.5.

2.2.2. Network Architecture and Training Parameters

We employed a Convolutional Neural Network (CNN) with the Densenet121 ar-
chitecture [62], augmented by a fully connected layer, to categorize chest X-ray images
into three distinct classes: “bilateral opacities present”, “bilateral opacities absent”, and
“equivocal”. We pre-trained the network on the ImageNet dataset to facilitate the training
process. Subsequently, we fine-tuned the CNN on the CheXpert dataset, which comprises
approximately 191,000 chest X-ray images and associated labels derived from radiology
notes. We trained the CNN to identify eight common findings, i.e., lung opacities, edema,
consolidation, pneumonia, atelectasis, pneumothorax, pleural effusion, and support de-
vices, using the CheXpert data labels. We further fine-tuned the network on our cohort of
7800 ground-truth annotated images for our specific task, utilizing a patient-level train-test
split of 70–30. We used the Adam optimizer [63] with a learning rate of 10−4 and trained
the CNN for 30 epochs. To address the class imbalance, we utilized a weighted random
sampler that combined undersampling of the majority class and upsampling of the minority
class, utilizing the class-balanced weights function from the sci-kit-learn Python package.
We experimented with different loss functions, including focal loss [64] with a γ = 2,
cross-entropy loss, cross-entropy loss with label smoothing [65], and our proposed cross-
entropy loss with uncertainty-aware probability targets. The high-level training diagram of
our network is shown in Figure 1. To compare our three-class prediction approach with
standard training schemes of predicting only the positive and negative class, we conducted
similar experiments by training the CNN to predict only two classes, namely “bilateral
opacities present” and “bilateral opacities absent”, while disregarding equivocal images as
well as while treating them as controls. The outcomes are presented in detail in Section 3 of
this report.

We perform additional experiments using different model architectures, as well as
ensembling techniques to improve the classification performance of our network [50,66,67].
Details and results about additional experiments we performed to improve diagnostic
accuracy are provided in Table S1 of the Supplementary Materials.
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Figure 1. High-level training diagram of the convolution neural network.

2.2.3. Cross-Entropy Loss with Uncertainty Aware Probability Scores

If pk =
exkwk

∑K
l=1 exT wl

is the likelihood of the k-th class out of K classes, the cross-entropy

loss minimizes the function H(y, p) = ∑K
k=1 −yklog(pk) where yk are one-hot encoded class

labels, with “1” for the correct class and “0” for all other classes. For a network with label
smoothing with parameter α, the smoothed cross-entropy loss minimizes the following
function Hs(ys, p) = ∑K

k=1 −ys
k log(pk) where yS = y(1 − α) + α/K [65]. Such soft targets

are shown to improve model calibration so that the confidence of predicted probabilities
is proportional to the likelihood of the prediction being accurate [65]. For our three-class
model predicting bilateral opacities present, absent, and equivocal images, we tweak the
soft targets to reflect the probabilities of the respective classes. In essence, if the ground
truth label is “equivocal”, the target likelihoods of the “present” and “absent” classes are
set to 0.5. Labels are one-hot encoded by assigning a (1, 0, 0) target label if bilateral opacities
are absent, a (0, 1, 0) target label if bilateral opacities are present, and a (0.5, 0.5, 1) target
label if the image is marked equivocal. Our results show that this training method allows
the CNN to predict the equivocal class for uncertain input images, reducing the rate of false
positives and false negatives while maintaining good sensitivity and precision. The CNN
trained with uncertainty-aware probability scores performed the best and was chosen for
further analysis and external validation.

2.3. Performance Metrics

We conducted a comparative analysis of our convolutional neural network models
based on standard performance metrics. These metrics include the Area under the Receiver
Operating Characteristics Curve (AUROC) and the Precision–Recall Curve (AUPRC),
balanced accuracy score, precision, sensitivity, specificity, F-score, and the Diagnostic Odds
Ratio (DOR). These are defined as follows:

precision =
True Positives

True Positives + False Positives
(1)

sensitivity =
True Positives

True Positives + False Negatives
(2)

specificity =
True Negatives

True Negatives + False Positives
(3)

balanced accuracy =
sensitivity + specificity

2
(4)

DOR =
sensitivity × specificity

(1 − sensitivity)× (1 − specificity)
(5)

These metrics capture a more comprehensive view of model performance and utility
in the clinical workflow. The diagnostic odds ratio ranges from zero to infinity, and higher
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diagnostic odds ratios indicate better test performance [68]. The balanced accuracy score is
used as it is a better estimate of model performance in the case of multi-class classification
with class imbalance.

2.4. Model Calibration

In assessing the test performance of our models, we considered model calibration
as a crucial criterion. Calibration refers to how well the predicted likelihoods from the
model align with the actual confidence of the predictions being accurate. To quantify the
calibration, we utilized confidence binning and calculated the Maximum Calibration Error
(MCE). To apply confidence binning, the predicted likelihoods generated by the model
are divided into ten bins at regular. For each bin, we computed the average prediction
likelihood and accuracy of the predictions falling within that bin. The MCE, the maximum
difference between the average predicted likelihood and the average accuracy across all
bins was chosen as the calibration measure. This metric indicates the worst-case calibration
error, making it particularly relevant for clinical decision-making tasks where reliable
confidence measures are essential.

2.5. Model Interpretability

We employed two interpretability techniques for deep image classification, namely
Grad-CAM [69] (Gradient-weighted Class Activation Mapping) and Occlusion Sensitivity
Maps [70], to understand the classification decisions made by our CNN model. Grad-CAM
is a visualization method that generates heatmaps, indicating the regions of an image most
influential in the CNN’s classification decision. Gradients of the target class score with
respect to the feature maps from the final convolutional layer of the CNN are calculated
and used to assign weights to the feature maps, resulting in a heatmap highlighting the
discriminatory regions. Occlusion Sensitivity Maps involve gradually occluding different
parts of an image and observing the resulting changes in the CNN’s output. This technique
helps identify the regions within the image that significantly contribute to the CNN’s
classification decision and regions that decrease the CNN prediction confidence.

2.6. External Dataset Validation

We use the MIMIC-CXR dataset [21] for external validation of our model. To do so,
we first matched chest X-ray images and radiology notes to all patients from the MIMIC-
IV dataset that were diagnosed with sepsis-3. We then randomly sampled approximately
1600 images from this subset and obtained physician labels using the same strategy described
in Section 2.1. These are considered ground truth labels for validating our algorithm on the
external dataset. The chest X-ray scans undergo the same pre-processing steps and test time
transformations as those applied to our internal testing dataset. These include resizing the
image to a 256 × 256, histogram normalization, and contrast adjustment to a γ = 1.5.

2.7. Comparison with Labels Derived from Radiology Notes

Our study used a rule-based Natural Language Processing (NLP) pipeline to analyze
the radiology notes associated with each chest X-ray scan. We followed the methodology
outlined by Irvin et al. [20] and designed an NLP pipeline using the medspaCy [71] library,
a framework specifically tailored for clinical text processing. The medspaCy pipeline
incorporated various components to facilitate the analysis. Firstly, we employed the in-built
sentencizer module for text preprocessing, enabling the segmentation of the radiology notes
into individual sentences. We then performed Named Entity Recognition using a target
matcher component to identify specific entities of interest within the text. Additionally,
we integrated a context module into the pipeline to capture the contextual information
related to the identified named entities, such as negation or likelihood. To structure the
analysis, we included a sectionizer component as a pre-processing step to demarcate
different sections within the radiology notes, including clinical indications, impressions,
and findings pertaining to the lungs/pleura, heart/mediastinum, and bones/soft tissue.
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Additional context and target rules derived from the language syntax frequently seen
in our cohort of radiology notes were incorporated, as were phrases and context rules
described by the Stanford CheXpert Labeler team. For the identification of possible cases
of pulmonary opacification, we employed specific keywords, including ARDS, atelectasis,
consolidation, edema, effusion, opacity, infiltrates, pneumonia, and pneumothorax. These
keywords were used to flag instances in the radiology notes that potentially indicated the
presence of lung opacities, and the associated images were subsequently filtered out based
on mentions of these findings in associated radiology notes. They were then categorized
into positive (indicating the presence of the finding), negative (indicating the absence of
the finding), or uncertain (suggesting the possibility of existence, requiring further clinical
adjudication). Furthermore, we detected disease descriptors, such as ‘bilateral’ for ‘opacity’,
‘infiltrates’, and ‘pleural’ or ‘interstitial’ for ‘effusions’ or ‘edema’, respectively. To label
bilateral opacities, we utilized descriptors of laterality (‘Bilateral’, ‘Right’, ‘Left’). Instances
describing findings as only ‘Right’ or ‘Left’ were labeled negative for bilateral opacities.
We compared the performance of the labels derived from these radiology notes with the
output of our CNN model, which was trained on physician labels. The obtained results are
discussed in detail in Section 4 of our study.

3. Results
3.1. Data Characterization

The number of patients, chest radiographs, image label frequency, and demographic
information of the internal and external datasets are listed in Table 1. Class labels in both
datasets followed a long-tailed distribution, with the lowest prevalence of the equivocal
class. Since our patient cohort were all those diagnosed with sepsis, we can see a higher
incidence of the bilateral pulmonary opacities present class when compared to the absent
and equivocal classes, with 54% present in the internal (Emory University) dataset and 77%
present in the external (MIMIC-CXR) dataset.

Table 1. Demographic information of the internal test set from Emory University and the external
validation set (MIMIC-CXR). Data are reported as the number of counts for patients and CXR images,
number of counts (percentage of total counts) for sex, race, and label prevalence, or median (IQR)
for Age.

Internal Dataset
(Emory University)

External Dataset
(MIMIC-CXR)

Patients 663 952

Chest X-rays 7825 1639

Age—median (IQR) 57 (43–67) 65 (53–76)

Sex
Male 315 (48%) 532 (56%)

Female 348 (52%) 420 (44%)

Race

Caucasian/White 304 (46%) 605 (63%)

African American/Black 251 (38%) 153 (16%)

Asian 14 (2%) 44 (5%)

Other 94 (14%) 150 (16%)

CXR Labels

Bilateral Opacities Present 4227 (54%) 1009 (61.5%)

Bilateral Opacities Absent 1788 (23%) 442 (27%)

Equivocal 1810 (23%) 188 (11.5%)

3.2. CNN Performance Comparison

Table 2 reports the performance metrics of the evaluated training schemes. All the
CNN models compared are those pre-trained on the ChexPert dataset and then had all
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layers fine-tuned on the Emory Dataset. These models saw a superior performance to those
trained from scratch, those pre-trained on the CheXpert dataset, and those with their last
layers fine-tuned on the Emory dataset. The metrics in Table 2 and the Receiver Operating
Characteristics (ROC) curves and Precision–Recall Curves (PRC) in Figure 2 are calculated
for the “Bilateral Opacities Present” class to enable comparison between the two-class and
the three-class approach. The three-class model refers to the training scheme in which
we train the model to predict the “present” or “absent” as well as the “equivocal” class.
The two-class model refers to the training scheme in which we predict only the “present”
and “absent” classes. Images labeled “equivocal” as belonging to the “absent” class in one
set of experiments were disregarded and removed from analysis for a second set.

The results in Table 2 show that the highest performance metrics were observed
when testing the two-class model (disregarding equivocal). However, this might repre-
sent a biased testing set as we eliminated the difficult examples from the test set. Thus,
this approach was not considered for performance comparison or external validation.
The three-class model outperforms the two-class model (with equivocal images treated
as controls) in precision, AUPRC, and diagnostic odds ratio. Superior performance was
achieved by training the three-class model using the cross-entropy loss with uncertainty-
aware probability targets, with an AUROC of 0.828 (95% CI: 0.803, 0.853) and F-score of
0.746 (95% CI: 0.720, 0.775), and a diagnostic odds ratio of 17.211 (95% CI: 12.106, 25.976).
The Receiver Operating Characteristics curves (ROC) and Precision–Recall Curves (PRC)
in Figure 2 highlight the benefit of our three-class approach in improving the precision and
recall of the trained model. The benchmark performance of labels derived from radiology
notes showed an average precision of 0.63, an average sensitivity of 0.58, and an average
specificity of 0.81. Results of a 10-fold cross-validation are provided in Table S2 of the
Supplementary Materials.

Table 2. Performance metrics of the two-class model (predicting “present” or “absent”) with equivo-
cal images considered “absent”, two-class model (disregarding equivocal) with equivocal images
disregarded from training and testing, and the three-class model (predicting “present”, “absent” and
“equivocal”). The highest values for each metric are emboldened, excluding the two-class model
(disregarding equivocal) to ensure valid and unbiased comparisons. A 95% CI is reported and was
calculated by bootstrap resampling 1000 times.

Experiment Loss Function AUROC AUPRC F-Score Precision Sensitivity Specificity Diagnostic
Odds Ratio

Balanced
Accuracy

Two-Class
Model

Cross-Entropy Loss
0.819
(0.791,
0.844)

0.553
(0.521,
0.584)

0.707
(0.679,
0.735

0.678
(0.671,
0.726)

0.724
(0.694,
0.754)

0.809
(0.781,
0.836)

11.141
(8.545,
14.765)

0.767
(0.736,
0.795)

Focal Loss
0.825
(0.802,
0.852)

0.568
(0.539,
0.595)

0.715
(0.684,
0.744)

0.706
(0.674,
0.735)

0.730
(0.698,
0.732)

0.816
(0.787,
0.843)

11.967
(8.979,
16.144)

0.773
(0.743,
0.788)

Two-Class
ModelDE

Cross-Entropy Loss
0.884
(0.864,
0.904)

0.758
(0.736,
0.779)

0.734
(0.689,
0.743)

0.777
(0.750,
0.807)

0.714
(0.689,
0.743)

0.923
(0.904,
0.941)

29.917
(22.455,
43.151)

0.819
(0.796,
0.842)

Focal Loss
0.875
(0.855,
0.896)

0.756
(0.731,
0.789)

0.774
(0.746,
0.799)

0.775
(0.750,
0.803)

0.772
(0.742,
0.801)

0.868
(0.843,
0.893)

22.235
(16.398,
31.375)

0.820
(0.793,
0.847)

Three-Class
Model

Focal Loss
0.810
(0.785,
0.837)

0.845
(0.803,
0.8475)

0.739
(0.712,
0.766)

0.738
(0.711,
0.766)

0.740
(0.712,
0.767)

0.712
(0.666,
0.757)

7.006
(5.011,
10.191)

0.726
(0.689,
0.762)

Cross-Entropy Loss
0.790
(0.764,
0.818)

0.819
(0.0.792,
0.834)

0.688
(0.659,
0.717)

0.716
(0.691,
0.744)

0.707
(0.681,
0.732)

0.851
(0.819,
0.883)

13.769
(9.948,
19.926)

0.776
(0.750,
0.808)

Cross-Entropy Loss
with probability

targets

0.828
(0.803,
0.853)

0.874
(0.861,
0.887)

0.746
(0.720,
0.775)

0.755
(0.731,
0.782)

0.761
(0.735,
0.786)

0.842
(0.812,
0.875)

17.211
(12.106,
25.976)

0.802
(0.773,
0.831)
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Figure 2. Receiver Operating Characteristics curves (ROC) and Precision–Recall Curves (PRC) for
the positive class (bilateral opacities present) of the two-class and three-class models, as well as the
benchmarked performance of the labels derived from radiology notes using an NLP algorithm. DE:
Disregarded Equivocal images.

3.3. Model Calibration

Table 3 reports the maximum calibration error for the experiments described in the
previous section. Figure 3 plots reliability diagrams that depict model calibration. It is
observed that the three-class model trained using the cross-entropy loss with probability
targets has the lowest MCE of 0.150 with the best-calibrated reliability diagram. The three-
class model trained with focal loss is a close second, with an MCE of 0.240. It can be
noticed that the two-class models have inferior model calibration when compatible with
the three-class models.

Figure 3. Reliability diagrams to inspect model calibration for (A) two-class model trained with
cross-entropy loss, (B) two-class model trained with focal loss, (C) three-class model trained with
cross-entropy loss, (D) three-class model trained with focal Loss, (E) three-class model trained with
cross-entropy loss using uncertainty-aware probability targets.
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Table 3. Maximum calibration errors of the two-class model (predicting “present” or “absent”) with
equivocal images considered “absent”, two-class model (disregarding equivocal) with equivocal
images disregarded from training and testing, and the three-class model (predicting “present”,
“absent” and “equivocal”).

Experiment Loss Function MCE

Two-Class Model
Cross-Entropy Loss 0.424

Focal Loss 0.385

Two-Class Model: Disregarding Equivocal
Cross-Entropy Loss 0.479

Focal Loss 0.318

Three-Class Model

Cross-Entropy Loss 0.408

Focal Loss 0.240

Cross-Entropy Loss with probability targets 0.150

3.4. External Validation on MIMIC-CXR

The three-class model trained with the cross-entropy loss using uncertainty-aware
probability targets was chosen as the best-performing model and used for external valida-
tion. Table 4 reports the performance metrics of the model on the external validation set,
while Figure 4 plots the Receiver Operating Characteristics curves and Precision–Recall
Curves for the same. The model achieves an AUROC of 0.836 (95% CI: 0.811, 0.858), an F-
score of 0.658 (95% CI: 0.627, 0.685), and a diagnostic odds ratio of 2.18 (95% CI: 1, 1.8).
Table 1 shows us that the external validation set used for our study has a much higher
incidence of the “Bilateral Opacities Present” class. This could explain the reason behind
observing a higher AUC and specificity but a lower sensitivity and diagnostic odds ratio.
The benchmark performance of labels derived from radiology notes showed an average
precision of 0.66, an average sensitivity of 0.59, and an average specificity of 0.58.

Table 4. Performance Metrics for the three-class model trained with cross-entropy loss using
uncertainty-aware probability targets on the MIMIC-CXR external validation set. A 95% CI is
reported and was calculated by bootstrap resampling 1000 times.

Experiment AUROC AUPRC F-Score Precision Sensitivity Specificity Diagnostic
Odds Ratio

Balanced
Accuracy

Three-Class Model:
Cross-Entropy Loss

with Probability
Targets

0.834
(0.811, 0.858)

0.898
(0.873, 0.917)

0.658
(0.627, 0.685)

0.729
(0.704, 0.749)

0.727
(0.703, 0.747)

0.955
(0.929, 0.973)

2.180
(1.801, 1.00)

0.841
(0.816, 0.860)
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Figure 4. Receiver Operating Characteristics curves (ROC) and Precision–Recall Curves (PRC) for
the positive class (bilateral opacities present) of three-class Model trained with cross-entropy loss
using uncertainty-aware probability targets on the MIMIC-CXR external validation set, as well as the
benchmarked performance of the labels derived from radiology notes using an NLP algorithm.
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3.5. Visualization of Saliency Maps

By utilizing GradCAM and occlusion sensitivity maps, we aimed to gain insights
into the decision-making process of our CNN model and understand the specific regions
of the input images that were most influential in determining the classifications. These
visualization techniques enhance our understanding of the model’s reasoning and aid in
interpreting its predictions. In Figure 5, we can see that while the Grad-CAM either focuses
on the entire lung region or each lung separately, the occlusion sensitivity maps show us the
exact regions of the image that were important when making the positive prediction. These
regions correspond well with opacified lung spaces. In Figure 5a, an interesting observation
is that the Grad-CAM clearly pays attention to both lungs and correctly classifies the image
as negative for bilateral opacities, despite one lung looking opacified. In image sets (c) and
(f), the grad-CAM activations focus on lung regions that are occluded or difficult to interpret
with certainty due to poor quality. Figure 6 displays instances of misclassification compared
to the gold standard of physician labels. Image sets (c) and (d) are examples of the CNN
classifying images that are labeled equivocal as “Bilateral Opacities Absent” and “Bilateral
Opacities Present”, respectively, albeit with lower likelihoods. Image sets (e) and (f) are
examples of the CNN classifying certain images that it is uncertain about as “equivocal”.
We notice that the Grad-CAM appears to be focusing on the breast tissue region, which
might confuse the predictions of airspace opacities.

Figure 5. Occlusion Sensitivity Maps and Grad-CAM visualizations of network predictions for
correctly classified examples. (a–c) are CXR images belonging to the internal test set, while (d–f) are
CXR images belonging to the external validation set. For the Grad-CAM visualizations, the red
highlighted regions have the highest discriminatory importance for the predicted class. For the
Occlusion Sensitivity Maps, the hotter (red) regions are the areas that increased model confidence
in the predicted class. In contrast, the cooler (blue) regions were the most confusing to the CNN
(increased predicted class likelihood when occluded).
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Figure 6. Occlusion Sensitivity Maps and Grad-CAM visualizations of network predictions for
misclassified examples. (a,b) Examples of misclassification between the “Bilateral Opacities Present”
and “Bilateral Opacities Absent” Class. (c,d) Examples of CXR images labeled “equivocal” by
clinicians, that the network identifies as “Bilateral Opacities Present” and “Bilateral Opacities Absent”.
(e,f) Examples of CXR images labeled “Bilateral Opacities Present” and “Bilateral Opacities Absent”,
that the network identifies as “equivocal”.

4. Discussion

Recent research on ARDS has moved towards early recognition as a means of reducing
severity and mortality, and the initiation of therapies known to reduce the likelihood of
ARDS development [72], like low tidal volume ventilation [73] and fluid restriction [74].
Critically ill patients have frequent chest X-rays taken to ensure the correct placement
of devices such as chest tubes, central lines, or pacemakers, and for routine medical
workups [75]. Using these images to help with the accurate and early identification of
bilateral pulmonary opacities can optimize patient care and ongoing clinical management,
possibly improving the chances of detecting ARDS in the early stages [9]. In this work, we
have proposed a CNN trained to identify pulmonary opacities on chest X-ray images as a
tool to generate predictive alerts for possible ARDS cases that can be applied in the clinical
and research domains. The overarching goal of our research was to develop a robust and
dependable model capable of detecting bilateral opacities on chest radiographs to translate
it into clinical settings. The clinical utility of our work is threefold.

First, we have collected a dataset comprising all chest X-ray (CXR) images of patients
diagnosed with sepsis-3 during their hospitalization at Emory University Hospital. We did
not curate the dataset by selectively choosing good-quality images or by sampling images
from specific ‘present’ and ‘absent’ classes. This approach stands in contrast to some recent
studies focusing on disease detection, in which datasets are composed of positive disease
samples, and controls [34,35,38,52]. Some studies struggle with poor generalization when
applied in real clinical settings [76,77]. The lack of representation of critical patients with
possible differential diagnoses and the differences in inclusion criteria for datasets can be
confounding factors that contribute to this disparity in performance. Instead, we aimed
to maintain a reflection of real-world data distributions by including all available images.
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Consequently, our patient cohort represents a high-acuity group, and a significant portion
of the images received equivocal labels as determined by the clinical adjudicators (23%).
Images in our data are often of poor quality, as they are often captured at the bedside in the
ICU, with support devices, chest tubes, and other occluding objects.

Second, we generate ground truth labels for all images from three blinded clinicians
to train the network instead of using labels extracted from radiology notes as these might
not always be accurate or reflective of a patient’s current clinical status [15,24,25]. Findings
that are repetitive or beyond the indication, such as line placement confirmation, often go
unlabeled completely. In the case of labeling for bilateral opacities, the problem becomes
more challenging owing to variability in the interpretation of the criterion. Additionally,
radiologists may omit mentions of laterality or might use non-standard language to indicate
findings. We have also observed similar evidence of unreliable labels from radiology notes,
which can be seen in Figure 7. In this work, we create a first-of-its-kind dataset of single-
view chest X-ray images of critically ill patients annotated for bilateral opacities, unilateral
opacities, or labeled equivocal by three clinical experts accounting for inter-rater variability.
Since the presence of bilateral opacities on chest radiographs is one of the primary criteria
of the Berlin Definition for ARDS, such a dataset could be pivotal in predictive modeling for
ARDS using machine learning algorithms. The rigorous process of clinician adjudication
guarantees that the performance metrics reported in our study hold clinical significance
and can be trusted in real-world medical applications. By relying on ground truth labels
established through consensus among multiple experts, we provide a reliable foundation
for training our network and validating its performance.

Chest Radiograph

Radiology Note

NLP 
Algorithm

Extracted Label:
Bilateral 

Opacities 
Absent

Physician Label:
Bilateral Opacities 

Present

Feature Extractor CNN
(DenseNet121)

LikelihoodLabel

0.32Equivalent

0.53Present

0.14Absent

CNN
Prediction

Chest Radiograph

Radiology Note

NLP 
Algorithm

Extracted Label:
Bilateral 

Opacities 
Present

Physician Label:
Bilateral Opacities 

Absent

Feature Extractor CNN
(DenseNet121)

LikelihoodLabel

0.03Equivalent

0.04Present

0.93Absent

CNN
Prediction

Figure 7. Illustrative examples of incorrect labels derived from radiology notes.
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Third, our machine learning algorithm attempts to incorporate trust and uncertainty
awareness by modeling the “equivocal” class. We allow clinicians to label images as equiv-
ocal and design a three-class training scheme incorporating label uncertainty and explicitly
teaching CNN to identify the equivocal class. This approach was adopted to develop a
reliable model that can label an image as ‘equivocal’ rather than producing low-confidence
predictions on uncertain cases. By training our model to handle equivocal labels, we aimed
to create a system that can be seamlessly integrated into the clinical workflow or employed
in a human-in-the-loop setting. Unlike many current state-of-the-art studies, which focus
on improving the AUROC, our training goal was to produce a well-calibrated model,
incorporating uncertainty awareness via the “Equivocal” class. The output probabilities of
a well-calibrated model are good estimates of its predictive confidence. This ensures that
the model’s predictions are reliable and can be interpreted with greater confidence in real-
world clinical applications. To demonstrate the superiority of our three-class model over a
two-class model that treats equivocal labels as “bilateral opacities absent”, we conducted
an experimental comparison. The three-class model showed higher AUROC, Area Under
the Precision–Recall Curve (AUPRC), F-score, calibration error, and diagnostic odds ratio
compared to the two-class model. This indicates that our approach of explicitly handling
equivocal cases leads to better performance in various evaluation metrics. Moreover, we
evaluated different loss functions and found that our uncertainty-aware cross-entropy loss
with probability targets achieved a lower maximum calibration error when compared to
focal loss and standard cross-entropy loss. This is evident from our results in Table 3 and
Figure 3, further validating the effectiveness of our training scheme. The diagnostic odds
ratio balances a trade-off between sensitivity and specificity, thereby balancing the trade-off
between false positive rates (probability of false alarms) and false negative rates (miss
rates). This measure helps evaluate the diagnostic accuracy of the models. Our results
show that the three-class model has higher precision, sensitivity, AUPRC, and diagnostic
odds ratio when compared to the corresponding two-class models (Table 2).

On-par classification performance on the external validation dataset reiterated the
robustness of our approach. We noticed an increase in validation performance in terms of
the AUC, which could be an artifact of the much higher number of positive class cases in
the external test set. Grad-CAM and occlusion sensitivity map visualizations were used to
lend interpretability to class predictions. Figures 5 and 6 show us that the CNN is picking
up on the regions of the lungs that are important in identifying bilateral opacities. This
confirms that the CNN is trained to look at the relevant areas of the image instead of
finding “shortcuts” by picking up accidental statistical correlations with irrelevant regions
in the images, which is a growing concern with large datasets from a limited number of
hospital centers [77]. Similar saliency maps for the external dataset prove the reliability
and robustness of our model.

Our study has some limitations that need to be addressed. First, we limited our dataset
to chest X-ray images from a cohort of patients diagnosed with sepsis. This was done
to prevent the inclusion of trauma cases, and other causes of ARDS, whose chest X-rays
might look widely varied. In future work, we plan to include all critically ill patients
admitted to the ICU to train our models on a more diverse patient population. Second, we
obtain gold-standard ground truth labels on the external MIMIC-CXR dataset in the same
method as the internal validation set due to the lack of pre-available ground truth labels for
“bilateral” chest X-ray opacities. Such an external validation might not account for inherent
bias in our labeling scheme. However, since three blinded clinicians provide our labels,
we consider this an unbiased physician-annotated X-ray read. Another limitation of work
might be that our dataset is annotated by physicians instead of radiologists. However, all
three physicians have critical care experience. In clinical practice, images obtained at the
bedside are often interpreted in real time and factor in the patient’s current clinical status,
which is often not reflected in the electronic medical record in real-time. Additionally,
collaborative discussions between critical care providers and radiologists are not reflected
in radiographic annotations. Taken together, the advantage of training our model using
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annotated images by three critical care-trained physicians is more reflective of actual clinical
practice, potentially improving the translatability of our model into clinical practice.

Moreover, this work is a proof-of-principle of an automated tool that can be used to
check the chest radiograph criteria of the Berlin definition of ARDS. However, ARDS is
a syndrome that needs a multi-modal approach for diagnosis. As a next step, we aim to
look at a series of chest X-ray scans of a particular patient and integrate clinical vitals, labs,
and blood gas readings to build a better predictive model for ARDS diagnosis.

In future work, the inclusion criteria for our study will be explained to include CXR im-
ages of all patients admitted to the Emory University Hospital from 2016–2022, to enhance
accuracy in our model. We will explore using generative models to augment the training
data by producing artificially generated CXR image samples. Additional considerations to
this approach include acquiring clinician-validated “ground-truth” labels for artificially
generated images. Attention-based convolutional neural networks will be considered,
in addition to transformer-based methods to improve performance.

5. Conclusions

Acute Respiratory Distress Syndrome (ARDS) is a serious lung injury with high mortal-
ity that is often missed or diagnosed late, leading to poor patient outcomes. An important
criterion for diagnosing ARDS is the presence of bilateral pulmonary opacification. In this
work, we created a unique dataset of single-view CXR images of critically ill patients
labeled as bilateral opacities, unilateral opacities, and equivocal by three clinical experts
with inter-rater agreement. Our model is robust to clinically equivocal images and ex-
plicitly flags images as equivocal, indicating the need for more information or physician
input. Our training approach using uncertainty-aware soft likelihood targets provides
reliable output probabilities calibrated to confidence in the presence of bilateral pulmonary
opacities. The CNN model identifies bilateral opacities with high precision and a low false-
positive and false-negative rate. Thus, our model design is well-suited for an automated,
always-on alert system that can tirelessly read and make predictions on chest X-rays with
high confidence while deferring equivocal images to clinicians on-call. Such an AI-clinician
collaborative strategy for ARDS onset prediction can be a useful tool for early identification
and for retrospective adjudication for data-driven studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10080946/s1, Table S1: Performance Metrics of the
Three Class Model (predicting “present”, “absent” and “equivocal”). The highest values for each
metric are emboldened. 95% Confidence Intervals are reported and were calculated using non-
parametric estimation using bootstrap-ping; Table S2. Results of 10-fold cross-validation using
the DenseNet121 model trained with uncertainty-aware cross-entropy loss with probability targets.
References [42,45,50,66,67] are cited in the Supplementary Materials.
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