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Abstract: The COVID-19 pandemic has underscored the urgent need for rapid and accurate diagnosis
facilitated by artificial intelligence (AI), particularly in computer-aided diagnosis using medical imag-
ing. However, this context presents two notable challenges: high diagnostic accuracy demand and
limited availability of medical data for training AI models. To address these issues, we proposed the
implementation of a Masked AutoEncoder (MAE), an innovative self-supervised learning approach,
for classifying 2D Chest X-ray images. Our approach involved performing imaging reconstruction
using a Vision Transformer (ViT) model as the feature encoder, paired with a custom-defined decoder.
Additionally, we fine-tuned the pretrained ViT encoder using a labeled medical dataset, serving
as the backbone. To evaluate our approach, we conducted a comparative analysis of three distinct
training methods: training from scratch, transfer learning, and MAE-based training, all employing
COVID-19 chest X-ray images. The results demonstrate that MAE-based training produces superior
performance, achieving an accuracy of 0.985 and an AUC of 0.9957. We explored the mask ratio influ-
ence on MAE and found ratio = 0.4 shows the best performance. Furthermore, we illustrate that MAE
exhibits remarkable efficiency when applied to labeled data, delivering comparable performance
to utilizing only 30% of the original training dataset. Overall, our findings highlight the significant
performance enhancement achieved by using MAE, particularly when working with limited datasets.
This approach holds profound implications for future disease diagnosis, especially in scenarios where
imaging information is scarce.

Keywords: vision transformer (ViT); self-supervised learning; chest X-ray image; image classification

1. Introduction

The COVID-19 pandemic has brought attention to the vital role of artificial intelligence
(AI) in combating infectious diseases, specifically through the analysis of lung images, such
as X-ray chest images. Computer-aided diagnosis (CAD) has emerged as a promising tool
for accurate and rapid diagnosis in this context. deep learning (DL) models, known for
their exceptional performance in computer vision tasks such as image recognition [1–4],
semantic segmentation [5,6], and object detection [7–9], have increasingly been adopted for
CAD and other healthcare applications [10–13].

Despite the significant potential of DL models in medical data analysis, there are
several practical challenges impeding their widespread adoption. First, medical datasets
are often smaller compared to those used for natural image analysis, such as the widely
used ImageNet dataset [14]. DL models have numerous parameters and require substantial
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data for effective training. Consequently, training such models with limited datasets can be
challenging and may lead to overfitting [15,16]. Second, labeling medical data is a resource-
intensive and time-consuming process. CAD relies on labeled data for training, but labeling
medical data necessitates specialized medical knowledge and expertise, making it more
demanding than labeling natural images. Lastly, current DL models for medical image
analysis primarily rely on convolutional neural networks (CNNs) [17,18]. While CNNs
excel at capturing local features, they may not be optimally suited for capturing global
information across an entire image. Therefore, further research is necessary to develop
more effective DL network architectures capable of capturing both local and global features
for medical image analysis, particularly when dealing with limited datasets.

To address these challenges, various methods have been proposed. For example,
transfer learning [19] has gained widespread usage, wherein DL models are pretrained
on large-scale natural image datasets such as ImageNet and subsequently fine-tuned on
smaller medical datasets. This approach helps mitigate the overfitting issue caused by
limited medical datasets, although it may not fully bridge the gap between natural and
medical images. Regarding labeling issues, weakly supervised learning (WSL) [20,21] has
become popular, where models are trained using only image-level labels for tasks such
as object detection [22]. However, WSL may not be suitable for classification tasks that
still require image-level labels. Recently, novel DL models such as the Vision Transformer
(ViT) [23] and its variants [24,25] have demonstrated promising results in capturing global
information from medical images. Nevertheless, these models often necessitate extensive
amounts of data for effective training.

In our study, we explored a novel method for medical image analysis that addresses
the challenges associated with training strategy and limited medical datasets. We propose
the utilization of self-supervised learning (SSL) [26], a method that leverages the intrinsic
attributes of the data as pretraining tasks, eliminating the reliance on labeled data. SSL
implementation involves utilizing attributes such as image rotation prediction [27], patch
localization [28], and image reconstruction [29], which can be accessed without manual
labeling. Additionally, by substituting the conventional CNN backbone with a Vision
Transformer (ViT) model, our method effectively captures both local and global features of
medical images. To accomplish this, we employ a Masked Autoencoder (MAE) model [30],
a self-supervised learning approach that utilizes the ViT model as its backbone. By combin-
ing SSL with ViT through the MAE model, we anticipate that this method can contribute to
more accurate and efficient medical image analysis.

To our best knowledge, we are the first to apply MAE on COVID-19 X-ray imaging.
During the exploration, we found an innovative application of MAE on the limited dataset,
which is not studied by the previous work [30]. We demonstrated the superior performance
of the MAE model compared to baseline models, explored the influence of mask ratios
on the MAE model’s performance, and evaluated the MAE model’s performance using
different proportions of limited training data. The contributions of our study are as follows:

• We conducted a comparative analysis of various training strategies using the same
public COVID-19 dataset and observed that the MAE model outperformed other
approaches, demonstrating superior performance.

• To further investigate the impact of different mask ratios on the MAE model’s perfor-
mance, we examined how varying mask ratios affected the effectiveness of the model.
Our experiments revealed that the model achieved its best performance with a mask
ratio of 0.4.

• Through extensive evaluations, we examined the applicability of the MAE model
across different proportions of available training data. Remarkably, the MAE model
achieved comparable performance even when trained with only 30% of the avail-
able data.
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2. Materials and Methods
2.1. Data

Our study adopted the chest X-ray classification dataset: COVIDxCXR-3 [31], which
is a public dataset with more than 29,000 chest X-ray images, for positive/negative de-
tection. COVIDxCXR-3 collects the data from different public data sources: covid-chest
x-ray-dataset [32], Figure 1 COVID-19 Chest X-ray Dataset Initiative [33], Actualmed
COVID-19 Chest X-ray Dataset Initiative [34], COVID-19 Radiography Database—Version
3 [35], RSNA Pneumonia Detection Challenge [36], RSNA International COVID-19 Open
Radiology Database (RICORD) [37], BIMCV-COVID19+: a large annotated dataset of RX
and CT images of COVID-19 patients [38], and Stony Brook University COVID-19 Pos-
itive Cases (COVID-19-NY-SBU) [39]. Figure 1 visualizes the positive/negative image
samples of the COVID-19 subject. Table 1 shows the details of the COVIDxCXR-3 dataset
distribution. The dataset has a multinational cohort of over 16,600 patients. The whole
dataset is split into training and testing sets by the dataset authors. The training dataset has
13,992 negative and 16,490 positive images. The testing dataset has 200 negative and
positive images, respectively.

Original Masked Reconstruction

Covid

Normal

Figure 1. The visualization of the chest X-ray image of the COVIDxCXR-3. The first row shows the
negative subjects and the second row shows the positive subjects. The input image size is 224 × 224.
We normalize the image pixel from 0 to 255.

Table 1. The images and patients distribution of the dataset COVIDxCXR-3.

Type Negative Positive Total

Images Distribution

Train 13,992 15,994 29,986
Test 200 200 400

Patients Distribution

Train 13,850 2808 16,648
Test 200 178 378

During the implementation of our experiment, we configured the image size to
224 × 224 pixels, while normalizing the image pixel values within the range of 0 to 255.
Under normal circumstances, in order to provide an unbiased evaluation of a model,
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cross-validation is typically conducted during the training process. However, as demon-
strated in Table 1, there exists an inequality in both image and patient distributions.
There are 15,994 positive images for COVID-19, derived from 2808 COVID-19-positive
patients, indicating multiple X-ray images per patient in the dataset (approximately
6 images per patient). Meanwhile, the dataset authors have not provided the specific
subject information, precluding the possibility of conducting subject-level cross-validation.
Concurrently, cross-validation at the image level would result in data leakage. There-
fore, we chose to adopt the train/test split as defined by the dataset authors in these
particular circumstances.

2.2. Vision Transformer

Since ViT is built upon the self-attention mechanism and many works adopt multi-head
attention in the implementation, we first introduce the basics of the attention mechanism,
then describe the ViT architecture.

The attention mechanism includes three inputs: a query (Q), a key (K), and a value (V).
The attention operation is defined as Equation (1):

Attention(Q, K, V) = Softmax(
QKT
√

dk
)V (1)

Afterward, the multi-head attention is defined as Equation (2):

MultiHeadAttn(Q, K, V) = Concat(head1, ..., headn)Wo

headi = Attention(QWQ
i , KWK

i , VWV
i )

(2)

where WQ
i , WK

i , and WV
i are learnable projection matrices.

Figure 2 illustrates the ViT structure, which has a patch embedding module and N×
stacked transformer encoder blocks. Each transformer encoder block contains a multi-head
attention (MSA), two layer normalization (LN) [40], and a multi-layer perceptron (MLP).

Patch Embedding

Input Image

LN

Self-Attention

LN

MLP

Add

Add

Transformer Encoder

N x
Self-Attention

Input 

K Q V

MatMul

Softmax

MatMul

Output 
a. b.

Figure 2. The structure of Vision Transformer. Sub-figure (a) illustrates the structure of the self-
attention module. Sub-figure (b) shows the architecture of the Vision Transformer encoder.
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In the implementation, the input image I is first transformed into a series of
patch embeddings:

z0 = PatchEmbedding(I) (3)

The patch embeddings are forwarded through the transformer encoder under the
following operations:

zl = MLP(Norm(MSA(Norm(zl−1)))) (4)

where zl−1 and zl are the l-th transformer encoder block input and output, respectively.

2.3. MAE

Originally, MAE is a proficient self-supervised learning method employed in Natural
Language Processing (NLP) tasks. Building upon its initial foundations, the MAE has
significantly broadened its application scope beyond the NLP field, marking its presence in
the field of computer vision. This widening of its application is facilitated by the universality
of its core principle—the strategic “masking” operation. This operation forms the core of
the self-supervised learning methodology, by selectively omitting sections of input data to
create a challenge for the model to reconstruct these masked elements. This process allows
the model to develop a robust understanding of the intrinsic structure and properties of
the target dataset, optimizing its ability to generate representative features during the
pretraining phase. This initial phase is followed by a fine-tuning stage, which utilizes
labeled input data to further refine the model’s comprehension of the dataset, thereby
improving its overall performance. This two-tiered approach equips the model with the
essential tools to tackle novel data and perform reliably on the target dataset. The successful
adaptation of the MAE methodology to the realm of computer vision was achieved by
employing techniques parallel to its NLP counterpart. Images are decomposed into a
multitude of patches, a subset of which are randomly masked. Subsequently, the model is
trained to perform the reconstruction pretraining task, effectively learning to predict the
obscured sections of the image. Following this, a fine-tuning phase is undertaken with
labeled data, ensuring the model’s efficient performance on the target dataset.

When considering the choice of backbone for the MAE model, ViT emerges as an
optimal option when compared to the convolutional neural network (CNN). As previously
mentioned, the ViT architecture offers distinct advantages. One notable feature of the ViT
model is its initial operation, where the input image is segmented into various patches.
This patch-based approach can easily utilize the masking of random regions. Given these
advantages, it is judicious to adopt a ViT architecture as the backbone for the MAE model.

Figure 3 illustrates the comprehensive workflow of a self-supervised learning system
based on the MAE, encompassing two essential stages: the pretext task of image recon-
struction and the subsequent fine-tuning stage. When it comes to the architecture of the
model during the pretraining stage, it incorporates a Vision Transformer (ViT) as both the
encoder and decoder. Serving as an encoder, the ViT is applied to mask certain segments
of the input image patches. In its role as a decoder, it is tasked with the restoration of the
masked patches. Upon transitioning to the fine-tuning phase, the pretrained ViT encoder
is trained further with samples and labels from the target dataset. In the context of our
implementation, we elected to employ a ViT-small structure with a hidden size of 768 as the
encoder and the standard decoder within the framework of the MAE. The overall pipeline,
founded on block representation, is presented in Figure 4.
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ViT Decoder

Stage 1: Pre-text task (Image Reconstruction) 
training

Stage 2: Covid Positive/Negative task training

ViT Classifier

Positive

Negative

Apply the Stage 1 pretrained 
ViT for Stage 2 

Figure 3. The workflow of the MAE method on the COVID-19 classification task. There are two
stages for MAE training. The first stage is the image reconstruction pretraining stage, with the ViT
backbone as the image encoder. The second stage is a fine-tuning stage, with the ViT backbone as the
feature extractor for the labeled images.

MAE 
Pre-training Stage

MAE
Fine-tuning Stage Prediction

Training data 
with pre-text 

task

Training data 
with label

Testing data

Figure 4. The block presentation of the MAE pipeline.

2.4. Loss Function

Since our work concentrates on binary classification, the overall loss function is a
binary cross-entropy. For a chest X-ray image V with label l and probability prediction
p(l|V), the loss function is

loss(l, V) = l log(p(l|V)) + (1− l) log(1− p(l|V)) (5)

where the label l = 0 indicates a negative sample and l = 1 indicates a positive
sample, respectively.
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2.5. Implementation and Metrics

We implemented the experiment models using PyTorch. We trained and tested the
models based on the default setting of the dataset. For the pretrained baseline, the model is
pretrained on ImageNet [14]. For the model training, we set the batch size to 16. Adam
optimizer [41] with beta1 = 0.9, beta2 = 0.999, and a learning rate of 1× 10−4 was used
during the training. For the SSL model, we pretrained the model with 100 epochs. In the
fine-tuning stage, we trained all the models for 40 epochs.

To evaluate the performance of our model, we used accuracy (Acc), area under the
curve of receiver operating characteristics (AUC), F1 score (F1), Precision, Recall, and
Average Precision (AP) as our evaluation metrics. We evaluated the training computation
cost by the average epoch training time (e-Time). The accuracy is calculated with the
following Equation (6):

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP is the True Positive, TN is the True Negative, FP is the False Positive, and FN is
the False Negative.

The precision is calculated by the following Equation (7):

precision =
TP

TP + FP
(7)

The recall is calculated by the following Equation (8):

recall =
TP

TP + FN
(8)

The F1-score is calculated by the following Equation (9):

F1-score = 2× precision · recall
precision + recall

(9)

AUC curves compare the true positive rate and the false positive rate at different
decision thresholds. AP summarizes a precision–recall curve as the weighted mean of
precision achieved at each threshold.

3. Results
3.1. Model Performance Increasing by MAE

We conducted training experiments on the ViT model architecture using three dif-
ferent approaches: ViT-scratch, ViT-pretrain, and ViT-MAE. In the ViT-scratch approach,
the ViT model was trained directly on the medical image data. The ViT-pretrain approach
involved fine-tuning a pretrained ViT model on ImageNet using the medical image data.
ViT-MAE refers to training the ViT model using the MAE pipeline. Accuracy was chosen
as the performance metric. As depicted in Table 2, ViT-MAE achieved a remarkable accu-
racy of 0.985 in COVID-19 positive/negative detection, surpassing the other approaches
(ViT-scratch accuracy = 0.7075 and ViT-pretrain accuracy = 0.9350) on the same dataset.
To further compare ViT-MAE with CNN models, namely, ResNet50 and DenseNet121,
we conducted additional experiments. It was observed that ViT-MAE outperformed both
ResNet50 and DenseNet121 in terms of all metrics, except for AUC, where the difference
was minimal. We think this minimal difference is due to (1) the model experiment’s random-
ness, a common characteristic of machine learning models, and (2) the size of the test dataset.
The size of the test dataset would overestimate/underestimate the model. In our exper-
iments, compared with the training dataset, the test dataset is relatively small with only
400 images, which may overestimate the models. However, in terms of the same ViT
backbone, we think ViT-MAE models exhibit comparable performance in our experiments.
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Figure 5 illustrates the AUC curves for the three training approaches, clearly demonstrating
that ViT-MAE outperforms the other strategies in terms of AUC performance.

We studied statistical tests that compare the ViT-MAE performance with ViT-scratch
and ViT-pretrain. The metric chosen to evaluate their performance was accuracy. To ensure
robustness, we conducted four independent experiments for each ViT model, employing
different random seeds. The statistical summary of the three pretraining methods yielded
the following mean and standard deviation values: For ViT-scratch, the mean was 0.7135
with a standard deviation of 0.0142. For ViT-pretrain, the mean was 0.9293 with a standard
deviation of 0.0207. Lastly, for ViT-MAE, the mean was 0.9775 with a standard deviation
of 0.006. In order to assess the significance of the differences in performance, we con-
ducted two t-tests: ViT-scratch vs. ViT-MAE and ViT-pretrain vs. ViT-MAE. The resulting
p-values for the two group t-tests were found to be less than 0.001 and 0.02, respectively.
Our analysis revealed that ViT-MAE significantly outperformed ViT-scratch, indicating the
critical influence of the training strategy on model performance. Additionally, we observed
a relatively narrow performance gap between ViT-MAE and ViT-pretrain. These findings
suggest that while ViT-MAE exhibits superior performance compared to ViT-scratch, the
disparity in performance between ViT-MAE and ViT-pretrain is comparatively smaller.

Table 2. The performance of different training strategies over the ViT model. ViT-MAE model
outperforms the other two training strategies.

Type Acc AUC F1 Precision Recall AP

DenseNet121 0.9775 0.9970 0.9771 0.9948 0.96 0.9750
ResNet50 0.9650 0.9969 0.9641 0.9894 0.94 0.9601

ViT-scratch 0.7075 0.7808 0.7082 0.7065 0.7100 0.6466
ViT-pretrain 0.9350 0.9783 0.9340 0.9484 0.9200 0.9125

ViT-MAE 0.9850 0.9957 0.9850 0.9950 0.9850 0.9859

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
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ue

 P
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ViT-MAE ROC (AUC = 0.9957)
ViT-pretrain ROC (AUC = 0.7808)
ViT-scratch ROC (AUC = 0.9783)

Figure 5. The AUC plot of the different training strategies for ViT model.
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3.2. Mask Ratio Influence on MAE Performance

Since the pretraining of ViT-MAE is a reconstruction task, the mask ratio of the input
image is a parameter that may affect the final performance. In this section, we study the
mask ratio influence on ViT-MAE training. Table 3 shows the performance of different
mask ratios over the MAE pretraining stage. Figure 6 illustrates the AUC curves of different
mask ratios. The 40% percentage mask ratio outperforms the other mask ratio situations
with Acc = 0.9850 and AUC = 0.9957. The mask ratio result indicates that a large mask ratio
may decrease the final performance for the medical image dataset, while the large mask
ratio (mask ratio = 0.75) shows good performance in the natural dataset. We think this
may due to the difference between the medical and natural datasets, and the reconstruction
results on the medical image may not show better performance than the natural image.
We prove our thoughts in Section 3.4.

Table 3. The performance of different mask ratios over the MAE pretraining stage. The pre-training
mask ratio = 0.4 of MAE outperforms the other pretraining strategies.

Ratio Acc AUC F1 Precision Recall AP

0.4 0.9850 0.9957 0.9850 0.9850 0.9850 0.9559
0.5 0.9100 0.9653 0.9086 0.9277 0.8950 0.8783
0.6 0.8875 0.9579 0.8819 0.9282 0.8400 0.8597
0.7 0.8900 0.9502 0.8894 0.8939 0.8850 0.8486
0.8 0.8925 0.9516 0.8900 0.9110 0.8700 0.8576

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
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Mask Ratio 40% ROC (AUC = 0.9932)
Mask Ratio 50% ROC (AUC = 0.9653)
Mask Ratio 60% ROC (AUC = 0.9579)
Mask Ratio 70% ROC (AUC = 0.9502)
Mask Ratio 80% ROC (AUC = 0.9516)

Figure 6. The AUC plot of the different mask ratios for ViT-MAE pretraining.

3.3. MAE Performance on the Limited Training Dataset

One advantage of self-supervised learning is that people can use a small labeled
dataset to train a large DL model well. To explore the potential of SSL, we conduct experi-
ments on the limited training dataset. We randomly split the partial training dataset to train
our model from 10% to 90% . Table 4 shows the performance under different percentage
splitting, and Figure 7 shows the AUC curves of different percentage situations. It appears
that using only 30% of the training dataset is sufficient to achieve better performance than



Bioengineering 2023, 10, 901 10 of 14

that of the ViT-pretrain scenario with the whole training dataset (94.25 vs. 93.5). Mean-
while, it is clear that increasing the labeled training percentage will contribute to better
performance of the model. The promising results provide the potential training procedure
for small medical dataset training on DL models.

Table 4. The performance of different percentages of training datasets at the MAE pretraining stage.
The pretraining mask ratio = 0.4 of MAE outperforms the other pretraining strategies.

Percentage (%) Acc AUC F1 Precision Recall AP

10 0.8800 0.9394 0.8776 0.8958 0.8600 0.8404
20 0.8925 0.9588 0.8877 0.9290 0.8500 0.8646
30 0.9425 0.9772 0.9415 0.9585 0.9250 0.9242
40 0.9600 0.9866 0.9602 0.9554 0.9650 0.9395
50 0.9675 0.9879 0.9673 0.9746 0.9600 0.9556
60 0.9650 0.9876 0.9645 0.9794 0.9500 0.9554
70 0.9675 0.9896 0.9669 0.9845 0.9500 0.9602
80 0.9775 0.9978 0.9771 0.9948 0.9600 0.9750
90 0.9825 0.9944 0.9823 0.9949 0.9700 0.9800

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
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 P
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10% ROC (AUC = 0.9394)
20% ROC (AUC = 0.9588)
30% ROC (AUC = 0.9772)
40% ROC (AUC = 0.9899)
50% ROC (AUC = 0.9879)
60% ROC (AUC = 0.9876)
70% ROC (AUC = 0.9896)
80% ROC (AUC = 0.9978)
90% ROC (AUC = 0.9944)

Figure 7. The AUC plot of the different percentages of training dataset for ViT-MAE model.

3.4. Visualization of MAE on Image Reconstruction

We present a visualization of the X-ray image reconstruction phase. As demonstrated
in Figure 8, the depiction includes both Covid and Normal subjects, showcasing the original,
masked, and reconstructed images. Upon visual comparison, it can be observed that the
reconstructed images are relatively coarse. However, it should be emphasized that our
primary objective is not to achieve pixel-perfect image reconstruction but to ensure that the
deep learning model’s parameters are properly initialized for the fine-tuning process on the
specific dataset. Concurrently, the rough outcome of the reconstruction task implies that
increasing the mask ratio will not contribute to enhanced model performance during the
fine-tuning stage. This is due to the model’s inability to extract additional learning during
the reconstruction stage.
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Original Masked Reconstruction

Covid

Normal

Figure 8. The visualization of the MAE for the image reconstruction pretraining. From the left column
to the right are the original input image, the random masked image, and the reconstruction image.
Even though the final reconstruction is not well-defined, the target of the pretraining stage is boosting
the initial parameters of the ViT model.

4. Discussion

Our study involved an in-depth exploration of the MAE through a comprehensive
series of experiments utilizing a publicly available COVID-19 Chest X-ray image dataset.
Our study is innovative as we applied MAE to an X-ray imaging dataset for COVID-19
diagnosis, which has not been reported before. Further, we demonstrated that MAE exhibits
remarkable efficiency when applied to labeled data, delivering comparable performance
to utilizing only 30% of the original training dataset. The findings may have profound
implications for the diagnosis of various diseases with the limited imaging dataset in the
future, given that we showed that the accuracy can be maintained even with a reduced,
smaller dataset. Our findings also yield several significant insights on the application of
MAE in medical imaging as follows: First, by leveraging self-supervised learning with
MAE, we observed notable improvements in model performance compared to alternative
training methods. This underscores the efficacy of MAE in the context of medical image
analysis. Second, the performance of the MAE model on medical images was found to be
influenced by the masked ratio employed during training. Notably, we achieved optimal
results with a masked ratio of 0.4 in our implementation. This indicates the importance of
carefully selecting the appropriate ratio to achieve the best performance. Finally, our study
demonstrates that MAE operates as a labeled data-efficient model, showcasing comparable
performance even when trained on a partial dataset. This finding highlights the potential
of MAE in situations where acquiring large quantities of labeled data may be challenging
or resource-intensive.

In our implementation, we utilized a Vision Transformer (ViT) as the DL model. Com-
pared to traditional CNN models, the ViT has shown promising performance across a
range of tasks, but it is prone to being data-hungry during the training phase. We con-
ducted experiments on the same DL model and training setting but with different training
strategies: ViT-scratch, ViT-pretrain, and ViT-MAE. The results demonstrate the efficacy of
self-supervised learning, yielding an accuracy of 0.985 and an AUC of 0.9957. Meanwhile,
we compared the performance of the MAE model with the CNN-based models [42], which
shows MAE outperforms the CNN models.
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In our experiments, we explored the association between the mask ratio, a hyper-
parameter in the masked token reconstruction task, and the model’s performance. We
set the mask ratio from 0.4 to 0.8 and found that increasing the mask ratio led to a de-
crease in performance, which is different from the mask ratio result (0.75) of MAE on
natural images [30]. To explain this trend, we visualized the original images, masked
images, and reconstructed images. Comparing the original and reconstructed images, we
observed that the reconstructed images were blurrier. The goal of reconstruction pretrain-
ing is to initialize the model parameters and enhance the model’s understanding of the
medical dataset. However, a high mask ratio may hinder the reconstruction process and
weaken the model’s understanding ability. Therefore, the mask ratio is a crucial factor
in practical implementation.

To further highlight the advantages of self-supervised learning, we conducted limited
dataset experiments. We randomly sampled the training dataset from 10% to 90% and
applied the sample to conduct the reconstruction pretraining and fine-tuning of the model.
The results strongly indicate the advantage of self-supervised learning on limited data.
For example, using only a 30% sample of the training dataset, the ViT-MAE model still
achieved 0.9425 accuracy, comparable to the performance of the ViT-pretrain model using
the entire training dataset. This is particularly important in clinical applications, where
datasets are often limited. Training large DL models on limited data can be challenging
and can easily lead to overfitting due to the large number of parameters in the model. By
this pretraining stage, the model can learn the good representation of the target dataset.
Compared to the pretained model by natural image datasets, such as the ImageNet dataset,
the pretraining stage MAE model has a narrow gap for the target dataset (i.e., small medical
dataset) and is suitable for the later fine-tuning stage. Therefore, the MAE is suitable for
the limited dataset. Additionally, using a smaller training dataset to train a large DL model
reduces the cost of labeling, as traditional supervised DL training requires a large labeled
training dataset to ensure model convergence. However, data labeling can be another issue
when the dataset size is large, as in the case of the ImageNet dataset with one million im-
ages. Furthermore, medical image labeling often requires professional domain knowledge,
such as an X-ray radiologist, to ensure accurate labeling.

The limitations of our study include the focus on COVID-19 alone. For future work, we
plan to extend our work in two directions: first, we will extend the MAE model to handle
3D medical images, such as 3D brain imaging for Alzheimer’s Disease [43–45]; second,
we will explore the potential of the MAE for other tasks, such as image segmentation and
localization [6,46], beyond image classification.

In conclusion, we applied MAE to the X-ray imaging dataset for COVID-19 diag-
nosis and illustrated that MAE exhibits remarkable efficiency when applied to labeled
data, delivering comparable performance to utilizing only 30% of the original training
dataset. Overall, our findings highlight the significant performance enhancement achieved
by using MAE, particularly when working with limited datasets. This approach holds
profound implications for future disease diagnosis, especially in scenarios where imaging
information is scarce.
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