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Abstract: Multi-phase computed tomography (CT) images have gained significant popularity in the
diagnosis of hepatic disease. There are several challenges in the liver segmentation of multi-phase CT
images. (1) Annotation: due to the distinct contrast enhancements observed in different phases (i.e.,
each phase is considered a different domain), annotating all phase images in multi-phase CT images
for liver or tumor segmentation is a task that consumes substantial time and labor resources. (2)
Poor contrast: some phase images may have poor contrast, making it difficult to distinguish the liver
boundary. In this paper, we propose a boundary-enhanced liver segmentation network for multi-
phase CT images with unsupervised domain adaptation. The first contribution is that we propose
DD-UDA, a dual discriminator-based unsupervised domain adaptation, for liver segmentation on
multi-phase images without multi-phase annotations, effectively tackling the annotation problem.
To improve accuracy by reducing distribution differences between the source and target domains,
we perform domain adaptation at two levels by employing two discriminators, one at the feature
level and the other at the output level. The second contribution is that we introduce an additional
boundary-enhanced decoder to the encoder–decoder backbone segmentation network to effectively
recognize the boundary region, thereby addressing the problem of poor contrast. In our study, we
employ the public LiTS dataset as the source domain and our private MPCT-FLLs dataset as the
target domain. The experimental findings validate the efficacy of our proposed methods, producing
substantially improved results when tested on each phase of the multi-phase CT image even without
the multi-phase annotations. As evaluated on the MPCT-FLLs dataset, the existing baseline (UDA)
method achieved IoU scores of 0.785, 0.796, and 0.772 for the PV, ART, and NC phases, respectively,
while our proposed approach exhibited superior performance, surpassing both the baseline and
other state-of-the-art methods. Notably, our method achieved remarkable IoU scores of 0.823, 0.811,
and 0.800 for the PV, ART, and NC phases, respectively, emphasizing its effectiveness in achieving
accurate image segmentation.

Keywords: multi-phase CT image; liver segmentation; deep learning; unsupervised domain adaptation;
boundary enhancement

1. Introduction

The death rate due to liver diseases caused by cancer, infection, excessive alcohol
intake, and abnormal immune system function has been rising in recent years [1]. Multi-
phase CT images are widely used to diagnose disease more accurately [2]. Multi-phase
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CT scans the human body at different time periods after injecting a contrast medium. The
various phases of multi-phase CT images consist of the non-contrast (NC) phase, which
is a native image captured prior to the injection of contrast [2], the arterial (ART) phase,
which is an image acquired 15–35 seconds after contrast injection to enable visualization
of the arteries, and the portal venous (PV) phase, which is an image obtained between
60–80 seconds after injection to visualize the portal venous. Typical multi-phase CT images
with different liver lesions are shown in Figure 1. By analyzing the enhancement patterns
of the multi-phase CT images, radiologists can make a better accurate diagnosis than the
standard low-contrast single-phase CT [3]. Although multi-phase CT is convenient, the
number of images that need to be checked increases, which in turn increases the burden
on radiologists. As a result, demand for computer-aided diagnosis (CAD) systems is
increasing. In this paper, we address automatic liver segmentation as an essential CAD
system.

Figure 1. Examples illustrating 2D slices of the NC, ART, and PV phases of corresponding multi-phase
CT images taken at different time periods.

Over the past few years, the application of deep convolutional neural networks
(CNNs) has shown remarkable achievements, particularly in detection and segmentation
tasks, including medical imaging [4,5], including liver segmentation in CT images [6–8].
However, there are several challenges in the segmentation of multi-phase CT liver images.
(1) Annotation: as each phase exhibits distinct contrast enhancement (representing each
phase as a separate domain), the manual annotation (i.e., ground truth image) of all phase
images in multi-phase CT becomes a resource-intensive and time-consuming task for
liver or tumor segmentation [9]. (2) Poor contrast: some phase images may have poor
contrast [10], making it difficult to distinguish the liver boundary. In this paper, we propose
a boundary-enhanced liver segmentation network for multi-phase CT images integrated
with unsupervised domain adaptation (UDA). The first significant contribution is that we
propose a dual discriminator-based unsupervised domain adaptation (DD-UDA) utilizing
adversarial learning for liver segmentation on multi-phase images without multi-phase
annotation to address the annotation problem. UDA [11] techniques have successfully
tackled domain shift problems [12] and have proven to be an effective approach. In [13], an
adversarial-based UDA framework comprising a task-specific generator and a discriminator
was introduced to obtain an output of the target images that was more similar to the source
image, leading to reduced annotation requirements. This approach serves as our baseline
method in this paper. While understanding the effectiveness of the baseline approach, it is
important to account for the importance of the generator and the discriminator as well.

In order to effectively overcome the domain shift [14,15] challenges encountered in
multi-phase CT imaging and to enhance segmentation accuracy, we introduce a pioneering
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framework called dual discriminator-based unsupervised domain adaptation (DD-UDA).
This framework leverages adversarial learning techniques for liver segmentation on multi-
phase CT images. To enhance accuracy, we adopt a two-level domain adaptation approach
with two discriminators, one focusing on the feature level and the other on the output
level. This framework is designed to reduce the discrepancy in distributions between the
source and target domains. The second contribution is that we introduce an additional
boundary-enhanced decoder network to the encoder–decoder backbone segmentation
network (ex., U-Net [5]) to effectively recognize the boundary region, thereby solving
the poor contrast problem and improving accuracy. Our private MPCT-FLL CT image
dataset comprises various phases, namely, NC, ART, and PV. However, the NC phase image
exhibits poor/low contrast [2]), making it extremely challenging to distinguish between
different organs. Additionally, certain images in the dataset may suffer from blurring due
to issues during the acquisition process. Moreover, the issue of contrast persists when
utilizing a multi-center dataset. Consequently, addressing the problem of poor contrast
can become highly demanding. In our proposed method, we introduce an additional
decoder that extracts the boundary map. By training the network with boundary maps
in addition to the feature map and heat maps, we aim to enhance the accuracy when
identifying liver regions. The proposed segmentation network has one encoder and two
decoders. The design used for the encoder and decoders takes the form of a U-Net-like
structure with skip connections, as shown in Figure 2. The encoder and decoder-1 are
used to perform segmentation by producing the a heat map for the input image and
calculating the supervised segmentation loss. Then, the output of the encoder is fed to
decoder-2 and a Sobel filter [16] is applied to retrieve the boundary map. After the output
is obtained, the boundary loss for the input image can be calculated. We conducted several
ablation experiments using different networks and domain adaptive losses. To conduct the
experiments in a domain-adaptive setting, we used the public LiTS dataset [17] as the source
domain with annotation, which has only PV phase images, while for the PV, ART, and NC
phases we separately used our private MPCT-FLL dataset as the target domain without
annotation. Our experimental results show that the proposed framework consisting of a
boundary-enhanced segmentation network and dual discriminators achieves improved
results comparable with the other state-of-the-art methods. The major contributions of this
work are as follows:

1. We propose a novel domain adaptation framework [18] with dual discriminators
operating at two levels, incorporating adaptation both at the feature level and at the
output level.

2. We introduce an additional boundary-enhanced decoder to determine the boundary
loss along with the segmentation loss. The advantage of this approach is that during
inference this additional decoder can be dropped, and use the encoder and decoder-1
network to perform liver segmentation. This approach is cost-effective and can be
combined with any network.

3. We propose using a boundary-enhanced segmentation network as the generator of
our proposed DD-UDA framework to perform liver segmentation on a well-annotated
source domain (public dataset) and an unannotated target domain (private dataset).
We performed several experiments, and our experimental results show that our
proposed framework can achieve significantly improved results compared to other
state-of-the-art methods.

Preliminary work was presented as a four-page conference paper at the 44th Annual
International Conference of the IEEE: Engineering in Medicine and Biology Society (EMBC
2022) [18]. The paper involved methodological and experimental extensions and valida-
tions. As an extension of this conference paper [18], in the present paper we introduce an
additional boundary-enhanced decoder to the encoder–decoder backbone segmentation
network (ex., U-Net) to further improve its accuracy and solve the poor contrast problem
by enhancing boundary regions.
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2. Related Works
2.1. Deep Learning-Based Segmentation Method

The usefulness of deep learning in computer vision has seen significant increases.
For detection and segmentation tasks, deep convolutional neural networks (CNNs) have
displayed remarkable performance in numerous clinical applications [2]. A fully convo-
lutional neural network (FCN) was introduced in [6] to carry out semantic segmentation.
In contrast to FCN, the encoder–decoder-based U-Net network proposed by Ronneberger
et al. [5] uses skip connections during upsampling. U-Net was specially developed to
conduct segmentation on biomedical images in cases with a dearth of training images.
Later, the nested U-Net design known as U-Net++ was proposed by Zhou et al. [19] to
minimize the semantic gap between the feature maps produced by the encoder and de-
coder. In U-Net++, each node is linked to every other node. In order to learn the low-level
features, Huang et al. [8] developed U-Net3+, an upgraded version of U-Net++, using
full-scale skip connections and deep supervision. While the number of network parameters
is decreased by half when utilizing U-Net3+, it is able to achieve increased accuracy. The
LiTS liver dataset [17] has been used in research to demonstrate the efficiency of U-Net3+.
Utilizing single-phase CT images [6,7] as well as multi-phase CT images [20–22], a number
of deep learning-based applications have been developed for the segmentation of liver
images. These deep learning techniques have two main disadvantages: (1) they require a
massive amount of training data as well as the ground truth images in order to train the
model; and (2) their accuracy is drastically decreased when the trained model is tested on
other datasets due to domain shift problems. Computer vision researchers have developed
several additional techniques to address the aforementioned problems.

2.2. Unsupervised Domain Adaptation

Domain adaptation is a potential solution to address the above-mentioned problems; it
is a part of transfer learning [23], an active subject of research that involves using the source
domain as the target domain. There are three types of domain adaptation: supervised,
semi-supervised, and unsupervised [12]. Recent studies have shown that UDA is a practi-
cal approach for dealing with a scarcity of annotated data in the target domain [24]. The
maximum mean discrepancy (MMD) distance measure was proposed in [15] to bridge the
domain gap between the source and target domain features. Hoffman et al. [14] introduced
adversarial-based UDA for semantic segmentation; the drawback of this approach is that it
can only be applied to minor domain shift problems. In order to generate feature maps for
the target domain close to the source domain, Tzeng et al. [25] employed a domain discrim-
inator to predict labels generated from the respective domains. Their method exhibited
enhanced performance in scenarios where a substantial domain shift is present. Various
other methods have been presented for different medical applications: in segmentation-
based mammography detection, domain adaptation was performed using a generator
and a single discriminator [13]; in fundus image segmentation, domain adaptation was
perfomed using the gradient reversal layer (GRL) [26]; and in knee images, segmentation
was performed using the UDA approach with a mixup strategy [27]. These methods have
all been developed based on using the multilevel UDA approach to adapt and learn the
features of semantic segmentation. The existing UDA methods perform adaptation at
output level, which can address both the manual annotation and domain shift problems.
However, using existing approaches such as [28] with multi-phase CT images achieves
poor results in all phases. In [29], unsupervised domain adaptation was performed using
the maximum square loss; however, it is important to note that such methods may not
be equally effective for all phases of multi-phase CT images due to contrast differences.
The strengths and the limitations of the existing methods and our proposals set out in this
paper are illustrated in Table 1.
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Table 1. Strengths and limitations of the proposed method in comparison with previous works.

Method Strength Limitations

U-Net [5]
Can perform segmentation
using smaller dataset.

Lower generalization capability
when tested on unknown datasets.

UDA [13]
Adaptation is performed at output level
using single discriminator.

This method does not show improved
results for the PV and NC phases.

UDA(GRL) [26]
Adaptation is performed
using GRL layer.

This method achieves better
results only for the NC phase.

Advent [28]
Adaptation is performed by converting
feature maps to entropy maps.

This approach show poor
results on medical datasets.

MSL [29]
Adaptation is performed using the
maximum square loss without discriminator.

This approach does not achieve better
results for certain phases, and is
designed for multi-class segmentation.

Proposed Method

Adaptation is carried out by employing two
discriminators, one for each of the feature and output levels.
We introduce an additional decoder
to effectively learn the boundary features.

Our proposed method requires more
trainable parameters.

3. Method

In this section, we discuss the formal description and the network architecture of our
proposed method, as shown in Figure 2.

Figure 2. An overview of our proposed boundary-enhanced DD-UDA framework consisting of a
boundary-enhanced segmentation network (generator) and dual discriminators.

3.1. Formal Description

Assume that S is the source domain, which has NS samples, and that each sample
consists of an input image uS ∈ IS along with its corresponding ground truth vS ∈ MS
and boundary label zS ∈ BS. The following is a representation of the dataset in the source
domain S: {(uS

i , vS
i , zS

i ) ∈ IS ×MS × BS}i=1,2,...,NS , where uS
i is the ith input image in the

input space IS = RW×H×C (in this paper, the number of channels is C = 1), each pixel value
of the ground truth vS

i in MS = RW×H indicates whether the corresponding pixel of image
uS

i is liver or not, and the corresponding boundary label zS in BS = RW×H is generated by
applying the Sobel filter to the ground truth image vS

i .
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On the other hand, the target domain T has NT samples, including only input im-
ages uT in IT = RW×H×C. The dataset in the target domain T is represented as {uT

i ∈
IT}i=1,2,...,NT .

We propose a DD-UDA framework consisting of a segmentation network serving as
the generator G along with two discriminators De and Dd. Additionally, we introduce an
additional boundary-enhanced decoder network to the encoder–decoder backbone segmen-
tation network. G incorporates a single encoder and two decoders. Multi-task learning can
be used to perform multiple tasks simultaneously, improving the generalization capability
of the network [30].

The output of the encoder produces feature maps for the source and target domains,
which are denoted as f S = Genc(uS) and f T = Genc(uT), respectively. Decoder-1 produces
heat maps for the source and target domains, which are expressed as hS = Gdec1(Genc(uS))
and hT = Gdec1(Genc(uT)). First, we compute the supervised segmentation loss Lseg for
the well-annotated source domain S (see Section 3.2.1). The boundary maps for the source
domain are produced by applying a Sobel filter to the output of decoder-2, represented as
follows: bS = Sobel(Gdec2(Genc(uS))), where Sobel(·) is the Sobel filter [16]. The boundary
loss Lb is only computed for the source domain S (see Section 3.2.2). We introduce two
discriminators De and Dd to minimize the domain gap between the source and the target
domain (see Section 3.3). To bring the output of the target domain much closer to that of the
source domain, we compute the adversarial loss for the target domain Ladv_e and Ladv_d at
the feature and output levels, respectively (see Section 3.3.1). In order to distinguish the
outputs of the source and target domain, we calculate the classification loss Lcls_e and Lcls_d
at the feature and output levels, respectively (see Section 3.3.2).

3.2. Boundary-Enhanced Segmentation Network (Generator)

We propose a pixel-to-pixel fully convolutional boundary-enhanced segmentation
network consisting of a single encoder and two decoders to achieve an accurate pixel-wise
output. The encoder and decoder-1 generate a heat map with the same size as the input
image, then the same encoder generates the boundary map using decoder-2.

Encoder: The encoder network is comprised of five blocks, each containing two
3 × 3 convolution layers followed by a batch normalization (BN), as well as a ReLU layer in
the case of 2D image segmentation. To decrease dimensionality, a 2 × 2 max-pooling opera-
tion is introduced after the double convolutional layer in all blocks except the last encoder
layer. Furthermore, after each downsampling step the feature channels are doubled.

Decoder-1 and Decoder-2: In our proposed approach, we use two separate decoders with
the same structure; one is used to perform segmentation and the other for boundary extrac-
tion. In the latter, upsampling is performed followed by a 2 × 2 transpose convolutional
layer with a stride of 2, reducing the number of feature channels by half. Then, a merge
operation is carried out using the previous results from the corresponding encoder block
and two 3× 3 convolutional layers are added, followed by a ReLU and batch normalization
layer.

Classification Layer: 1 × 1 convolution is used at the last layer of both decoder-1 and
decoder-2 to map the channels to the desired number of classes. A Sobel filter is [16]
applied to the output of decoder-2 to generate the boundary maps. We use sigmoid as the
activation function. Table 2 illustrates the architecture of the proposed boundary-enhanced
segmentation network (generator).

To effectively learn and transfer knowledge from the source domain, both the super-
vised segmentation loss Lseg and the boundary loss Lb are calculated.
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Table 2. Architecture of the proposed boundary-enhanced segmentation network (generator).

Encoder Decoder-1 and Decoder-2

Layer
Details
(Kernel Size, Output Channels, BN,
Leaky Relu, Stride, Padding)

Layer Details

input CT image upsample1
2× 2 upsample of conv5-2
concatenate with conv4-2

conv1-1
3× 3× 64, BN,
Leaky Relu, 2, 1 conv 6-1

3× 3× 512
Leaky Relu

conv1-2
3× 3× 64,BN,
Leaky Relu, 2, 1 conv 6-2

3× 3× 512
Leaky Relu

pool 1 2× 2, 2 upsample2
2× 2 upsample of conv6-2
concatenate with conv3-2

conv2-1
3× 3× 128,BN,
Leaky Relu, 2, 1 conv 7-1

3× 3× 256
Leaky Relu

conv2-2
3× 3× 128,BN,
Leaky Relu, 2, 1 conv 7-2

3× 3× 256
Leaky Relu

pool 2 2× 2, 2 upsample3
2× 2 upsample of conv7-2
concatenate with conv2-2

conv3-1
3× 3× 256,BN,
Leaky Relu, 2, 1 conv 8-1

3× 3× 128
Leaky Relu

conv3-2
3× 3× 256,BN,
Leaky Relu, 2, 1 conv 8-2

3× 3× 128
Leaky Relu

pool 3 2× 2, 2 upsample4
2× 2 upsample of conv8-2
concatenate with conv1-2

conv4-1
3× 3× 512,BN,
Leaky Relu, 2, 1 conv 9-1

3× 3× 64
Leaky Relu

conv4-2
3× 3× 512,BN,
Leaky Relu, 2, 1 conv 9-2

3× 3× 64
Leaky Relu

pool 4 2× 2, 2 conv 10 1× 1× 1

conv5-1
3× 3× 1024,BN,
Leaky Relu, 2, 1

conv5-2
3× 3× 1024,BN,
Leaky Relu, 2, 1

3.2.1. Segmentation Loss

To learn the features from the well-annotated source domain, the segmentation loss
Lseg is calculated on the heat maps hS = Gdec1(Genc(uS)) generated for the source domain
using the encoder and decoder-1. The following equation depicts the segmentation loss Lseg:

Lseg(uS) =
1
N

N

∑
j=1

l(vS(j), hS(j)). (1)

where vS is the corresponding ground truth image, hS(j) ∈ [0, 1], j is the index of the pixel,
l indicates the loss function per pixel, and N denotes the number of pixels in the image u.
To handle the data imbalance problem that emerges during the conversion of CT image
slices into 2D images, the dice loss (DL) is employed:

DL = 1− 2|vS ∩ hS|
(|vS| + |hS|)

. (2)

After the segmentation loss Lseg has been calculated, the gradients are backpropagated
to the encoder and decoder-1 of the generator.
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3.2.2. Boundary Loss

The boundary loss Lb is calculated using the boundary maps (i.e., bS = Sobel(Gdec2(uS)))
generated by applying the Sobel filter [16] to the output of decoder-2 for the source domain.
The boundary loss can be represented as

Lb(uS) =
1
N

N

∑
j=1

(zS − bS)2. (3)

In Equation (3), zS denotes the corresponding boundary labels. After calculating
the boundary loss, the gradients are backpropagated to the encoder and decoder-2 of the
generator.

The output generated by the image of the target domain differs from the output gener-
ated by the source domain. To address this, we perform UDA using dual discriminators.
Adversarial loss and classification loss are employed at two levels to ensure that the output
of the target domain resembles that of the source domain.

3.3. Dual Discriminator-Based Unsupervised Domain Adaptation Using Adversarial Learning

Our proposed framework incorporates two discriminators, De and Dd, to align the fea-
ture maps and heat maps, respectively. Both discriminators follow an identical architecture,
as shown in Table 3, employing a fully convolutional network. The fully convolutional
network offers the flexibility to handle feature map heatmaps of varying sizes. It consists of
five layers with a 4 × 4 kernel and a stride of 2, where the number of channels in each layer
follows the sequence {64, 128, 256, 512, 1}. Each convolutional layer except the first and last
layers is followed by a batch normalization layer. Furthermore, a leaky ReLU layer with a
value of 0.2 follows every convolutional layer except for the final one, as discussed in [31].

Table 3. Architecture of the discriminator network.

Layers Output Operation, Kernel Size
Output Channels, Stride

Layer-1 64× 64 Conv, 4× 4, 64, 2
Layer-2 32× 32 Conv, 4× 4, 128, 2
Layer-3 16× 16 Conv, 4× 4, 256, 2
Layer-4 8× 8 Conv, 4× 4, 512, 2
Layer-5 4× 4 Conv, 4× 4, 1, 2

To reduce the disparity in domain output distribution between the source and target
domains, we leverage the encoder and decoder-1 outputs of the generator to compute
both the adversarial loss and classification loss. To calculate these losses we assign specific
values to each domain, such as α = 1 for the source domain and α = 0 for the target
domain.

3.3.1. Adversarial Loss

The primary objective of employing adversarial-based training is to generate a target
domain output (T) that closely resembles the source domain (S) [13]. The adversarial
loss is only computed for the target domain. Additionally, to further bridge the domain
gap, the feature map which is the output of the encoder and the heat map which is the
output of decoder-1, both generated for the target image, are used as the inputs for the
domain discriminators De and Dd, respectively. The adversarial loss is then calculated by
interchanging the domain values (α = 0 for the source domain and α = 1 for the target
domain). The domain values are interchanged with the aim of confusing the discriminator.



Bioengineering 2023, 10, 899 9 of 22

When using feature maps, the adversarial loss Ladv_e is formulated as follows:

Ladv_e(FT) =
1

Nde

Nde

∑
j=1

l(α, De( f T))

= − 1
Nde

Nde

∑
j=1

log(De( f T)).

(4)

When using heatmaps, the adversarial loss Ladv_d is formulated as follows:

Ladv_d(HT) =
1

Ndd

Ndd

∑
j=1

l(α, Dd(hT))

= − 1
Ndd

Ndd

∑
j=1

log(Dd(hT)).

(5)

In Equations (4) and (5), f T , hT ∈ [0, 1] and Nde and Ndd indicate the number of pixels
in the feature map and heat map of the domain discriminators De and Dd, respectively;
moreover, l denotes the loss function per pixel and adopts the cross entropy loss. After
computing Ladv_e and Ladv_d the loss is updated to the encoder and decoder-1.

3.3.2. Classification Loss

The classification loss is calculated to differentiate the output of the source domain
and the target domain [25]. We employ two discriminators, De and Dd, to enhance the
classification performance. The classification loss is carefully calculated in two distinct
stages to ensure accurate results without interchanging the domain values, i.e., we assign
α = 1 to the source domain and α = 0 to the target domain during computation of the
classification loss. Initially, the classification loss Lcls_e is utilized to effectively differentiate
the encoder’s output, specifically, the feature maps f S and f T corresponding to the source
domain S and the target domain T, respectively. Subsequently, the discriminator De is
updated based on the computed classification loss Lcls_e. We represent the classification
loss Lcls_e as shown below:

Lcls_e(FS, FT) = Lcls_e(FS) + Lcls_e(FT)

= − 1
Nde_S

Nde_S

∑
j=1

α log(De( f S))

− 1
Nde_T

Nde_T

∑
j=1

(1− α)log(De( f T)).

(6)

Similarly, we utilize the classification loss Lcls_d to distinguish the output of decoder-1,
specifically, the heatmaps hS and hT generated for the source domain S and the target
domain T, respectively. After the computation of the classification loss Lcls_d is complete,
the discriminator Dd is updated accordingly. The classification loss Lcls_d can be expressed
as follows:

Lcls_d(HS, HT) = Lcls_d(HS) + Lcls_d(HT)

= − 1
Ndd_S

Ndd_S

∑
j=1

α log(Dd(hS))

− 1
Ndd_T

Ndd_T

∑
j=1

(1− α)log(Dd(hT)).

(7)
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3.4. Objective Function

The structure of our framework is visualized in Figure 2. Initially, during training, we
employ the heat map, which is the output of decoder-1, to calculate the segmentation loss
for the source domain. In addition, we utilize the boundary map, which corresponds to
the output of decoder-2, to compute the boundary loss. Equations (1) and (3) provide a
detailed representation of these calculations. The adversarial loss is determined for the
target domain; this computation occurs at both the feature level and the output level, as
described in Equations (4) and (5). The classification loss is computed by utilizing the source
and target domains at the feature and output levels, as described in Equations (6) and (7).
The objective function can be written as shown below:

Lobj = Lseg + Lb × λb + Ladv_e × λadv_e + Ladv_d × λadv_d + Lcls_e + Lcls_d. (8)

In Equation (8), we represent the weight as λ, where λb is fixed at 0.2; λb is chosen
as 0.2 in order to normalize the segmentation result. We attempted the calculation using
0.15; however, we tended to achieve better results using 0.2. To ensure similarity between
the outputs of the target domain and the source domain, we employed the respective
adversarial weights λadv_e = 0.0005 and λadv_d = 0.003 for computation of the adversarial
loss. The adversarial weight λadv_e = 0.0005 was selected based on the baseline method [13]
and experiments conducted through trail and error, as shown in the table below. We initially
tried to perform the experiment for the DD-UDA approach by fixing the adversarial weights
λadv_e and λadv_d to 0.0005. However, using these values led to improved results only for
the ART and NC phases, not for the PV phase. Thus, we fixed λadv_e to 0.0005 and carried
out different experiments with different λadv_d, such as 0.003 and 0.007. From the numerical
results illustrated in Table 6, it can be observed that the best results were achieved with
λadv_d set to 0.003 and λadv_e set to 0.0005.

4. Results
4.1. Dataset

For our experimental setup, the Liver Tumor Segmentation (LiTS) dataset [17], which
is publicly available, was utilized as the source domain S. This dataset consists of PV phase
images along with corresponding ground truth images of 131 patients. The number of
slices ranges from 46 to 1026. To train our framework, we used images and corresponding
ground truth for 111 of 131 patients.

We employed each phase (PV, ART, and NC) from our private Multi-Phase CT–Focal
Liver Lesions (MPCT-FLL) dataset as the target domain. This dataset was provided by Sir
Run Run Shaw Hospital, Zhejiang University, Hangzhou, China. This dataset consists of
the data of 121 patients. The number of slices ranges from 20 to 99. To train our framework,
we utilized the data for 110 of 121 patients, including PV, ART, and NC phase images of the
target domain without ground truth images. To evaluate the performance of our proposed
method, we used the test data of the remaining eleven patients along with the ground truth
images. The size of the CT images was 512 × 512 in both datasets. Tables 4 and 5 show the
details of the two datasets.

Table 4. Details of our internal MPCT-FLL dataset.

PV(MPCT-FLL)→ART(MPCT-FLL) PV(MPCT-FLL)→ NC(MPCT-FLL)

Source Target Test Source Target Test

No. of Patients 71 39 11 71 39 11
No. of slices 1888 985 257 1888 989 255
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Table 5. Details of the public (LiTS) and private (MPCT-FLL) dataset.

PV(LiTS)→
PV(MPCT-FLL)

PV(LiTS)→
ART(MPCT-FLL)

PV(LiTS)→
NC(MPCT-FLL)

Source Target Test Source Target Test Source Target Test

No. of Patients 111 110 11 111 110 11 111 110 11
No. of slices 16,156 2887 274 16,156 2881 257 16,156 2855 255

4.2. Data Preprocessing

Typically, CT images are 3D images; in our research, however, we utilize each slice of
the CT image as a 2D image. To enhance the CT image, we use a windowing operation.
Enhanced brightness and contrast can be achieved by adjusting the window length (WL)
and window width (WW). We set WL = −20 and WW = 200. While pixels greater than 200
are set to 200, those less than −20 were set to −20. We used min-max normalization to
rescale the features between 0 and 1. Figure 3 illustrates the data preprocessing operation.

Figure 3. Illustration of data preprocessing operation before and after windowing and scaling
operations.

4.3. Implementation Details

Our experiments were performed using a GPU RTX 8000 equipped with 48GB of
memory. The proposed framework was developed using PyTorch, and backpropagation
was carried out using the Adam optimizer [32]. The generator’s learning rate was set to
1 × 10−5, while the two discriminators were fixed to 1 × 10−6 and the batch size was set
to 8. We trained our proposed framework for 50 epochs when using the public dataset [17]
as the source and the private dataset as target. When performing the experiments using the
PV phase of our private dataset as the source and other phases of private dataset as the
target, we trained our framework for 200 epochs. For testing, we used only the encoder
and decoder-1 to perform segmentation, eliminating the additional decoder-2. Hence, this
approach is more cost-effective and can be combined with other encoder–decoder-based
networks.

4.4. Training Strategy

In this paper, we propose a boundary-enhanced UDA framework with dual discrim-
inators. During each iteration of training, we provided the framework with a source
image and its corresponding ground truth, boundary labels, and target image, denoted as
(uS

i , vS
i , zS

i , uT
i ). In each iteration, five major steps are involved in training our proposed

framework: (1) Utilizing the heat map generated as the output of decoder-1 for the source
image, the supervised segmentation loss Lseg is computed. After computation, the en-
coder and decoder-1 are updated. (2) The boundary loss Lb generated for the source
image is calculated by applying a Sobel filter to the output of decoder-2. The Lb is then
backpropagated for the encoder and decoder-2. (3) Because we do not have access to the
corresponding ground truth images, the feature map and heat maps generated by the
encoder and decoder-1 of the generator are employed for the target domain T. These
outputs are then fed as inputs to the discriminator De and Dd, respectively. The respective
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adversarial losses Ladv_e and Ladv_d are computed by incorporating adversarial weights
and exchanging the values from domain [18] for those of their respective domains. To
ensure that the target domain output matches that of the source domain, the losses are
backpropagated to update the encoder and decoder-1. (4) The feature maps for the source
and target domains are provided as input to the discriminator De. The classification loss
Lcls_e is computed by assigning the respective domain values, and updating is performed
only for De. (5) During the final step, the heat maps for the source and target domains are
provided as input to the discriminator Dd with their respective domain values assigned.
The classification loss Lcls_d is computed and the discriminator Dd is updated accordingly.
We utilize steps (4) and (5) to differentiate the feature maps and heat maps of the source
and target domains in their respective domains. These steps help to identify and separate
the unique characteristics and spatial information of each domain’s feature maps and heat
maps. In this way, it is possible to better understand and analyze the differences between
the source and target domains, enabling effective domain-specific learning and adaptation.

4.5. Evaluation

We assess the effectiveness of our proposed method by employing three evaluation
metrics: the dice coefficient (DC), intersection over union (IoU), sensitivity (TRP), and
precision (PPV).

4.5.1. Dice Coefficient (DC)/F1 Score

The dice coefficient (DC) is a metric used to measure the similarity between the ground
truth v and the predicted output h. It quantifies the extent of overlap between these two
by calculating twice the area of overlap divided by the total number of pixels in both v
and h. Higher values of the dice coefficient indicate better segmentation results. The DC is
calculated using the formula shown below:

DC =
2|v ∩ h|
|v|+ |h| . (9)

4.5.2. Intersection over Union (IoU)/Jaccard

The intersection over union (IoU) is a metric that measures the overlap between the
ground truth v and the predicted output h. It is computed by dividing the area of overlap
by the area of union between v and h. The IoU value ranges from 0–1. If the accuracy is
closer to 1, this indicates greater similarity between the predicted output and the ground
truth. The formula used to calculate IoU is

IoU =
|v ∩ h|
|v ∪ h| . (10)

4.5.3. Sensitivity/True Positive Rate (TRP)/Recall

The sensitivity measures the proportion of positives that are correctly segmented,
which can be defined as follows:

TRP =
TP

TP + FN
. (11)

where TP (true positive) is the number of liver pixels correctly predicted to be liver and FN
(false negative) is the number of liver pixels identified as background.

4.5.4. Precision/Positive Predicted Value (PPV)

The precision score is the number of true positive results divided by the number of all
positive results. The formula used to calculate PPV is

PPV =
TP

TP + FP
. (12)



Bioengineering 2023, 10, 899 13 of 22

where TP (true positive) is the number of liver pixels correctly predicted to be liver and FP
(false positive) is the number of background pixels wrongly recognized as liver.

4.6. Performance Evaluation of the Training Model

This section provides a detailed description of the training process of our proposed
network. The network utilizes well-annotated private PV data as the source domain,
while our unannotated private ART data serve as the target domain for training. To
illustrate this process, Figure 4a showcases a sample of training input images and Figure 4b
visually demonstrates the convergence achieved during the training phase, showcasing
the network’s ability to learn. From Figure 4b, it can be observed that the model is trained
smoothly and converges at 200 epochs during the training. Finally, Figure 4c displays
the predicted output generated by the network for the training images, emphasizing the
network’s capacity to produce accurate results based on the training data. A DC score of
0.981 was achieved while training the network.

(a)

(b)

(c)

Figure 4. Illustration of the training process and the output prediction: (a) sample input images with
mask, (b) training convergence using loss and accuracy, and (c) segmented final results.
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4.7. Evaluation of Proposed DD-UDA Framework Based on Hyperparameters Such as
Adversarial Weights

In this experiment, we used only well-annotated public PV data as the source and
unannotated private PV data as the target domain for training. We tested the model on our
private PV dataset. A domain gap [25] exists in this case because both datasets are from
different data centers, even though they have the same phase. In a similar experiment, we
used only well-annotated public PV data as the source and our unannotated private ART
data as the target domain for training. We tested the model on our private ART dataset.
In this case, a domain gap exists because the datasets are from different data centers and
have different phases. In another variation, we used only well-annotated public PV data
as the source and our unannotated private NC data as the target domain for training. We
tested the model on our private NC dataset. The domain gap exists because both datasets
are from different data centers have different phases.

To assess the effectiveness of our proposed methods based on adversarial weights [18],
we conducted the experiments using different combinations of adversarial weights, as
shown in Table 6. From Table 6, it can be observed that improved results were achieved for
the PV, ART and NC phases when λadv_e was 0.0005 and λadv_d was 0.003.

Table 6. Evaluation of proposed DD-UDA framework based on hyperparameters such as adversarial
weights.

Proposed DD-UDA λadv_e λadv_d

PV(LiTS)→
PV(MPCT-FLL)

PV(LiTS)→
ART(MPCT-FLL)

PV(LiTS)→
NC(MPCT-FLL)

DC DC DC

0.0005 0.0005 0.885 0.887 0.855
0.0005 0.003 0.894 0.888 0.872
0.0005 0.007 0.872 0.866 0.845

4.8. Ablation Study

To assess the efficacy of our proposed unsupervised domain adaptation approaches,
we conducted the following experiments.

4.8.1. Different Datacenter and Same Phase

We used only well-annotated public PV data [17] as the source domain and unanno-
tated private PV data as the target domain for training. We tested the model on our private
PV dataset. A domain gap exists in this experiment; although they have the same phase,
the datasets are from different data centers. The outcome of this ablation study is illustrated
in Table 7, while Figure 5 shows how accurately the liver region can be segmented using
the experiments mentioned above.

Figure 5. Experimental results using public PV phase as the source domain and private PV phase
as the target domain: (a) PV phase image, (b) ground truth, (c) U-Net [5], (d) proposed boundary-
enhanced U-Net, (e) UDA [13], (f) boundary-enhanced U-Net+UDA, (g) proposed DD-UDA frame-
work, (h) proposed boundary-enhanced U-Net+DD-UDA framework.



Bioengineering 2023, 10, 899 15 of 22

Table 7. Ablation study using public PV phase data as the source domain and private PV phase data
as the target domain.

Method Boundary UDA DD-UDA
PV(LiTS)→

PV(MPCT-FLL)

DC IoU TRP PPV

U-Net [5] 0.866 0.775 0.549 0.788

Proposed Boundary-enhanced U-Net X 0.877 0.793 0.546 0.805

U-Net+UDA (baseline) [13] X 0.872 0.785 0.916 0.812

Proposed Boundary-
enhanced U-Net+UDA X X 0.884 0.803 0.967 0.823

U-Net+ Proposed DD-UDA [18] X 0.894 0.817 0.983 0.828

Proposed Boundary-
enhanced U-Net+ DD-UDA X X 0.892 0.823 0.975 0.830

4.8.2. Same Datacenter and Different Phase

In this experiment, we used only well-annotated private PV data as the source domain,
and used our unannotated private ART data as the target domain for training. We tested
the model on our private ART dataset. A domain gap [25] exists in this case because,
although both datasets are from the same data center, they have different phases. In a
similar experiment, we used only well-annotated private PV data as the source domain
and used our unannotated private NC data as the target domain for training. We tested the
model on our private NC dataset. Again, a domain gap exists because while both datasets
are from the same data center, they have different phases. Table 8 demonstrates the results
of this ablation study.

Table 8. Ablation study using private PV phase data as the source domain and private ART or NC
phase data as the target domain.

Method
Boundary UDA DD-

UDA
PV(MPCT-FLL)→
ART(MPCT-FLL)

PV(MPCT-FLL)→
NC(MPCT-FLL)

DC IoU TRP PPV DC IoU TRP PPV

U-Net [5] 0.905 0.846 0.543 0.903 0.859 0.785 0.544 0.863

Proposed Boundary
-enhanced U-Net X 0.913 0.853 0.572 0.908 0.862 0.788 0.584 0.865

U-Net+UDA
(baseline) [13] X 0.914 0.859 0.878 0.919 0.893 0.829 0.847 0.895

Proposed Boundary-
enhanced U-Net+UDA X X 0.918 0.872 0.844 0.924 0.894 0.852 0.836 0.852

U-Net+ Proposed
DD-UDA [18] X 0.921 0.863 0.875 0.922 0.911 0.857 0.902 0.903

Proposed Boundary-
enhanced U-Net+DD-UDA X X 0.922 0.883 0.929 0.934 0.912 0.862 0.897 0.924
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4.8.3. Different Datacenter and Different Phase

In this experiment, we used only well-annotated public PV data [17] as the source
domain, and used our unannotated private ART data as the target domain for training. We
tested the model on our private ART dataset. A domain gap exists because the datasets
are from different data centers and different phases. In a similar experiment, we used only
well-annotated public PV data as the source domain and used our unannotated private
NC data as the target domain for training. We tested the model on our private NC dataset.
Again, a domain gap exists because both datasets are from different data centers and
different phases. Table 9 demonstrates the experimental outcomes of this ablation study.

Initially, U-Net [5] was used to perform segmentation using well-annotated public
PV phase data, achieving an IoU of 0.728 and 0.736 for the private ART and public NC
phase data, respectively. Our proposed boundary-enhanced U-Net with two decoders
to perform segmentation without domain adaptation achieved an improved IoU of 0.753
and 0.749. Despite achieving better results than the conventional U-Net, our proposed
boundary-enhanced U-Net has a limitation in that it relies on a supervised learning strategy,
demanding a large amount of annotated training data during the training process. More-
over, when compared to the UDA approach this method does not perform as effectively on
unknown target domains.

We then employed the U-Net+UDA [13] approach, which is the baseline method
considered in this paper, achieving IoUs of 0.796 and 0.772. For our proposed boundary-
enhanced U-Net with the UDA approach, the IoU values improve to 0.789 and 0.781. The
IoU values achieved by our proposed U-Net+DD-UDA approach [18], which performs
UDA using two discriminators, are 0.808 and 0.794. These values are further improved to
0.811 and 0.800 when using our proposed boundary-enhanced U-Net as a generator for the
proposed DD-UDA framework. Figures 6 and 7 show the segmentation accuracy for liver
region achieved in the experiments mentioned above.

Table 9. Ablation study using public PV phase data as the source domain and private ART and NC
phase data as the target domain.

Method
Boundary UDA DD-

UDA
PV(LiTS)→

ART(MPCT-FLL)
PV(LiTS)→

NC(MPCT-FLL)

DC IoU TRP PPV DC IoU TRP PPV

U-Net [5] 0.826 0.728 0.560 0.752 0.825 0.736 0.564 0.741

Proposed Boundary-
enhanced U-Net X 0.844 0.753 0.537 0.537 0.779 0.749 0.535 0.762

U-Net+UDA (baseline) [13] X 0.880 0.796 0.966 0.813 0.855 0.772 0.944 0.811

Proposed Boundary-
enhanced U-Net+UDA X X 0.874 0.789 0.892 0.821 0.864 0.781 0.818 0.811

U-Net+Proposed
DD-UDA [18] X 0.888 0.808 0.750 0.832 0.872 0.794 0.662 0.821

Proposed Boundary-
enhanced U-Net+ DD-UDA X X 0.890 0.811 0.966 0.838 0.875 0.800 0.945 0.832
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Figure 6. Experimental results using public PV phase as the source domain and private ART phase as
the target domain: (a) ART phase, (b) ground truth, (c) U-Net [5], (d) proposed boundary-enhanced
U-Net, (e) UDA [13], (f) boundary-enhanced U-Net+UDA, (g) proposed DD-UDA framework, (h) pro-
posed boundary-enhanced U-Net+DD-UDA framework.

Figure 7. Experimental results using public PV phase as the source domain and private NC phase as
the target domain: (a) NC phase, (b) ground truth, (c) U-Net [5], (d) proposed boundary-enhanced
U-Net, (e) UDA [13], (f) boundary-enhanced U-Net+UDA, (g) proposed DD-UDA framework, (h) pro-
posed boundary-enhanced U-Net+DD-UDA framework.

4.9. Evaluation of Proposed Methods with SegNet as the Backbone

To assess the effectiveness of our proposed methods, we conducted an experiment
utilizing SegNet [33] as the backbone network. First, we used only well-annotated public
PV data as the source and unannotated private PV data as the target domain for training.
We tested the model on our private PV dataset. A domain gap [25] exists because both
datasets are from different data centers, even though they have the same phase. In a
similar experiment, we used only well-annotated public PV data as the source and our
unannotated private ART data as the target domain for training. We tested the model on
our private ART dataset. In this case, a domain gap exists because the datasets are from
different data centers and have different phases. Next, we used only well-annotated public
PV data [17] as the source and our unannotated private NC data as the target domain for
training. We tested the model on our private NC dataset. Again, a domain gap exists
because the datasets are from different data centers and have different phases. Table 10
demonstrates the numerical results for our proposed methods. From Table 10, it can be seen
that our proposed methods show improved results when using SegNet as the backbone.
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Table 10. Evaluation of proposed methods with SegNet as the backbone.

Method

PV(LiTS)→
PV(MPCT-FLL)

PV(LiTS)→
ART(MPCT-FLL)

PV(LiTS)→
NC(MPCT-FLL)

DC IoU TRP PPV DC IoU TRP PPV DC IoU TRP PPV

SegNet [33] 0.879 0.796 0.747 0.819 0.868 0.783 0.667 0.809 0.836 0.750 0.632 0.802

Proposed Boundary
-enhanced SegNet 0.884 0.805 0.825 0.826 0.861 0.779 0.738 0.822 0.845 0.762 0.681 0.808

SegNet+Proposed
DD-UDA [18] 0.890 0.813 0.893 0.830 0.896 0.819 0.966 0.838 0.886 0.811 0.850 0.841

Proposed Boundary-
enhanced SegNet+
DD-UDA 0.901 0.828 0.929 0.850 0.899 0.823 0.959 0.843 0.894 0.822 0.933 0.840

4.10. Comparison with the State-of-the-Art Methods

Finally, we compared our results with other state-of-the-art methods. The numerical
outcomes are presented in Table 11, while Figure 8 visually illustrates the segmentation
results achieved with our proposed methods in comparison to those achieved with other
methods.

No Adaptation: First, the outcomes were assessed by performing segmentation without
using any domain adaptation. We utilized segmentation networks such as U-Net [5] and
U-Net3+ [20] to perform segmentation. PV phase images and corresponding ground truth
images from the LiTS dataset were used as training data and tested on each phase of our
private dataset. The outcomes obtained with U-Net and U-Net3+ are relatively low for all
phases. The tested segmentation networks such as U-Net and U-Net3+ consisted of the
encoder–decoder-based segmentation network only.

Unsupervised Domain Adaptation: In [13], a UDA approach with adversarial learning
was proposed for mass detection in mammograms. In this method, the trainable parameters
are the generator, which is a fully convolutional network, and the discriminator. In [28],
the authors introduced a weighted adversarial unsupervised domain adaptation by em-
ploying a domain discriminator that they called ADVENT. Experiments were performed
by converting feature maps into entropy maps. This method uses a segmentation network
and a single discriminator, and involves direct entropy minimization. The results obtained
with this method are comparatively very low for all the phases of multi-phase CT images.
Another approach is to use domain adaptation to address the class imbalance problem
using the maximum square loss (MSL) [29], which is the negative sum of the squared
probabilities. The MSL is calculated directly from the feature map. This strategy produces
improved results for our private PV phase data, while the results achieved for the ART and
NC phases are relatively low. In [26], the authors used a GRL layer to perform UDA for
biomedical image segmentation using heat maps; this method uses a segmentation network
only. This approach is able to achieve better accuracy for the NC phase. In [27], the authors
introduced adversarial-based unsupervised domain adaptation with a mixup strategy,
which works well for the ART phase. In [34], the authors proposed combining the UDA
approach with the MSL to perform segmentation-based detection of multi-phase CT images.
They have utilized a detection head and a single discriminator in a method that involves
direct entropy minimization. Improved accuracy with this method is seen only in the PV
phase. Unlike the above-mentioned approaches, our proposed DD-UDA [18] method is
able to achieve significantly improved results for all three phases. The trainable parameters
used in our approach consist of an encoder–decoder-based segmentation network and
two discriminators. During inference, we make use of the segmentation network only. In
this research, U-Net was employed as the backbone in all our comparative experiments
with the state-of-the-art methods. From Table 11 and Figure 8, it can be observed that
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the proposed method achieves significantly more accurate results in comparison to other
existing methods. To train of our method, we utilized one encoder and two decoders
with two discriminators. Only the segmentation network (i.e., encoder and decoder-1) is
employed during inference. This approach can accurately segment the liver region.

Table 11. Comparison with the state-of-the-art methods.

Method

PV(LiTS)→
PV(MPCT-FLL)

PV(LiTS)→
ART(MPCT-FLL)

PV(LiTS)→
NC(MPCT-FLL)

DC IoU TRP PPV DC IoU TRP PPV DC IoU TRP PPV

No adaptation

U-Net [5] 0.866 0.775 0.549 0.788 0.826 0.728 0.560 0.752 0.825 0.736 0.564 0.741
U-Net 3+ [8] 0.878 0.794 0.976 0.809 0.869 0.781 0.960 0.802 0.847 0.758 0.938 0.791

Unsupervised domain adaptation

UDA [13] 0.872 0.785 0.916 0.812 0.880 0.796 0.966 0.813 0.855 0.772 0.944 0.811
ADVENT [28] 0.706 0.629 0.500 0.706 0.629 0.547 0.500 0.668 0.626 0.538 0.500 0.664
MSL+IW [29] 0.884 0.803 0.978 0.818 0.863 0.777 0.963 0.797 0.833 0.747 0.952 0.813
UDA(GRL) [26] 0.879 0.796 0.981 0.807 0.853 0.769 0.935 0.810 0.863 0.787 0.929 0.826
UDA(MIXUP) [27] 0.870 0.784 0.613 0.812 0.880 0.797 0.960 0.816 0.854 0.766 0.958 0.781
UDA+MSL [34] 0.874 0.790 0.500 0.827 0.863 0.782 0.804 0.808 0.834 0.751 0.909 0.810

Proposed DD-UDA [18] 0.894 0.817 0.983 0.828 0.888 0.808 0.750 0.832 0.872 0.794 0.662 0.821
Proposed Boundary-
enhanced U-Net+DD-UDA 0.892 0.823 0.975 0.830 0.890 0.811 0.966 0.838 0.875 0.800 0.945 0.832

Figure 8. Comparison of segmentation results with other state-of-the-art methods on the PV, ART,
and NC phases of our private MPCT-FLL dataset. (a) CT image, (b) ground truth, (c) UDA [13],
(d) ADVENT [28], (e) MSL+IW [29], (f) GRL [26], (g) MIXUP [27], (h) UDA+MSL [34], (i) proposed
boundary-enhanced U-Net+DD-UDA framework.

5. Discussion

The scarcity of annotated data poses a major obstacle when utilizing medical image
datasets in the training of deep learning-based methods [5]. Performing segmentation on
medical images is considerably more challenging than using natural images, primarily
due to the intricate task of differentiating between various organs [1]. Moreover, training
deep learning models using multi-phase CT images adds to the complexity and expense,
as annotation is required for each image in each different phase. This limitation applies
to our proposed boundary-enhanced U-Net, as it requires annotated data to train the
network. Furthermore, issues with poor contrast encountered during testing on the ART
and NC phases result in significantly diminished performance due to domain shift problems.
Although existing UDA methods [13,26] can alleviate the annotation problem, they tend
to focus on adaptation solely at the output level. Consequently, UDA approaches such
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as [28,29] exhibit poor performance, while others demonstrate better results only for specific
phases of multi-phase CT images. To address these challenges, in this paper we propose
the DD-UDA method, which incorporates an additional boundary-enhanced segmentation
network to accurately segment the liver regions.

In our research, we conducted experiments to showcase the efficacy of our proposed
methods. Specifically, we evaluated our methods in three different scenarios: (1) using data
from different data centers from the same phase; (2) using data from the same data center
and different phases; and (3) using data from different data centers and different phases.
Tables 7–9 illustrate the outcomes of these experiments. From our experimental results,
it is evident that the proposed DD-UDA (Domain Adaptation with Dual Discriminators)
method outperforms existing UDA (Unsupervised Domain Adaptation) methods [13].
We achieve this improvement by performing domain adaptation at both the feature and
output levels utilizing the proposed dual discriminators. Additionally, by incorporating
the boundary enhanced decoder, as shown in Figures 5–7, the proposed method is able
to achieve highly accurate segmented regions that closely resembles the ground truth
images. In addition, we explored the impact of replacing the U-Net backbone [5] with the
SegNet backbone [33]. Remarkably, even with a different backbone our proposed approach
was able to achieve significantly improved performance, highlighting the robustness and
versatility of our approach. One of the key strengths of our proposed method lies in its
efficient utilization of a private multi-phase dataset without annotated data.

6. Conclusions

In this paper, we have proposed a novel DD-UDA framework to improve the existing
UDA approach. Domain adaptation is performed at the feature and output levels using a
generator and a discriminator. In addition, we propose an additional boundary-enhanced
decoder to determine the boundary loss along with the segmentation loss. The advan-
tage of this approach is that during inference this additional decoder can be dropped and
the encoder and decoder-1 network can be used to perform liver segmentation. Thus,
this approach is cost-effective and can be combined with any network. Our experimen-
tal findings illustrate that our proposed method surpasses the existing state-of-the-art
approaches in terms of performance. A significant benefit of this approach is its ability
to train a deep learning model using multi-phase CT images even in the absence of cor-
responding ground truth. This advantage significantly alleviates the burden of manual
annotation for radiologists. In future work, we intend to develop unsupervised approaches
for medical image segmentation by further minimizing the domain gap and increasing the
generalization capability.
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