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Abstract: The COVID-19 pandemic has had a significant impact on the world, highlighting the
importance of the accurate prediction of infection numbers. Given that the transmission of SARS-
CoV-2 is influenced by temporal and spatial factors, numerous researchers have employed neural
networks to address this issue. Accordingly, we propose a whale optimization algorithm–bidirectional
long short-term memory (WOA-BILSTM) model for predicting cumulative confirmed cases. In the
model, we initially input regional epidemic data, including cumulative confirmed, cured, and death
cases, as well as existing cases and daily confirmed, cured, and death cases. Subsequently, we utilized
the BILSTM as the base model and incorporated WOA to optimize the specific parameters. Our
experiments employed epidemic data from Beijing, Guangdong, and Chongqing in China. We then
compared our model with LSTM, BILSTM, GRU, CNN, CNN-LSTM, RNN-GRU, DES, ARIMA, linear,
Lasso, and SVM models. The outcomes demonstrated that our model outperformed these alternatives
and retained the highest accuracy in complex scenarios. In addition, we also used Bayesian and
grid search algorithms to optimize the BILSTM model. The results showed that the WOA model
converged fast and found the optimal solution more easily. Thus, our model can assist governments
in developing more effective control measures.

Keywords: COVID-19; infectious disease; BILSTM; WOA (whale optimization algorithm); prediction

1. Introduction

SARS-CoV-2 is a highly infectious virus that spreads through direct, aerosol, and con-
tact transmission [1]. Infected individuals experience symptoms such as a fever, dry cough,
and runny nose, and in severe cases, breathing difficulties, pneumonia, and death. As of
20 December 2022, COVID-19 had claimed 31,431 lives and infected 9,482,570 individuals
in China [2]. The virus has caused great harm to human life and health, and its impact
extends beyond public health to affect the world’s economies and healthcare systems [3]. In
January 2020, The World Health Organization even declared COVID-19 a global pandemic.

In order to make adequate preparations and make better prevention measures before
each epidemic outbreak, how to accurately predict the number of new infections in a certain
area has become a necessary problem for people to solve.

An accurate prediction of the number of new infections in a certain area has become
a necessary problem to solve in order to make adequate preparations and make better
prevention measures, such as beefing up containment measures in advance, which can
prevent outbreaks from spreading. Additionally, accurate predictions can help the medical
system to prepare its physical and human resources, ensuring that they are equipped to
handle any potential influx of patients. By making use of accurate predictions, governments
can optimize their response plans and allocate resources more efficiently, ultimately saving
lives and resources. It is essential to prioritize accurate predictions of infectious diseases, as
they can be the key to mitigating and even preventing their spread.

To make accurate predictions about COVID-19, many scholars have proposed novel
coronavirus prediction models, which can be classified into three categories: mathematical
models, machine learning models, and deep learning models. Mathematical models include
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Arima and propagation dynamics models (SI, SIR, SIRS, SEIR, etc.). Machine learning
models include SVM, Lasso, and linear regression. Common deep learning models include
CNN, LSTM, BILSTM, GRU, and TCN.

In the propagation dynamics models, the population can be divided into four cat-
egories: S, E, I, and R. S means a susceptible person. E means an exposed person. I
means an infectious person. And R means a recovered person. By combining these four
groups of people according to different infectious diseases, we can produce the SI, SIR [4–7],
SIRS [8], and SEIR [9–12] models. Among these models, SIR and SEIR are more suitable
for COVID-19 prediction and are used by most people for COVID-19 prediction. In 2020,
Moein et al. [6] conducted simulations of the epidemic using SIR in Isfahan province, Iran,
between 14 February and 11 April and predicted the trajectory of the outbreak for the
remaining period by considering three scenarios with varying degrees of social distancing
measures. They found that while SIR could make short-term predictions, it was difficult to
predict the long-term epidemic spread, which was also reflected in other studies that used
SIR to make predictions. Compared with the SIR model, the SEIR model adds the concept
of an exposed person, which is more in line with the characteristics of COVID-19 and has
a more reliable result. In 2020, Zhong Nanshan’s team [12] came up with a forecasting
model that combined urban migration data with SEIR. By using urban migration data to
adjust the numbers for S, E, I and R, they predicted the development of the epidemic in
Zhejiang, Guangdong, and Hubei, which explained the impact of different control methods
on the epidemic. This model can well simulate the development trend of an epidemic. For
example, it can predict the peak period and decline period of the epidemic in a certain
period so that the control policy can be formulated in advance. However, the model is
greatly affected by the infection rate of the population and the degree of isolation of the
region. In addition, the model curve is very smooth. Therefore, it cannot accurately predict
the infection situation of specific people in the region on a certain day.

The autoregressive integrated moving average (ARIMA) model is the most commonly
used time series prediction model, which can predict outbreaks in the next few days. It
first uses logarithmic and difference methods to stabilize the data. Then, it determines the
model parameters q (the autoregressive parameter) and p (the moving average order) using
autocorrelation functions (ACFs) and partial autocorrelation functions (PACFs). Using the
values of p and q, we can invoke the ARIMA model to make predictions. In 2020, Yang
et al. [13] combined data from the period when the outbreak of new infections in Wuhan
reached zero to establish an ARIMA model and used it to make predictions for Italy, which
had a similar situation. After the experiments, they found that the ARIMA model was
better for making short-term predictions. Roy et al. [14] used overlay analysis to classify
India into very high-, high-, medium-, and low-risk zones for COVID-19 and applied the
ARIMA model to make a prediction for India. They concluded that only data from a time
series can deduce linear relationships. This approach did not work well for events that
can be influenced by multiple factors, including several meteorological and specific social
influences. Furthermore, the method cannot be applied to other diseases. Haneen et al. [15]
also used the ARIMA model for prediction. Their experimental data came from Kuwait
and the R2 value of the experiment was as high as 0.996, demonstrating the high accuracy
of the model. However, they also stated that this model was not suitable for predicting
sudden outbreaks or for use in complex environments.

Traditional machine learning models [16–19] have also made great contributions
to predicting infectious diseases. Rustam et al. [20] used LR (linear regression), Lasso
(least absolute shrinkage and selection operator), SVM (support vector machine), and
ES (exponential smoothing) to calculate the number of newly infected cases, deaths, and
recoveries in the next 10 days of some states/provinces of Australia, Canada, Algeria,
and Afghanistan. The experimental results showed that in all data sets, ES made the
best prediction, followed by LR, Lasso, and SVM. Rath et al. [21] proposed the use of a
multiple linear regression model to predict the daily number of active cases by including
daily positive cases, recoveries, and deceased cases as input variables. They compared the
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multiple linear regression model with the traditional linear regression model and concluded
that the former performed better.

Recently, deep learning models have been applied to the prediction of time series
problems, such as temperature prediction [22] and stock prediction [23], which have
achieved good results. Given the strong correlation between COVID-19 and time, many
researchers have used deep learning models such as RNN, LSTM, BILSTM, CNN, GRU,
and some hybrid models [24–29] to predict COVID-19 cases. For example, Xu et al. [29]
used CNN, LSTM, and CNN-LSTM models to predict COVID-19 cases in Brazil, India,
and Russia and found that the LSTM model performed the best among the three models.
Jin et al. [30] integrated TCN, GRU, DBN, Q-learning, and SVM to create a TCN-GRU-
DBN-Q-SVM model for predicting the next day’s cases in India, the United Kingdom,
and the United States. Mohimont et al. [31] designed a CNN model that can predict
short-term confirmed and hospital cases using a small amount of data. Moreover, they
designed a TCN (temporal convolutional network) model, which can predict confirmed
cases, hospitalizations, artificial ventilation hospitalizations, and recoveries with good
accuracy. Shahid et al. [32] proposed forecast models comprising ARIMA, SVR, LSTM, Bi-
LSTM, and GRU. They came to the conclusion that model ranking from good performance
to the lowest in entire scenarios were Bi-LSTM, LSTM, GRU, SVR, and ARIMA. Gautam
et al. [33] proposed a model that combined transfer learning with the LSTM model. By
training the model using the data from Italy, the United States, and other countries, they
applied the trained model to make single-step and multi-step predictions for Germany,
France, Brazil, India, and Nepal. The results showed that even in the face of different
intervention policies, the model still achieved good prediction accuracy. Considering
that the LSTM-RNN model was not accurate enough for prediction, Natarajan et al. [24]
proposed an RNN-GRU model to predict infections, recoveries, and deaths in four countries
(the Czech Republic, the United States, India, and Russia).

Some researchers proposed combining Internet data with epidemic data to make
predictions. Ayyoubzadeh et al. [34] used linear regression and LSTM models to make
predictions for Iran based on Google Trends data. Although the prediction effect was not
ideal, they proposed a prediction method based on network information. Guo et al. [35]
proposed the WCT (Weibo COVID-19 trends) model, which was built using a dataset of
Weibo posts from users in Wuhan and based on the logistic regression model. This model
improved upon the shortcomings of the GFT (Google Flu Trends) model, which tended to
overestimate the peak of the epidemic.

Furthermore, some scholars have employed intelligent optimization algorithms in
combination with neural networks for optimizing neural network model parameters. An
et al. [36] proposed a BILSTM model based on the attention mechanism, which was op-
timized using the sparrow optimization algorithm. They applied this model to make
predictions for Egypt, Ireland, Iran, Japan, and Russia and achieved good results. Prasanth
et al. [37] utilized specific search term data from Google Trends related to the COVID-19
pandemic, along with COVID-19 spread data from the European Centre for Disease Pre-
vention and Control (ECDC), to make predictions. In their prediction model, they used
the grey wolf optimizer (GWO) to optimize the LSTM model. Compared with the ARIMA
model, their model exhibited better accuracy.

However, in the predictive models for COVID-19, most scholars do not use opti-
mization models to optimize the parameters of these models. Even if scholars do use the
optimization model, important factors such as the time step and optimizer selection are
ignored for optimization. Moreover, the input data features used by these models are often
too simple, relying solely on past cumulative new cases to predict future cases. As a result,
these models are highly accurate only for short-term predictions. When we use them to
predict data several days later, the accuracy drops dramatically. Furthermore, the training
effectiveness of these models will also be greatly reduced when future outbreaks become
complex. Therefore, there are many places where these neural network models can be
optimized, which could significantly improve the accuracy of model prediction.
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In Shahid’s article [32], his team came to the conclusion that the models ranked
from good performance to the lowest in entire scenarios were Bi-LSTM, LSTM, GRU,
SVR, and ARIMA. Given Shahid’s research results and the shortcomings of these deep
learning models, we used BILSTM as our basic model and enhanced it with the following
modifications. Our approach involved enriching the characteristics of input data, including
cumulative new cases, cumulative recoveries, cumulative deaths, existing infections, daily
new cases, daily recoveries, and daily deaths. Additionally, we utilized the optimization
algorithm WOA (whale optimization algorithm) to optimize the model parameters and
increase the number of optimization parameters compared with other optimization models.
These measures could significantly enhance the accuracy of the predictions.

In our experiments, we used MAE, RMSE, MAPE, and R2 as evaluation indicators.
Furthermore, using the epidemic data from Guangdong, Chongqing, and Beijing, we
compared our model with several recognized baselines, including LSTM, BILSTM, GRU,
CNN, CNN-LSTM, RNN-GRU, DES (double exponential smoothing), ARIMA, linear,
Lasso, and SVM. The experimental results showed that our model outperformed the other
baselines in terms of prediction accuracy. Our model was also able to handle complicated
situations, highlighting its robustness and versatility. Moreover, we explored alternative
approaches, such as Bayesian and grid search algorithms, to optimize and compare their
performance instead of the WOA model. The experiments indicated that the running
time of the WOA model was not excessively long, and its optimized accuracy was the
highest. This finding further validated the claim that the WOA model converges quickly
and efficiently finds the optimal solution.

We hope that our model can provide useful insights and assist the government in
formulating effective measures for epidemic prevention and control.

2. Methods and Models
2.1. LSTM and BILSTM

LSTM is a variant of the RNN model that is commonly employed for processing time
series data. It was developed to address the issue of an RNN’s difficulty in long-term
learning and dependency. The central concept of LSTM lies in its memory cell with a gated
function. Its gated system consists of three gates: input gate (it), output gate (Ot), and
forget gate ( ft). Figure 1 illustrates the structure of LSTM.
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Figure 1. The structure of LSTM.

The input gate (it) controls the input of the current information. When the input
information passes through the unit, the input gate will perform a calculation to determine
whether to input the current information. The memory gate ( ft) controls whether to retain
past information. When the past information passes through the unit, the memory gate
performs a calculation to determine whether to retain the information. The output gate (Ot)
controls the output of the current information. It determines whether to output the current
information by performing a calculation. Additionally, Ct represents a long-term memory
unit, while ht represents a short-term memory unit. The specific calculation processes are
as follows:

ft = σ(w f · [ht−1, xt] + b f (1)
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it = σ(wi · [ht−1, xt] + bi) (2)

C′t = tanh(wc · [ht−1, xt] + bc) (3)

Ot = σ(wo · [ht−1, xt] + bo) (4)

Ct = ft · Ct−1 + it · C′t (5)

ht = Ot · tanh(Ct) (6)

In the formulas above, σ is the sigmoid activation function. The variables w and b in
the formula denote the weight and intercept, respectively.

BILSTM is a variant of LSTM (Figure 2) that incorporates an additional layer of reverse
calculation alongside the base LSTM. As shown in Figure 2, the original sequence is (A0,
A1, A2, . . . , Ai), while the reversed sequence is represented as (A′0, A′1, A′2, . . . , A′i). The
final output value is determined by the forward sequence and the reverse sequence:

yi = v1 · Ai + v2 · A′i (7)
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In this formula, v1 and v2 represent the corresponding weights associated with the
two sequences. In some scenarios, BILSTM trains better than LSTM, and this held true for
the problem at hand.

2.2. WOA

The whale optimization algorithm is an intelligent optimization algorithm proposed
by Mirjalili [38] in 2016. It was inspired by the preying behavior of whales and aims
to adjust parameters to discover the optimal solution. As a metaheuristic optimization
algorithm, it relies on straightforward concepts and is easy to implement. Furthermore, it
exhibits fast convergence and can bypass local optima easily.

Similar to other metaheuristic optimization algorithms, this algorithm first generates
an initial population and calculates the fitness value of each individual. Then, it traverses
the current population to find the individual with the best fitness. After that, it updates the
location of individuals in the population by imitating the behavior of whales, including
encircling prey, bubble-net attacking, and searching for prey. As the population progresses
to the next generation, it continues searching for the optimal individual and updating
individual positions until the maximum number of iterations is reached.
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The values of P and A determine the manner in which an individual whale updates its
position. The mathematical model is as follows:

P = random(0, 1) (8)

R1 = random(0, 1) (9)

a = 2− 2 ∗ t/Tmax (10)

A = 2 ∗ a ∗ R1 – a (11)

Among them, t is the current number of iterations and Tmax is the maximum number
of iterations.

In addition, there are several factors below that affect the update of location:

R2 = random(0, 1) (12)

C = 2 ∗ R2 (13)

l = random(−1, 1) (14)

When P < 0.5 and |A| < 1, the whale individual updates its position by encircling
prey. The calculation formula is below, where X(t) is the position of the current individual,
X(t + 1) denotes the updated position of the individual, and Xbest represents the current
optimal individual:

D1 =| C ∗ Xbest − X(t) | (15)

X(t + 1) = Xbest − A ∗ D1 (16)

When P < 0.5 and |A| ≥ 1, the whale individual will search for prey. During this
process, the whale randomly selects positions to force itself away from the prey, thereby
enabling global search. This can be expressed as follows:

rand = randint[1, whale_num] (17)

D2 =| C ∗ Xrand − X(t) | (18)

X(t + 1) = Xrand − A ∗ D2 (19)

And when P ≥ 0.5, it updates its position by bubble-net attacking. Meanwhile, the
whale approaches its prey in a spiral motion to capture its food. Therefore, it can be
expressed using the following formula:

D3 =| Xbest − X(t) | (20)

X(t + 1) = Xbest + D3 ∗ eb∗l ∗ cos(2πl) (21)

where D3 represents the distance between the current individual and the optimal individual.
And b is a coefficient that represents the shape of the whale’s spiral, which was set to 1 here.

The pseudocode for the WOA algorithm is shown in Algorithm 1.
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Algorithm 1. The pseudocode of the WOA algorithm.

Input:
G: the maximum iterations
b: a constant for defining the shape of the logarithmic spiral
n: the number of whale populations
Output : Optimal individual Xbest and its fitness value fg
1: Initialize the whale population Xi(i = 1, 2, . . . , n)
2: Calculate the fitness value of each individual
3: while (t < G)
4: for each individual
5: Update a, A, C, l, P (some constants)
6: if1 (P < 0.5)
7: if2 (|A| < 1)
8 : Xi updates its position by encircling prey
9: else if2 (|A| ≥ 1)
10: Xi updates its position by searching for prey
11: end if2
12: else if1 (P ≥ 0.5)
13 : Xi updates its position by bubble-net attacking
14: end if1
15: end for
16: Check to see if any individuals are out of range and remove them if they are
17: Calculate the fitness value of each individual
18 : Update the current optimal individual Xbest and its fitness fg
19: end while
20 : Return Xbest, fg

2.3. WOA-BILSTM

Given the strong correlation between the novel coronavirus outbreak and time series,
we opted to use the BILSTM neural network model for its ability to handle timing issues
effectively. Additionally, we employed the whale optimization algorithm (WOA) to opti-
mize the model parameters. With these enhancements, our proposed WOA-BILSTM model
achieved high accuracy in predicting the cumulative number of confirmed cases several
days in advance (Figure 3).

In the first step of our model, data preprocessing plays a crucial role in improving
the prediction accuracy. To enhance the performance of the prediction models, we in-
corporated additional input features compared with other models. These input features
included cumulative confirmed cases, cumulative cured cases, cumulative death cases,
existing cases, daily confirmed cases, daily cured cases, and daily death cases in a province
or municipality.

For a specific location, the variable “daily confirmed cases” represents the number
of newly confirmed cases reported within a given day. The variable “daily cured cases”
denotes the number of individuals who have recovered from the disease on a daily basis.
Similarly, the variable “daily death cases” indicates the number of deaths recorded daily
due to the disease. “Existing cases”, also referred to as “active cases” or “current cases”,
represents the number of individuals actively infected with the disease at a particular point
in time. “Cumulative confirmed cases”, “cumulative cured cases”, and “cumulative death
cases” refer to the cumulative sums of “daily confirmed cases”, “daily cured cases”, and
“daily death cases”, respectively, since the beginning of the epidemic. These variables
provide a comprehensive overview of the COVID-19 situation. Hence, we employed these
variables to make predictions about COVID-19.
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In addition, to prepare the data for training and testing, it was normalized and divided
into training and testing sets in a proportion of our choice. The data from consecutive days
were used as the input to train the model and predict infection rates for the upcoming days.

In the second step, a neural network model was designed for the algorithm. Our
neural network model consists of two layers of BILSTM and one fully connected layer. To
prevent overfitting, dropout is applied after each BILSTM layer. The activation function
used is linear.

The last step is to adjust the BILSTM parameters for optimal results. We used WOA to
optimize some parameters in the BILSTM model, enabling us to obtain the best combination
of parameters. To ensure a stable result, the BILSTM model with the same parameter set
is evaluated ten times, and the R2 value of the resulting predictions is averaged. After
obtaining the best parameters, we input them into the BILSTM model to make predictions.

Through these steps, we can make accurate predictions about the number of COVID-19
infections in the future.

2.4. Evaluation Parameters

In this study, we employed MAE, RMSE, MAPE, and R2 as evaluation metrics, which
are commonly used as an assessment of COVID-19 predictions. These metrics are described
as follows, where n represents the number of samples, yi represents the true value of sample
i, and y′i represents the predicted value of sample i.

MAE is the average absolute error, representing the average absolute error between
the predicted value and the real value. A smaller MAE indicates a better model. The
formula for MAE is as follows:

MAE =
1
n

n

∑
i=1

∣∣yi − y′i
∣∣,∈ [0,+∞) (22)
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MSE is the mean square error, representing the error between the predicted value and
the real value. RMSE is the root mean square error, which is the square root form of MSE.
The closer the value of RMSE is to 0, the better.

MSE =
1
n

n

∑
i=1

(
yi − y′i

)2,∈ [0,+∞) (23)

RMSE =
√

MSE,∈ [0,+∞) (24)

MAPE is the percentage absolute error. When MAPE is close to 0, it is a perfect model.
When MAPE is greater than 1, it is a bad model.

RMAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − y′i
yi

∣∣∣∣,∈ [0,+∞) (25)

R2 is the correlation coefficient, indicating the degree of agreement between the
predicted data and the real data. The closer the value is to 1, the better the model effect
will be.

R2 = 1− ∑n
i=1

(
yi − y′i

)2

∑n
i=1(yi − y)2 ,∈ (−∞, 1] (26)

where y is the real value of the average.

3. Experiments

We wrote the code for the network model in Python, which was constructed in the
TensorFlow 2.12.0 framework. The experimental hardware used was a GPU NVIDIA
GeForce GTX 1650, with an energy consumption of 183.96 W·h.

The data came from the website https://news.sina.cn/zt_d/yiqing0121 (20 February 2023),
which is the official data of China’s Health Commission. Through the website, we obtained data
for Guangdong, Chongqing, and Beijing. Due to the significant variations in COVID data year
by year, we only used one year’s worth of data (Table 1), which went from 20 December 2021 to
20 December 2022.

Table 1. Data from 20 December 2021 to 20 December 2022.

Province/Municipality 20 December 2021 21 December 2021 . . . 20 December 2022

Cumulative
Confirmed Cases

Guangdong 3394 3399 . . . 62,367
Chongqing 610 610 . . . 9972

Beijing 1205 1205 . . . 28,389

Cumulative
Cured Cases

Guangdong 3305 3310 . . . 52,359
Chongqing 602 602 . . . 7435

Beijing 1180 1180 . . . 16,762

Cumulative
Death Cases

Guangdong 8 8 . . . 8
Chongqing 6 6 . . . 7

Beijing 9 9 . . . 20

Existing Cases
Guangdong 81 81 . . . 10,000
Chongqing 2 2 . . . 2530

Beijing 16 16 . . . 11,607

Daily Confirmed
Cases

Guangdong 10 5 . . . 1189
Chongqing 0 0 . . . 205

Beijing 1 0 . . . 544

Daily Cured Cases
Guangdong 6 5 . . . 993
Chongqing 0 0 . . . 76

Beijing 1 0 . . . 360

Daily Death Cases
Guangdong 0 0 . . . 0
Chongqing 0 0 . . . 0

Beijing 0 0 . . . 0

https://news.sina.cn/zt_d/yiqing0121
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In the experiments, sets 0–229 of data (20 December 2021–6 August 2022) were used
for training and sets 230–330 of data (7 August–14 November 2022) were used for testing.
For the input values, each set of data contained several days’ worth of information and
each day’s information contained seven cases (cumulative confirmed cases, cumulative
cured cases, cumulative death cases, existing cases, daily confirmed cases, daily cured cases,
daily death cases). And the output value of the model is the cumulative number of new
cases after a few days. Thus, it is a multiple parallel input and single-step output model.

For example, if the time-step is 7, then the first set of data was from 20 December 2021
to 26 December 2021 and the predicted date was 27 December 2021 (Figure 4).
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To evaluate the performance of our model, we compared it with other neural network
models, namely, LSTM, BILSTM, GRU, CNN, CNN-LSTM, and RNN-GRU. In these models,
we set the dropout to 0.01, the time-step to 7, and the optimizer to Adam. And the input
data for them was the cumulative number of new cases in the previous period. For other
parameters, we used a grid search for the optimization. As shown in Figure 5, we predicted
the cumulative number of confirmed cases after 1 day, 5 days, and 7 days based on previous
data. However, since the time step is a variable, the forecast time range for these three areas
may vary slightly.

According to the real data, the overall epidemic changes were similar in these three
places. This was because Guangdong, Chongqing, and Beijing are all parts of China that
are governed by similar epidemic prevention policies.

Before November, the growth rates of the epidemic in these three places remained
relatively stable, resulting in minimal changes in the growth rates of both the training set
and the test set. Hence, all models produced accurate forecasts before November. But after
November, the epidemic rates in these three cities began to increase rapidly, coinciding with
a major outbreak in China. As a result, almost all of the models exhibited worse predictions
during this period.
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However, it can be seen from the overall prediction curve that the WOA-BILSTM
model always had the best prediction effect. Furthermore, with the increase in prediction
time, our model still has good accuracy.

Moreover, we used R2, MAE, RMSE, and MAPE to evaluate the models (Table 2). The
results showed that the R2 values of most models were more than 0.9 when projecting one
day into the future. Surprisingly, the R2 values of our model were above 0.993 in this case.
All models except our model had very low R2 values when projecting after five and seven
days, while the R2 values of our model were still higher than 0.9. Therefore, we could
conclude that our model predicted much better than other neural network models.
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Table 2. Data from 20 December 2021 to 20 December 2022.

Day 1 Day 5 Day 7

Area Model MAE RMSE MAPE R2 MAE RMSE MAPE R2 MAE RMSE MAPE R2

Guangdong

WOA-BILSTM 78.54 122.71 0.006 0.9988 579.38 1141.06 0.032 0.9449 877.00 1701.81 0.046 0.9084

LSTM 642.32 1414.70 0.038 0.8467 1216.67 2651.49 0.063 0.7027 1881.98 3848.48 0.093 0.5314

BILSTM 503.61 1111.82 0.030 0.9053 1213.30 2618.00 0.063 0.7102 1954.32 3862.76 0.100 0.5279

GRU 584.83 1228.40 0.036 0.8844 1383.83 2742.47 0.077 0.6819 1726.29 3542.38 0.085 0.6030

CNN 272.30 530.28 0.018 0.9785 1131.30 2377.87 0.060 0.7609 1243.50 2562.68 0.061 0.7922

CNN-LSTM 722.80 1512.55 0.044 0.8248 1332.84 2934.48 0.068 0.6359 1657.67 3537.28 0.079 0.5960

RNN-GRU 334.80 730.20 0.020 0.9592 1205.65 2599.51 0.063 0.7142 1371.89 2766.80 0.068 0.7578

Chongqing

WOA-BILSTM 20.95 38.55 0.013 0.9951 131.14 260.13 0.056 0.9190 104.14 214.23 0.018 0.9278

LSTM 96.11 213.51 0.048 0.8512 290.76 588.70 0.120 0.5851 234.32 528.87 0.039 0.6531

BILSTM 80.77 177.07 0.041 0.8976 261.92 544.58 0.105 0.6449 326.10 641.32 0.056 0.4899

GRU 80.03 173.96 0.041 0.9012 217.06 456.03 0.086 0.7510 217.44 487.01 0.036 0.7058

CNN 57.25 121.99 0.030 0.9514 201.85 422.44 0.080 0.7863 276.85 580.61 0.046 0.5819

CNN-LSTM 106.94 246.55 0.052 0.8015 240.66 513.03 0.096 0.6849 365.14 772.11 0.126 0.4841

RNN-GRU 64.46 139.15 0.033 0.9368 233.89 497.23 0.091 0.7040 302.91 617.32 0.108 0.6702

Beijing

WOA-BILSTM 19.97 52.97 0.004 0.9933 82.88 198.36 0.015 0.9409 104.14 241.23 0.018 0.9278

LSTM 82.03 157.61 0.016 0.9403 261.22 494.72 0.047 0.6325 234.32 528.87 0.039 0.6531

BILSTM 83.29 185.33 0.015 0.9174 220.30 442.87 0.038 0.7055 326.10 641.32 0.056 0.4899

GRU 69.94 149.80 0.013 0.9460 190.97 400.41 0.033 0.7592 217.44 487.01 0.036 0.7058

CNN 74.98 139.57 0.014 0.9532 171.74 368.27 0.029 0.7963 276.85 580.61 0.046 0.5819

CNN-LSTM 102.15 226.73 0.019 0.8764 213.63 458.16 0.036 0.6848 306.16 625.79 0.051 0.5142

RNN-GRU 71.15 154.63 0.013 0.9425 188.12 366.47 0.033 0.7983 229.37 453.46 0.039 0.7450

Furthermore, we conducted an additional experiment to compare our model with
DES, ARIMA, linear, Lasso, and SVM models. In this experiment, we employed our model,
as well as the other models, to predict the future for seven consecutive days, specifically
from 27 August to 2 September 2022. It is worth mentioning that the training values of the
other models were from 20 December 2021 to the day before the forecast. Again, we used
MAE, RMSE, and MAPE to evaluate the models’ performances.

To study the correlation of the time series itself, we first performed ACF and PACF
analyses of the training sets of each place, as shown in Figure 6. Based on the ACF and
PACF charts, we can see that the data was not seasonal. This also showed that it is sufficient
to use only ARIMA and DES (double exponential smoothing) methods for prediction,
rather than SARIMA and triple exponential smoothing methods. Moreover, the parameters
for ARIMA were also determined according to the ACF and PACF charts.
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Figure 6. ACF and PACF diagrams of Guangdong, Chongqing, and Beijing.

Figure 7 displays the true values and the predicted values of these models. From
Figure 7, we can infer that our model, the DES model, and the ARIMA model exhibited the
closest match between the predicted and true values. However, the linear, Lasso, and SVM
models had a large gap between the predicted and real values. Especially in the prediction
of Guangdong province, the results of the linear, Lasso, and SVM models were more than
200 different from the real value. Moreover, in the prediction of Beijing, the SVM model
produced particularly poor results.
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Figure 7. We used WOA-BILSTM, DES, ARIMA, linear, Lasso, and SVM models to forecast Guang-
dong, Chongqing, and Beijing. The figure shows the predicted values and true values.

Table 3 presents the predicted values. In Table 3, we can see that our model, the DES
model, and the ARIMA model all produced excellent results for Guangdong and Beijing,
with MAPE values of less than 0.01. When predicting Chongqing, the MAPE values of
the WOA-BILSTM, DES, and ARIMA models were 0.0128, 0.0239, and 0.0131, respectively.
In addition, in the prediction of Guangdong and Chongqing, the accuracy of the WOA-
BILSTM model was the best, followed by the ARIMA and DES models. However, in the
prediction of Beijing, the ARIMA model was slightly better than our model.
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Table 3. Prediction from 27 August 2022 to 2 September 2022.

Area Guangdong Chongqing Beijing

Evaluation MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
WOA-BILSTM 55.792 91.645 0.0061 12.615 14.047 0.0128 10.068 13.553 0.0025

DES 66.591 89.555 0.0074 22.697 23.669 0.0239 20.127 23.705 0.0050
Arima 88.178 115.416 0.0097 12.939 15.404 0.0131 8.250 9.651 0.0021
Linear 243.793 244.654 0.0271 56.145 56.226 0.0572 160.857 163.058 0.0404
Lasso 206.825 214.382 0.0231 168.079 168.735 0.1711 256.217 257.044 0.0644
SVM 257.509 259.049 0.0287 105.516 106.063 0.1074 1284.986 1287.661 0.3229

Why was our model a bit worse than the ARIMA model when we did the experiment
from 27 August to 2 September? To find out the reason, we did the experiments for two
other periods in Beijing (Table 4). Similar to previous experiments, our model achieved the
best prediction effect in the two periods.

Table 4. Prediction of Beijing from 6 September 2022 to 12 September 2022 and from 13 August 2022
to 19 August 2022.

Time 6 September 2022–12 September
2022 13 August 2022–19 August 2022

/ MAE RMSE MAPE MAE RMSE MAPE
WOA-BILSTM 40.690 47.003 0.0100 30.912 34.401 0.0079

DES 45.023 50.214 0.0112 71.667 74.373 0.0188
Arima 52.293 57.656 0.0128 38.021 40.487 0.0098
Linear 264.215 269.782 0.0648 46.237 55.688 0.0118
Lasso 260.405 260.446 0.0640 196.927 196.979 0.0507
SVM 1210.207 1211.450 0.2971 5143.148 5143.441 1.3235

Figure 8 shows the real data for Beijing from 1 August to 12 September. According
to the real data, there is little change in the epidemic trend in the period from 27 August
to 2 September and the period before 27 August. However, the data from 13 August to
19 August and from 6 September to 12 September showed significant changes. This also
corroborated other people’s findings that ARIMA is not suitable for complex situations. In
contrast, our model produced excellent results in both general and complex cases.
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In addition, to show the energy consumption of our model, we also used Bayesian and
grid search methods to optimize the parameters of the improved BILSTM model. Based on
the previous data, the experiment conducted a one-day forecast for the Beijing area from
14 August to 20 November 2022.
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For the WOA optimizer, we set the population size to 10 and the number of iterations
to 5. The time step value ranged from 4 to 14. The first and second layers of BILSTM ranged
from 1 to 100. The dropout value ranged from 0.01 to 0.5. The batch_size ranged from
1 to 128. The learning rate value was selected from 0.1, 0.01, 0.001, 0.0001, 0.00001, and
0.000001. The optimizer was chosen from SGDS, Adagrad, Adadelta, RMSprop, Adam,
Adamax, and Nadam. In order to make the adjusted model more stable, each prediction
was the average of ten runs, which was also applied to grid optimization and Bayesian
optimization. The optimal parameter set after WOA optimization was {time step: 4, the
first layer of BILSTM: 87, the second layer of BILSTM: 34, dropout: 0.366, batch_size: 1,
optimizer: Adam, learning rate: 0.0001}.

For the Bayesian optimizer, we set the init_points to 10 and n_iter to 5. The parameters
range was consistent with the WOA algorithm. Its optimal parameter set was {time step:
11, the first layer of BILSTM: 32, the second layer of BILSTM: 68, dropout: 0.419, batch_size:
3, optimizer: Nadam, learning rate: 0.0001}.

For the grid search algorithm, in order to reduce the number of iterations, the time
step value ranged from 7 to 14. The first and second layers of BILSTM were selected from
(16,32,64). The batch_size value was selected from (32,64,128). The learning rate was set to
0.001. The dropout value was set to 0.3 and the optimizer was Adam. After the iterations,
the optimal parameter set was {time step: 7, the first layer of BILSTM: 16, the second layer
of BILSTM: 64, dropout: 0.3, batch_size: 32, optimizer: Adam, learning rate: 0.0001}.

The specific operation time and results of these models are shown in Table 5. According
to the tabular data, the grid search model ran the longest but was less accurate than the
WOA model. The Bayesian model ran for 44 min and its results were not bad. And the WOA
model had the highest accuracy, with a running time of 2 h and 24 min, which is acceptable.
This shows that the WOA had a fast convergence rate and the best optimization effect.

Table 5. R2 values and runtime of the WOA, Bayesian, and grid search models.

Model Tenth Mean (R2) Maximum Value (R2) Time

WOA-BILSTM 0.9905 0.9948 2 h 24 min
Bayes-BILSTM 0.9716 0.9888 46 min
Grid-BILSTM 0.9838 0.9913 5 h 8 min

4. Conclusions

In this paper, we propose a WOA-BILSTM model. For the model, we took cumulative
confirmed cases, cumulative cured cases, cumulative death cases, existing cases, daily
confirmed cases, daily cured, and daily death cases as inputs. Then, we used the WOA to
train some parameters of the BILSTM model. Furthermore, we compared it with some other
models, such as LSTM, BILSTM, GRU, CNN, CNN-LSTM, RNN-GRU, DES, ARIMA, linear,
Lasso, and SVM. The experimental results showed that our model had the highest accuracy
in predicting regions in China. When compared with the deep learning models, our
model had the best prediction results and its prediction effect was significantly improved
compared with other models. And when compared with the Arima and machine learning
models, our model was robust and accurate. Therefore, our model has a good prediction
effect and universal applicability in COVID-19 prediction research. Additionally, we also
used Bayesian and grid models instead of the WOA model for optimization. By comparing
the accuracy of the model and the uptime, we found that the WOA model was the most
accurate while ensuring that the uptime was not too long. This indicated that the WOA
model converged faster and could find the optimal solution more easily. Thus, our proposed
WOA-BILSTM model is more suitable for COVID-19 prediction. We hope that our model
can help the government make better prevention and control measures during the epidemic.
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