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Abstract: In recent years, there has been a rise in the prevalence of autism spectrum disorder (ASD).
The diagnosis of ASD requires behavioral observation and standardized testing completed by highly
trained experts. Early intervention for ASD can begin as early as 1–2 years of age, but ASD diagnoses
are not typically made until ages 2–5 years, thus delaying the start of intervention. There is an
urgent need for non-invasive biomarkers to detect ASD in infancy. While previous research using
physiological recordings has focused on brain-based biomarkers of ASD, this study investigated
the potential of electrocardiogram (ECG) recordings as an ASD biomarker in 3–6-month-old infants.
We recorded the heart activity of infants at typical and elevated familial likelihood for ASD during
naturalistic interactions with objects and caregivers. After obtaining the ECG signals, features such
as heart rate variability (HRV) and sympathetic and parasympathetic activities were extracted. Then
we evaluated the effectiveness of multiple machine learning classifiers for classifying ASD likelihood.
Our findings support our hypothesis that infant ECG signals contain important information about
ASD familial likelihood. Amongthe various machine learning algorithms tested, KNN performed
best according to sensitivity (0.70 ± 0.117), F1-score (0.689 ± 0.124), precision (0.717 ± 0.128), accuracy
(0.70 ± 0.117, p-value = 0.02), and ROC (0.686 ± 0.122, p-value = 0.06). These results suggest that ECG
signals contain relevant information about the likelihood of an infant developing ASD. Future studies
should consider the potential of information contained in ECG, and other indices of autonomic
control, for the development of biomarkers of ASD in infancy.

Keywords: autism spectrum disorder; biomarker; electrocardiograms; machine learning; heart
rate variability

1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by
social communication and interaction challenges, restricted interests, and repetitive behav-
iors [1]. Studies have shown that early intervention can enhance developmental outcomes
in individuals with ASD, with earlier onset in infancy leading to better outcomes [2]. In the
United States, the prevalence of ASD has been increasing and is currently estimated to affect
approximately 1 in 36 children [3], representing about 2.3% of the population. Research
indicates that having a family history of ASD increases the likelihood of developing the
condition [4], with studies indicating a higher risk among those with siblings, cousins,
or parents diagnosed with ASD [5,6]. This statistic underscores the need for developing
early and low-cost ASD indicators that could support earlier, more efficient diagnoses,
personalized treatments, and improved quality of life for people with ASD. Furthermore,
earlier diagnosis of ASD could lead to the development of even earlier parent-implemented
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behavioral interventions that support very early communication and social interaction
skills [7].

Widely accepted assessment tools for ASD include the Autism Diagnostic Observation
Schedule (ADOS) [8,9] and the Autism Diagnostic Interview (ADI) [8,10]. These measures
offer many advantages. First, when conducted by trained clinicians, they inform reliable
diagnoses and allow for a more systematic and reproducible behavioral characterization of
participants across studies. Second, ADI and ADOS profiles enable the formation of ASD
subgroups based on perceived or confirmed symptoms that may be associated with various
clinical trajectories and genetic markers [8]. However, these standardized assessments of
ASD require advanced professional training and a more comprehensive evaluation than
many medical conditions.

Biosignals are crucial in understanding and monitoring neurodevelopmental disorders.
These signals, derived from various physiological processes such as cognitive processes,
muscular activations, or cardiac activity, provide valuable insights into the functioning
of the human body. By analyzing biosignals, such as electroencephalograms (EEG), elec-
tromyograms (EMG), and electrocardiograms (ECG), healthcare professionals can diagnose
and monitor disorders with greater accuracy. Biosignals enable the detection of abnor-
malities, patterns, and trends that may indicate the presence or progression of a disorder
or the response to treatment. They also facilitate personalized treatment plans, allowing
healthcare providers to tailor interventions based on individual biomarker profiles. These
can potentially be used to derive reliable diagnostic biomarkers of ASD. Researchers are
increasingly studying EEG to monitor abnormal brain development in clinical settings.
For example, one study used spectral and nonlinear features of EEG signals to predict the
diagnosis of ASD in infancy [11]. However, collecting high-quality EEG data in infants or
young participants is subject to substantial methodological hurdles contingent upon the
experimental settings and the intended analyses [12]. A whole-brain functional magnetic
resonance imaging (fMRI) study [13] of children with ASD and children with develop-
mental language disorders revealed decreased functional connectivity between the frontal
and parietal-occipital regions and between the anterior and posterior insular cortex and
the limbic cortex. In addition, due to common anatomical brain regions involved in both
autonomic dysfunction and social-emotional dysregulation [14,15], measures of autonomic
activity constitute a prime candidate for the development of a biomarker and for the study
of ASD in general.

Previous research indicates that ASD symptoms could be linked with sympathetic
arousal and parasympathetic activity [16,17]. Electrodermal activity (EDA) is one of the
primary measures of sympathetic arousal. In [18], the authors discovered a significant
connection between anxiety symptoms and EDA in children with ASD. Children with
ASD and high anxiety levels demonstrated substantially reduced EDA relative to ASD
participants with low anxiety and neurotypical controls [19]. To the best of our knowledge,
no one has studied the use of extracted features from ECG with parasympathetic and
sympathetic symptoms in individuals with ASD, despite the potential benefits of such
an approach.

In recent decades, some studies have identified features extracted from electrocardio-
gram (ECG) signals associated with ASD [20,21]. Among these promising ECG features is
heart rate variability (HRV), as it can serve as a potential non-invasive biomarker. In addi-
tion, HRV reflects alterations in parasympathetic and sympathetic nervous system activity,
and lower HRV in ASD may reflect abnormal neuronal connectivity within the autonomic
nervous system (ANS) [21,22]. Various metrics are utilized to quantify HRV features,
aiming to extract biomarkers that hold physiological significance. Multiple preclinical
and clinical studies have been conducted on these metrics and have proven effective in
identifying pathophysiological states in different clinical situations [23–25]. Some studies
have conducted comparisons of HRV patterns between children with ASD and control
participants [26–28]. These studies have yielded several findings related to HRV, one of
which is that individuals with ASD exhibit significantly lower HRV during social stress.
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Second, specifically in terms of the parasympathetic-specific index known as RSA (respira-
tory sinus arrhythmia), individuals with ASD demonstrate significantly lower RSA and
RSA reactivity during social stress, social debriefing, and cognitive tasks when compared
to the control group.

Recently, researchers have proposed many Machine Learning (ML) approaches to
improve the early identification of ASD and to study potential ASD biomarkers with
MRI [29–31]. However, utilizing MRI may not be viable for infants between the ages of
3–6 months. Infants at this age are typically very active and may not be able to stay still
for an extended period, which can result in poor image quality. Earlier contributions used
classical ML methods (such as with MRI/fMRI [29,32–35]). More recently, deep learning
methods have demonstrated a considerable advantage over classical approaches due to
their ability to rely on hidden representations of extracted features in MRI/fMRI [36]. Other
non-invasive methods have been coupled with ML for ASD. Eye tracking is a good example.
It has proven to be a valuable tool, with or without deep learning, in investigating ASD by
capturing and analyzing gaze patterns and attentional mechanisms [37,38]. These studies
have provided insights into the distinct eye movement patterns observed in individuals
with ASD, including reduced eye contact, a preference for non-social stimuli, and difficulties
in facial recognition and joint attention. However, it is important to acknowledge the
limitations of eye tracking in ASD research. One limitation is the inherent variability in eye
movement patterns among individuals with ASD, making establishing consistent norms
and benchmarks challenging. Technological limitations, such as difficulties in calibration
and participant compliance, can also affect the quality and reliability of the collected data.
Furthermore, researchers may need to improve the ecological validity of their laboratory-
based eye-tracking studies to capture the full range of social interactions that people
experience in real-world settings. Although an increasing number of studies proposed
ML methods for ASD diagnosis using behavioral or psychophysiological data such as
EEG [39,40], scant attention has been given to the application of ML to ECG signals for
predicting ASD. The integration of HRV measures and sympathetic and parasympathetic
analysis will contribute to our understanding of autonomic dysregulation in individuals
diagnosed with ASD. This investigation is made important by the tight relationship between
autonomic control and attention regulation, since a breakdown in such regulatory processes
at a very early age may play a role in the development of this disorder [41]. In this study,
we aimed to demonstrate that ECG contains valuable predictive information for ASD
prognostic and further motivate such investigation on the relationships between ASD
and the autonomic system, as measured through ECG. Toward that goal, we used non-
invasive ECG sensors to record infants’ heart activity during interactions with toys and their
caregivers. Participants were infants with a typical or elevated likelihood of developing
ASD based on familial history. We pre-processed the ECG signals and extracted HRV
features to train our ML models. By investigating how predictive these models are, we aim
to evaluate the potential of ECG-captured autonomic activity to indicate ASD likelihood.

2. Methods
2.1. Acquisition Protocol

A small ECG sensor (Actiwave Cardio; CamNTech) with a pair of electrodes was
placed on the chest of the infants to record raw signals. The infants then participated in two
experiments: one involving interactions with objects only (OIX) and the second involving
interactions with their caregiver (PIX). During the OIX condition, caregivers placed infants
on their laps, and five objects were presented sequentially to infants on the table for 1–2 min
each. The caregiver did not interact with their infant during this time. During the PIX
condition, infants were lying on their backs on a table, and caregivers interacted with them
without toys for nine minutes. Both experiments were conducted with the same infants.
Only OIX or PIX recording is available for some participants, either because of technical
issues or because the infant’s fussing required early experiment termination. Recordings
from N = 70 infants of age 3–6 months were available for this study. Participants were
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either at elevated familial likelihood for ASD (EL) because they had an older full biological
sibling with ASD (n = 31) or at a typical likelihood for ASD (TL) given the absence of a
family history of ASD in first or second-degree relatives (n = 39).

2.2. ECG Pre-Processing

Due to changes in hardware during the data collection, ECG signal collection was
conducted at three different frequencies, i.e., 128 Hz, 512 Hz, and 1024 Hz. We processed
the signals at their original frequency. Various artifacts can contaminate ECG, including
power line interference, channel noise, electromyographic artifacts, electrode contact noise,
and baseline wandering due to body movement and respiration. Since such artifacts harm
automatic classification, we cleaned the ECG signals using the Python HeartPy library [42].

We used a custom procedure to determine missing beats (i.e., heartbeats that HeartPy
failed to detect) and fix the time series of interbeat intervals (i.e., conceptually, imputing the
timing of R peaks for missing beats). This procedure goes as follows. We first divided the
time series of interbeat intervals x(n) by its median value to obtain x̂(n) = x(n)/median(x(n)).
Each value in x̂(n) indicates how long the detected interbeat interval is in the number
of median interbeat intervals. Then, we rounded x̂(n) to the closest integer such that
x̃(n) = round(x̂(n)). We identified x̃(n)− 1 missing beats for the n-th interval. To pinpoint
the exact timing of these missing beats, we assigned each beat an index starting at zero
and incrementing by one for each beat (including the identified missing beats). We used
this index ñ as the new independent variable for linear interpolation. For example, using
the arguments as defined in the NumPy interp(x, xp, fp) function, we implemented this
interpolation as x(ñ) = interp(ñ, n, x(n)).

Following this procedure, we obtained time series of interbeat intervals corrected
for missing beats. To avoid biasing our analysis with recordings that were too noisy for
reliable R peak extraction, we excluded recordings with more than 30% of interpolated
peaks. Furthermore, to ensure enough peaks for reliable feature estimation, we rejected
segments with less than 30 beats. Examples of noisy segments removed because of high
noise are shown in Figure 1A,B. The ECG signals corrected for baseline wandering are
shown in Figure 1C. Figure 1D illustrates power line interference or muscle response, which
is corrected during pre-processing. Figure 1E gives an example of a clean signal following
pre-processing. Figure 2 shows an example of zoomed-in clean R peaks. We performed this
pre-processing on different segment lengths (30 s, 60 s, 90 s, 120 s, and full-length) of ECG
data to test the effect of such a segmentation. ECG data is divided into segments using
non-overlapping sliding windows of different lengths (30, 60, 90, or 120 s). By examining
various segment lengths, we can assess whether shorter or longer segments are more
effective in accurately identifying and classifying ECG signals, regardless of the individual
heartbeats or specific characteristics of ECG waves [43]. In addition, this approach allows
for assessing the impact of segment duration on the system without considering individual
heartbeats or particular characteristics of ECG waves. Since the recording length can
impact the success of the inclusion criteria aforementioned, different epoch lengths result
in different sample sizes (30 s: N = 61, 60 s: N = 54, 90 s: N = 56, 120 s: N = 57, full-length:
N = 51). Figure 3a illustrates the automated ECG pre-processing process as explained.
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Figure 1. (A,B) Examples of segments excluded from the dataset because they were too noisy.
(C) Example of baseline wandering. (D) Example of power line interference. (E) Clean signal,
after pre-processing.

Figure 2. An example of zoomed-in cleaned ECG beats. NN stands for normal beat intervals, and is
similar to “R-R intervals”, but highlights that these values represent normal cardiac timing, free
from artifacts.

2.3. Feature Extraction and Preliminary Analysis

After pre-processing, the process takes the average of the features extracted from
each segment within a recording. For instance, if we divided a recording into five 90-s
segments, we averaged the features across these five segments. We employed a Linear
Mixed Effects Model (“feature condition + Labels + Month”) to analyze the impact of a
particular feature while controlling for other variables, including age (measured in months),
condition (PIX/OIX), and labels (LL/EL). There was not a statistically significant impact
of age on the feature values (p’s > 0.1), and so repeated within-subject recordings were
aggregated by taking the average of the segment-averaged vectors across the different
recording sessions (i.e., at different ages). For example, if we have recordings at three, four,
and six months for a given participant, each consisting of 90 s averaged vectors, we took
the average of these vectors to obtain a single averaged vector for this participant across
the three time points. It is important to note that this process generates a matrix dependent
on the segments’ length. For each segment length, we have different sets of subjects (due to
pre-processing criteria) and ten HRV features per subject. These features were extracted
(Table 1) using the Python neurokit2 library [44]. We provided the clean peaks as an array
of ECG data points to calculate HRV features (MeanNN, MaxNN, MinNN, MedianNN,
pnn20, CVNN, sd1sd2) based on normal beat intervals (NN). NN is the interval between
consecutive R peaks (Figure 2). Further, we calculated the Cardiac Sympathetic Index (CSI)
and the Cardiovagal Index (CVI) as proxies for sympathetic and parasympathetic activation
and their neuronal and cardiac dependencies. To calculate CSI and CVI, the variability of
R peaks is observed and transformed into an elliptic distribution using Lorenz plots [45].
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The length of the longitudinal (L) and transverse (T) axes is calculated within each elliptic
distribution. We then obtain CVI = log10(L*T) and CSI = L/T. After extracting the features,
we calculated the correlation coefficient between each feature (Figure 4) and rejected
redundant features if their correlation coefficient was greater than 0.90. The final set of
included features was: MedianNN, pnn20, CVNN, sd1sd2, HTI, CSI, and CVI.

Table 1. Extracted features from ECG Signals after the pre-processing step.

Features Feature Description

MeanNN Mean of the NN [46,47].

MedianNN Median of the NN [46,47].

pNN20 Proportion of successive NN with a difference larger than 20 ms. This measures the
relative frequency of changes in heart rhythm [22].

sd1sd2

In a Poincaré plot, sd1 is standard deviation perpendicular to the line of identity
and sd2 is standard deviation along the line of identity. sd1sd2 is the ratio of
(sd1/sd2), an indicator of the unpredictability of the NN to measure autonomic
balance when there is sympathetic activation [22].

CVNN Coefficient of variation of NN, calculated as standard deviation of NN divided by
mean of NN [26].

HTI HRV Triangular Index is the integral of the NN density histrogram divided by its
height [22].

CSI The CSI quantifies the sympathetic nervous system activity indicating increased
arousal [48].

CVI The CVI quantifies the parasympathetic nervous system activity [49].

MaxNN Max of the NN [46,47].

MinNN Min of NN [46,47].

2.4. EL vs. TL Classification Using Machine Learning

We used Scikit-learn [50] to test various classifiers (Gradient Boosting (GB), Extra
Trees (ET), Random Forest (RF), Ada Boost (AB), Decision Tree (DT), K Nearest Neighbors
(KNN), XGBoost (XGB), and Multi-layer Perceptron (MLP)) to classify infants into EL and
TL groups. We used the nested cross-validation to systematically evaluate the performance
of different combinations of hyperparameters for each model to classify infants into EL
and TL groups. Cross validation is explained in Section 2.5. For the final evaluation, we
used 100 stratified shuffles with an (80/20)% split. We reported our findings using the
mean and standard deviation (std) from the distribution of 100 stratified splits. Finally, we
extracted feature importance. The importance of each feature is calculated based on how
much they contribute to the model’s predictions. We utilized the permutation importance
function (in Scikit-learn [51]) with the ROC metric for calculating feature importance, which
is model-agnostic. This function assesses a feature’s significance by randomly changing
its values and measuring the model’s resulting decrease in performance. The permutation
importance function enables us to gauge a feature’s importance in predicting outcomes.
Shuffling values randomly will cause an important feature to a more significant decrease in
performance compared to a less important one.

2.5. Cross Validation

To evaluate the classification performance of our models, we implement the nested
cross-validation technique. We use two nested loops of cross-validation. The outer loop
divides the dataset into 100 stratified shuffle splits, where each split separates a test set
(20%) for final evaluation from the remainder of the data (80%) used by the inner loop.
This outer loop helps estimate the model’s performance on unseen data. Within each outer
loop iteration, the inner loop performs another round of cross-validation. It further divides
the remaining data into multiple folds of training (64%) and validation subsets (16%)
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using a grid search approach. The inner loop is responsible for hyperparameter tuning
by systematically trying out different combinations of hyperparameters and evaluating
their performance on the validation sets. A nested cross-validation approach allows for
a fair comparison and selection of the best hyperparameters. This process ensures that
performance is evaluated on completely unseen data and helps prevent overfitting and
information leakage. Figure 3b illustrates our nested cross-validation approach.

(a) Pre-processing stage

(b) Nested Cross Validation

Figure 3. Schematic representation of the automated pipeline we used for ASD classification:
(a) Shows pre-procesing as explained in Section 2.2, (b) Shows nested cross-validation we used
for our approach.

2.6. Analysis Pipeline

The ECG sensors were well tolerated by all infants. Overall, we rejected 12% record-
ings (9 participants). Figure 3 illustrates our methodology for determining ASD genetic
likelihood using ECG signals. It includes automated ECG pre-processing with the following
steps: filtering, segmentation of ECG data, pre-processing to eliminate artifacts, extraction
of clean R peaks, missing peaks correction, feature extraction, and classification. After pre-
processing, the features described in Section 2.3 were extracted. For each participant, we
computed the average of the extracted features from the remaining segments across all age
time points. These features are used for our ML models as input.
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Figure 4. Heatmap of correlation between all the HRV features averaged across 90 s segment length.

3. Results

In this study, we conducted a comparative analysis of eight classification algorithms
(ADB, DT, ET, GB, KNN, MLP, RF, and XGB) to identify the most predictive model for
distinguishing between EL and TL groups. We employed the following segment lengths of
ECG to evaluate the efficacy of shorter versus longer segments in accurately classifying
these groups: 30, 60, 90, and 120 s and the full length. We used accuracy, precision, sensitiv-
ity, specificity, and F1-score to evaluate the performance of these models. The definitions of
these metrics can be found in [52]. We also calculated the area under the receiver operating
characteristic curve (ROC), a widely used metric for evaluating classification model per-
formance [53]. This metric is less affected by class imbalance than accuracy [54]. Figure 5
shows heatmaps comparing the performance of different machine learning models (y-axis)
on the given task across the five selected evaluation metrics (panel) and different segment
lengths (x-axis). These heatmaps were color-coded to visually depict the performance levels,
with brighter colors indicating better performance and darker colors indicating poorer
performance. In our study, we utilized nested cross-validation, as explained in Section 2.5,
to reliably assess the performance of our various models without risking overfitting or
information leakage. Through this evaluation, we determined that tree-like models outper-
formed other models. We observed diverse performance outcomes across the evaluation
metrics among these tree-based models, namely, KNN (kd-tree), DT, and the ADB model.
In Table 2, we show the results (mean ± std) obtained using nested cross-validation of
these models. These models generally exhibit similar trends across different time lengths
for accuracy. We conclude that KNN is a top performer. The distributions of accuracy
(0.70 ± 0.117; p-value: 0.02) and area under the ROC curve (0.686 ± 0.122; p-value: 0.06)
obtained through bootstrapping with shuffle splits statistically support that this classifier
performs above chance level. Further, this model displayed the highest sensitivity, scor-
ing 0.70 ± 0.117, indicating its ability to identify positive instances correctly. KNN also
achieved an impressive F1-score of 0.689 ± 0.124, reflecting its balanced precision and recall.
With a precision score of 0.717 ± 0.128, KNN demonstrated its capability to minimize
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false positives. KNN and ADB consistently achieve the highest accuracy, with values
ranging from 0.600 to 0.700, followed by DT, XGB, and GB. However, MLP consistently
performs the poorest in terms of accuracy. The precision performance shows a similar
pattern, with KNN and ADB achieving the highest precision scores across all segment
lengths. The performance of the DT model also stands out in terms of precision. The ET, RF,
GB, and XGB models achieve similar precision scores, while MLP consistently lags. When
considering sensitivity, the models generally display similar trends in accuracy and preci-
sion, with KNN, DT, and ADB showing the best performances. MLP again demonstrates
the lowest sensitivity across all segment lengths. Analyzing the F1 score, KNN performs
well consistently, followed by DT, ADB, and XGB, while MLP falls behind. Finally, regard-
ing ROC performance, KNN consistently achieves the highest scores, closely followed by
DT and ADB. MLP demonstrates the poorest ROC performance throughout the different
segment lengths. KNN, DT, and ADB consistently demonstrate strong performance across
multiple evaluation metrics, making them potentially favorable models for classifying EL
and TL.

Figure 5. Heatmaps representing various metrics across different segment lengths (x-axis) for ML
classifier experiments (y-axis). The heatmap provides a color-coded summary of the performance
of each classifier for segment length, with darker colors indicating poorer results and lighter colors
showing better results.

In Table 3, we have shown the results from two other studies [47,55] that employed ML
classifiers. Specifically, our study demonstrated enhanced precision, recall, and accuracy
compared to these prior works. In Figure 6, we identified that “MedianNN” is the best
feature based on feature importance from the KNN model. Feature importance is shown
in percentage in Figure 6 on the x-axis and features on the y-axis, suggesting that these
features do not have significant discriminatory power when distinguishing between EL and
LL classes. Though all other features have proven highly effective in achieving improved
classification results, further investigation is needed to determine if additional factors or
considerations could make them more meaningful for the classification task. From Table 2,
we observe that KNN has stable results across all five metrics across the 90 s segments. We
also see the differences between the EL and LL groups in their ECG 90 s segment extracted
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features, indicating changes in the ANS of EL infants. A thorough comparison of the
extracted ECG features between the EL and LL groups is presented in Table 4. The findings
indicate that the EL has comparatively lower HRV features compared to the LL. This can be
associated with a reduced ability of the ANS to adapt and respond to different physiological
and environmental demands.

Figure 6. HRV Feature importance for KNN.

Table 2. Top Three Models with All Segment Lengths and Metrics’ (mean ± std).

ADB

Segment
Length

Accuracy
p-val

Accuracy
(Mean ± std)

ROC
p-val

ROC
(Mean ± std)

Sensitivity
(Mean ± std)

Precision
(Mean ± std)

F1
(Mean ± std)

30 0.07 0.665 ± 0.111 0.12 0.65 ± 0.124 0.665 ± 0.111 0.68 ± 0.128 0.657 ± 0.116

60 0.06 0.693 ± 0.136 0.07 0.706 ± 0.139 0.693 ± 0.136 0.739 ± 0.135 0.691 ± 0.141

90 0.06 0.68 ± 0.128 0.1 0.677 ± 0.135 0.68 ± 0.128 0.697 ± 0.14 0.674 ± 0.132

120 0.1 0.648 ± 0.129 0.14 0.649 ± 0.133 0.648 ± 0.129 0.67 ± 0.139 0.641 ± 0.13

Full Length 0.04 0.705 ± 0.116 0.07 0.697 ± 0.129 0.705 ± 0.116 0.727 ± 0.127 0.702 ± 0.119

KNN

Segment
Length

Accuracy
p-val

Accuracy
(Mean ± std)

ROC
p-val

ROC
(Mean ± std)

Sensitivity
(Mean ± std)

Precision
(Mean ± std)

F1
(Mean ± std)

30 0.19 0.60 ± 0.108 0.27 0.561 ± 0.108 0.600 ± 0.108 0.597 ± 0.132 0.579 ± 0.111

60 0.13 0.637 ± 0.114 0.19 0.625 ± 0.125 0.637 ± 0.114 0.659 ± 0.129 0.632 ± 0.117

90 0.02 0.70 ± 0.117 0.06 0.686 ± 0.122 0.70 ± 0.117 0.717 ± 0.128 0.689 ± 0.124

120 0.08 0.659 ± 0.13 0.09 0.655 ± 0.13 0.659 ± 0.13 0.675 ± 0.133 0.653 ± 0.133

Full Length 0.17 0.617 ± 0.126 0.24 0.594 ± 0.136 0.617 ± 0.126 0.675 ± 0.133 0.653 ± 0.133

DT

Segment
Length

Accuracy
p-val

Accuracy
(Mean ± std)

ROC
p-val

ROC
(Mean ± std)

Sensitivity
(Mean ± std)

Precision
(Mean ± std)

F1
(Mean ± std)

30 0.11 0.641 ± 0.116 0.16 0.621 ± 0.132 0.641 ± 0.116 0.644 ± 0.145 0.627 ± 0.125

60 0.06 0.683 ± 0.133 0.1 0.691 ± 0.144 0.683 ± 0.133 0.719 ± 0.158 0.676 ± 0.144

90 0.04 0.670 ± 0.121 0.09 0.677 ± 0.125 0.678 ± 0.121 0.698 ± 0.136 0.672 ± 0.126

120 0.05 0.666 ± 0.127 0.13 0.666 ± 0.131 0.666 ± 0.127 0.685 ± 0.139 0.659 ± 0.133

Full Length 0.11 0.696 ± 0.137 0.15 0.687 ± 0.154 0.696 ± 0.137 0.713 ± 0.157 0.692 ± 0.143
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Table 3. The performance results of models documented in the literature (mean ± std).

Methodology Precision Sensitivity F1-Score ROC Accuracy

Ensemble [47] - - - - 0.75
(avg. accuracy)

XGB (their highest performing
model) [55] 0.57 ± 0.22 0.59 ± 0.14 - 0.88 ± 0.12 0.59 ± 0.22

Table 4. Mean ± Std values of the HRV features extracted averaged across 90 s segments of ECG.

Feature MeanNN HTI

TL 571.33 ± 214.77 5.64 ± 2.38
EL 419.47 ± 175.86 5.01 ± 2.02

Feature MedianNN CSI

TL 569.13 ± 213.75 3.38 ± 1.23
EL 417.09 ± 176.22 3.56 ± 1.61

Feature pnn20 CVI

TL 11.7 ± 11.2 3.67 ± 0.52
EL 8.75 ± 11.86 3.57 ± 0.58

Feature sd1sd2 MaxNN

TL 0.35 ± 0.15 704.71 ± 313.01
EL 0.39 ± 0.27 520.11 ± 225.89

Feature CvNN MinNN

TL 0.04 ± 0.02 501.48 ± 198.36
EL 0.06 ± 0.03 347.18 ± 149.89

4. Discussion

The primary goal of this study was to determine whether infant ECG signals help
to classify ASD likelihood. Statistically, EL infants show elevated rates of ASD diagnosis
and elevated ASD symptoms, making this preliminary study a first step in developing
biomarkers for early ASD diagnosis and better understanding the relationships between
autonomic regulation and ASD. Our approach has high ecological validity, considering
our naturalistic experimental paradigm (self-initiated, naturalistic interactions with objects
and parents) and the wearable, wireless, and non-invasive sensors. In addition, such an
approach can be easily scaled up and reach more families by collecting data at home or
remotely (i.e., without an on-site experimenter). Traditional ECG pre-processing techniques
have several constraints, including their incapability to scale up for remote set-ups, prone-
ness to human errors, limitations in handling noise, and difficulties in standardization. As a
result, there is a growing interest in automated ECG pre-processing algorithms, which have
the potential to enhance the accuracy, efficiency, and standardization of ECG signal analysis
in clinical and research settings. Our pipeline is illustrated in Figure 3a. This explains an
automated algorithm that detects and removes artifacts in the ECG signal, applies filters
to remove noise and unwanted components, segments the signal into relevant segments,
and improves overall signal quality. Automated pre-processing can save time and increase
efficiency in ECG signal analysis by reducing the need for manual inspection and anno-
tation of the signal. We utilized the neurokit [44] library to extract features automatically,
eliminating the need for manual feature crafting. This approach proved successful in ana-
lyzing our dataset. We chose not to use the very popular Convolutional Neural Network
(CNN) approach for this work for a few reasons. First, CNN may not reveal how heart
rate variability (HRV) changes over time. CNNs learn from ECG signals when provided
as input with extensive training data. However, our dataset is small, and CNN would
not generalize well [56]. Additionally, we aimed to report changes in the data on a group
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basis. A CNN would not be suitable for this analysis since it is difficult to trace how the net-
work arrives at its conclusions or determines the features that drive its predictions. Using
feature extraction methods, we could analyze the data and observe group-wise changes
more effectively. Moreover, this approach provides transparency and interpretability in
understanding the underlying patterns and variations within different groups, which could
not be accomplished via a CNN.

Several studies suggest a significant correlation between social functioning and sym-
pathetic and parasympathetic markers, which can be assessed through HRV, in typical
development [57–59]. This has led to a growing interest in exploring their association with
ASD. By studying HRV features, we may better understand how ANS function is related
to the core and associated deficits of ASD and other diagnoses related to neurodevelop-
mental disorders. In addition, understanding ANS could lead to a clearer understanding of
the underlying mechanisms contributing to the development and manifestation of these
conditions. Initially, we selected ten features as described in Section 2.3 for our study. How-
ever, we excluded MaxNN, MinNN, and MeanNN because of high correlations between
these features and MedianNN, leaving seven features. The median is a measure of central
tendency less sensitive to extreme values or outliers than the mean.

We aimed to evaluate whether the overall HRV features could separate the EL group
from the TL group. Research shows a link between lower HRV and atypical brain func-
tioning in individuals with ASD. Therefore, our study hypothesized that differences in
autonomic regulation specific to ASD would result in HRV differences between groups.
To achieve this, we calculated two variables, CSI and CVI, associated with various psycho-
logical and physical health outcomes, including social behavior, cognition, and emotional
functioning. Our results showed that CSI values were higher and CVI values were lower in
EL infants compared to TL infants, indicating lower-paced breathing and a lower heart rate
in EL infants. Additionally, EL infants exhibited lower median, pNN20, HTI, and CVNN
values than TL infants. These findings suggest a potential relationship between ASD and
altered ANS functioning, particularly regarding parasympathetic regulation. These val-
ues relate to a previous study that found that children and adults with ASD have lower
HRV than TL individuals, indicating decreased parasympathetic activity and/or increased
sympathetic activity [60]. This autonomic dysregulation has been associated with various
behavioral and physiological problems in individuals with ASD, including social difficul-
ties, anxiety, and gastrointestinal issues. For reference, Table 4 shows the mean ± std of
HRV features for each group in the 90 s segment length. We used nested cross-validation.
We employed the 100-stratified shuffle-splitting technique on outer loop to ensure a more
reliable assessment of the finalized models and minimize any bias. We calculated the
average outcome across all 100 splits to report our findings. Despite the acknowledged
limitation of a relatively small dataset, cross-validation was advantageous as it provided a
more robust evaluation of the models. It repeatedly split the data into training and testing
subsets, allowing for a better performance assessment and reducing the potential for bias.
Furthermore, it aided in estimating the generalization performance of the models on unseen
data. We reported the results by taking a mean across all iterations of the 100 splits.

Our F1-score in KNN 0.689 ± 0.124 suggests that wearable, wireless, and easy-to-
use ECG devices hold potential for clinical applications in evaluating ANS activation
and screening for ASD likelihood. By comparison, multi-electrode EEG devices are more
sensitive to artifacts, making data collection with infants more complicated [61]. Other
neuroimaging techniques, like fMRI, are even less practical due to higher costs and lower
accessibility. While ECG signal disruption can occur, denoising and pre-processing methods
can help recover some portion of noisy recordings.

Comparing the accuracy of our system with previously reported results on a very
similar problem [47] (i.e., ASD diagnosis vs. ASD likelihood classification) suggests the
improved performance of our approach. KNN is particularly well-suited for capturing
complex decision boundaries thanks to its ability to consider the local structure of the data.
This makes it highly effective when decision boundaries exhibit nonlinear or irregular
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characteristics. When applied to HRV features, it can effectively capture nonlinear rela-
tionships and interactions among features. KNN determines the class label by conducting
a majority vote based on its neighboring data points. This inherent flexibility empowers
KNN to deliver strong performance even when the data deviates from specific statistical
assumptions. However, earlier studies [47] did not report important metrics like speci-
ficity, sensitivity, precision, or F1-score. This limits the extent to which we can make a fair
comparison. Moreover, reporting only accuracy is known to be biased in the case of an
unbalanced dataset (i.e., high accuracy can be obtained on an unbalanced dataset even if
the classifier performs very poorly for the smaller class). Since reporting only accuracy is
generally insufficient to assess the performance of a classifier properly, we also reported on
precision, sensitivity, specificity, and F1-score. Further, instead of reporting point estimates,
we reported these measures’ mean and standard deviation to allow future studies to test the
statistical significance of performance differences. The results reported by the authors [55]
show a higher ROC than what we found, which seems inconsistent with their reported
accuracy. Further, the authors report multi-class classification performance for several ML
algorithms using HRV for ASD, conduct problems, depression, and typical development.
To our knowledge, these are the only other studies reporting classification results using
ECG and HRV with ML for diagnostic applications in ASD. Moreover, these performances
are only partly comparable (e.g., in [55], school-aged children were studied, while we
reported on infants aged 3–6 months). The encouraging performances observed in our
study support the use of HRV as a potential biomarker for monitoring the effectiveness of
interventions for ASD and evaluating the physiological changes that occur in infants with
ASD over time.

Some limitations need to be considered when interpreting the results of this study.
Firstly, the study analyzed HRV parameters in a moderate sample size. Therefore, corrobo-
rating our conclusions in larger samples is essential to ensure the generalizability of the
findings. In addition, this study balanced infants with an elevated familial likelihood for
ASD and controls, resulting in a small proportion of infants with later ASD diagnoses. Thus,
it is worth emphasizing that we did not aim to classify ASD diagnosis but the likelihood of
ASD (or risk level). Our approach uses ECG and HRV to extract predictive information
on autonomic control and its modulation by shifts in attention, a process associated with
ASD by previous studies [41,48,49]. If not well regulated, this crucial function may have a
developmental impact on other dimensions, including social communication, interaction
with objects and people, and behavior patterns. In addition, a thorough assessment of the
child’s history and functioning is necessary for an accurate diagnosis.

5. Conclusions and Future Work

ECG recordings are non-invasive, easy-to-use signals that can be leveraged in biomarker
research and provide measures (e.g., heart rate variability) that index key neurological
systems, including the sympathetic and parasympathetic nervous systems. This study
found that we can use HRV features extracted from ECG to predict the familial likelihood
of ASD in 3–6-month-old infants. In this study, we only used 10 HRV features. In the
future, this study can be expanded along different axes including (1) exploring additional
HRV features, including time-domain, frequency-domain, and nonlinear HRV features;
and (2) replicating these findings in larger samples of infants and children, including those
with confirmed ASD diagnoses and those with non-ASD developmental disorders such as
language or attention deficit hyperactivity disorder.
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