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Abstract: The studies interpreting DCI, a complication of SAH, and identifying correlations are very
limited. This study aimed to investigate the effect of cilostazol on ACV and DCI after coil embolization
for ruptured aneurysms (n = 432). A multivariate analysis was performed and explainable artificial
intelligence approaches were used to analyze the contribution of cilostazol as a risk factor on the
development of ACV and DCI with respect to global and local interpretation. The cilonimo group
was significantly lower than the nimo group in ACV (13.5% vs. 29.3; p = 0.003) and DCI (7.9% vs.
20.7%; p = 0.006), respectively. In a multivariate logistic regression, the odds ratio for DCI for the
cilonimo group, female sex, and aneurysm size was 0.556 (95% confidence interval (CI), 0.351–0.879;
p = 0.012), 3.713 (95% CI, 1.683–8.191; p = 0.001), and 1.106 (95% CI, 1.008–1.214; p = 0.034). The risk
of a DCI occurrence was significantly increased with an aneurysm size greater than 10 mm (max
80%). The mean AUC of the XGBoost and logistic regression models was 0.94 ± 0.03 and 0.95 ± 0.04,
respectively. Cilostazol treatment combined with nimodipine could decrease the prevalence of ACV
(13.5%) and DCI (7.9%) in patients with aSAH.

Keywords: delayed cerebral infarction (DCI); angiographic cerebral vasospasm (ACV); explainable
artificial intelligence (XAI); cilostazol; nimodipine

1. Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) is a catastrophic disease with very high
mortality and morbidity, which accounts for 5% of all stroke cases and affects approximately
9 in 100,000 people annually worldwide [1]. The mortality rate for aSAH has been estimated
to be 30%. The outcomes of aSAH depend on several factors, including the subarachnoid
hemorrhage (SAH) volume, chronic disease of the patient, and incidence of complications.

Among aSAH complications, angiographic cerebral vasospasm (ACV), which com-
monly occurs 3–14 days after the onset of aSAH, is the leading cause of high morbidity
and mortality in patients with ruptured aneurysms [2]. If the ACV is very severe, ischemic
cerebral infarction may occur, which can significantly impact the patient’s prognosis. Al-
though there have been many studies conducted to identify ways to reduce ACV, the
fatality rate is still high (10–20%) [3,4]. ACV can be diagnosed based on neurological
deterioration, transcranial Doppler ultrasonography, and radiologic angiography. The
pathophysiology of ACV following aSAH is not yet fully understood. Because calcium
channel blockers (CCB) can inhibit the constriction of vascular smooth muscle cells, ni-
modipine medication has been recommended as the first-line drug to prevent ACV [5–8].
Despite adequate nimodipine medication, many patients develop severe ACV and delayed
cerebral infarction (DCI).

Cilostazol is an inhibitor of phosphodiesterase (PDE) III, which leads to an increase in
intracellular cyclic adenosine monophosphate (cAMP) content and acts as an antiplatelet
agent, peripheral vasodilatory agent, and neuroprotective agent [9]. The prevalence of
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ACV and DCI can be decreased in patients with aSAH when they are administered cilosta-
zol [10–12]. However, there is still a lack of consensus among the related studies.

Recently, data analysis using artificial intelligence (AI), including machine learning
(ML), from refined data to find hidden features has been reported to illustrate the related
risk factors [13,14]. However, there are few examples of data on complications such as ACV
and DCI in patients with aSAH. Additionally, while many existing AI and conventional
research cases focus on the accuracy of outcome prediction based on a specific predictive
model, there are still limitations in interpreting the correlation of factors contributing to the
result [15–17]. Lee et al. formulated a decision rule employing logistic regression, incorpo-
rating clinical and laboratory data, to forecast the occurrence of DCI in patients diagnosed
with aSAH. Nonetheless, the authors did not furnish specific details regarding individual
interactions or correlations concerning aSAH outcomes [16]. Tanioka et al. employed a
machine learning approach, specifically, the random forest model, to assess the significance
of matricellular proteins and clinical data with DCI. Nevertheless, a notable limitation of
their study was the inability to derive precise relationships with some numerical values for
the individual effects of prognostic factors on patients diagnosed with aSAH [17].

Therefore, this study aims to investigate the effect of cilostazol on complications
such as ACV or DCI using the explainable AI (XAI) modeling technique in patients with
aSAH. In this empirical investigation, we employ a combined approach, integrating the
conventional method and explainable artificial intelligence techniques, to comprehensively
examine the significance of prognostic factors influencing the incidence of DCI and the
prediction of their impact on individual patients.

2. Materials and Methods
2.1. Data Collection

This study was a retrospective single-center study of patients with aSAH. Electronic
database searches were used to identify consecutive patients with aSAH. A total of 432 con-
secutive patients with aSAH who presented to our hospital between January 2011 and
December 2020 were enrolled. The inclusion criteria included patients who (1) were more
than 18 years old, (2) had undergone a brain radiologic exam that confirmed the vasospasm
and infarction, (3) had undergone clipping or coiling, and (4) received cilostazol and ni-
modipine 24 h after admission for at least 14 days. Patients who died within 14 days after
admission or received other antiplatelet agents than cilostazol were excluded. Out of the
432 patients with aSAH, 39 patients died within 7 days, and 41 patients received other
antiplatelet agents. During admission, 6 patients received cilostazol for 5–7 days only
because they developed a headache after taking the cilostazol. Additionally, 7 patients
received short-term medication of nimodipine due to low blood pressure, and 18 patients
did not undergo any postoperative radiologic evaluation, such as computed tomography
angiography (CTA) or magnetic resonance angiography (MRA), during their admission.

Several basic demographic features and risk factors were assessed in the patients
with aSAH, including age at admission, sex, hypertension (HTN), diabetes mellitus (DM),
hyperlipidemia, smoking history, aneurysm size (longest diameter) and location, treatment
method for a ruptured aneurysm, Glasgow Coma Scale (GCS) score on admission, Hunt–
Hess grade and Fisher grade on admission, ACV, and DCI. HTN was defined based on a
prior diagnosis and the intake of antihypertensive drugs.

ACV was defined as moderate stenosis of more than 50% on CTA, MRA, or DSA. DCI
was defined as the development of a new infarction on CTA or diffusion MRA, a new focal
or global neurological deterioration, or a decrease of 2 points on the GCS score that was not
explained by other medical conditions [18]. DCI was evaluated 2–14 days after admission
using the DCI definition [19].

To prevent ACV, all the patients with aSAH received routine maintenance treatment
with continuous intravenous nimodipine at a dose of 2 mg/h for at least 4 days. Then, the
patients took oral nimodipine (360 mg) six times a day for more than 2 weeks.
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This study was approved by the Institutional Review Board of Ilsan Paik Hospital,
including the review and publishing of information obtained from patient records (IRB no.
2021-10-017-001).

2.2. Statistical Analysis

The patients were divided into two groups based on cilostazol medication: the
nimodipine-only group (nimo group) and the cilostazol + nimodipine group (cilonimo
group). We studied the incidence of ACV and DCI in the cilonimo group compared to the
nimo group, including demographic features and radiological findings.

The chi-squared test or Fisher’s exact test was used to compare categorical variables,
whereas the t-test was used to compare continuous variables. Multivariable logistic regres-
sion with stepwise selection was used to identify independent clinical and radiologic risk
factors associated with the development of ACV or DCI. A p-value < 0.05 was considered
statistically significant. All the analyses were performed using the IBM SPSS software 21.0
version (IBM, Armonk, NY, USA).

2.3. Hybrid Approach for Feature Analysis and DCI Effect Prediction

To analyze the importance of DCI prediction and the contributing dominant risk
factors, we adopted an explainable predictive modeling method and statistical analysis.
XAI can be used to visually predict how much factors contribute to the development of DCI
in individual patients with SHAP and LIME. However, the above statistical techniques can
be used to intuitively confirm the importance of the prognostic factors and the statistical
significance of the cilostazol and nimodipine use groups.

2.3.1. XAI

The predictive models were built using XGBoost and logistic regression. After apply-
ing the AI model, interpretation power was imposed using a model explainer to analyze the
contribution of factors to the prediction results [20]. An added procedure for interpreting
the prediction results was performed using Shapley additive explanations (SHAP) and local
interpretable model-agnostic explanation (LIME) methods, as shown in Figure 1. Global
feature analysis of the factors affecting DCI was performed using the XGBoost classifier
with SHAP explainer [21,22]. Additionally, we predicted the probability of DCI onset for
each patient and performed local feature analysis of the risk factors caused using logistic
regression with the LIME explainer. In summary, SHAP was utilized to derive the feature
importance for the prognostic factors such as age, aneurysm size, etc., while LIME was
employed to make predictions regarding individual prognoses for DCI.

SHAP

SHAP was devised by L. Shapley and is a value obtained by probabilistically calcu-
lating how the participants in a game contributed to the game result [23]. That is, the
SHAP value, Φi (N), for the risk factors for DCI can be used to calculate the ratio of the
contribution of a risk factor based on the weight of the contribution of all predictors, as
shown in Equation (1):

Φi(N) =
1
|N|! ∑R

(
v
(

PR
i ∪ {i}

)
− v

(
PR

i

))
(1)

where N is the number of players (risk factors), PR
i is the set of risk factors, v

(
PR

i
)

is the
contribution of a set of risk factors, and v

(
PR

i ∪ {i}
)

is the contribution of a set of risk
factors in order and with factor i.

In detail, the formula, Equation (1), for SHAP involves computing the difference in
predictions with and without each feature in all possible feature combinations. The SHAP
value for a particular feature is determined by taking the average variation in predictions
when that feature is present or absent in all conceivable combinations with other features.
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LIME

The explainable model, for instance, x, is the model, g, that minimizes loss, L. It mea-
sures how close the prediction and explanation of the original ML model, f, are. However,
the complexity, Ω(g), of the model should be kept low. In this case, G is a set of possible

explanations, and this is defined as explanation
^
g [24]:

^
g = argmin

g∈G
L{ f , g, v(x)}+ Ω(g) (2)

The goal is to discover an interpretable model g that minimizes the loss function
while adhering to the regularization constraints. LIME accomplishes this by addressing an
optimization problem that strikes a balance between preserving robustness to the original
model and ensuring the interpretability of the explanations.

In LIME, the importance of each feature in the interpretable model is determined by
assessing how much it contributes to the predictions for an individual data instance. LIME
is used to explain the prediction made by the AI model for the selected instance by assigning
feature importance values. These explanations are then visualized by highlighting the
important features, especially for prognostic factors in DCI prediction.

2.3.2. K-Fold Cross-Validation and Programming Environment

K-fold cross-validation is a widely used method in machine learning to evaluate how
well a model performs and generalizes. It works by dividing the dataset into k subsets, or
folds, and then running several rounds of training and testing using different combinations
of these folds. There are several reasons why k-fold cross-validation is advantageous. For
reliable performance assessment, unlike relying on a single train-test split, k-fold cross-
validation offers a more dependable estimate of a model’s performance. It addresses the
influence of data randomness or bias that can occur with a single split. By averaging
the outcomes from multiple iterations, k-fold cross-validation delivers a more robust and
representative evaluation of the model’s performance [25–27].

In summary, k-fold cross-validation plays a crucial role in assessing and comparing
models, optimizing hyperparameters, and obtaining trustworthy performance estimates.
It facilitates the development of robust and generalizable machine learning models by
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utilizing the available data effectively and providing deeper insights into the model’s
performance characteristics. In this study, we used 5-fold cross-validation.

The area under the curve (AUC), accuracy, sensitivity, and specificity were calculated
as the performance metrics (Figure 1).

Python 3.8.3, scikit-learn 0.23.1 for ML, SHAP 0.36.0, and LIME 0.2.0.1 modules were
used in the programming environment.

3. Results
3.1. Statistical Analysis

A total of 321 consecutive patients with aSAH satisfied the study’s inclusion and
exclusion criteria.

Table 1 shows the demographic features and risk factors for ACV and DCI according
to the cilostazol use of the patients with aSAH who were included in the final analysis. A
total of 89 (27.7%) patients received cilostazol combined with nimodipine (the cilonimo
group), and 232 (72.3%) received nimodipine only (the nimo group).

Table 1. Patients’ demographics and dataset characteristics for the predictive modeling.

Characteristics Nimodipine Only
(n = 232)

Cilostazol and
Nimodipine

(n = 89)
p-Value Data Type Value

Age, y, mean (SD) 55.47 (12.756) 55.37 (14.150) 0.952 Float 21–94

Sex, female, n (%) 147 (63.4) 51 (57.3) 0.318 Binary 1: male; 2: female

GCS on admission, mean (SD) 12.81 (3.248) 13.25 (3.185) 0.279 Integer 1–15

Aneurysm size, mm, mean (SD) 5.63 (3.016) 6.55 (4.123) 0.029 Float 0.6–27

Hunt–Hess grade N/A N/A

0.142 Integer 1–5

1 12 1
2 115 57
3 67 20
4 33 9
5 5 2

Fisher grade N/A N/A

0.068 Integer 1–4
1 14 6
2 18 12
3 103 26
4 97 45

Location N/A N/A

0.007 Integer 1: ACA; 2: MCA; 3:
ICA; 4: VA or BA

ACA 86 40
MCA 60 10
ICA 74 28

VA or BA 12 11

HTN, n (%) 95 (40.9) 35 (39.3) 0.791 Binary 0 or 1

DM, n (%) 25 (10.8) 13 (14.6) 0.342 Binary 0 or 1

Hyperlipidemia, n (%) 17 (7.3) 12 (13.5) 0.085 Binary 0 or 1

Smoking, n (%) 76 (32.8) 37 (41.6) 0.139 Binary 0 or 1

Clip/coil, n (%) 169 (72.8)/63 (27.2) 16 (18.0)/73 (82.0) 0 Binary 0 or 1

ACV 68 (29.3) 12 (13.5) 0.003 Binary 0 or 1

DCI 48 (20.7) 7 (7.9) 0.006 Binary 0 or 1

Note: GCS: Glasgow coma scale; ACA: anterior cerebral artery; MCA: middle cerebral artery; ICA: internal carotid
artery; VA: vertebral artery; BA: basilar artery; HTN: hypertension; DM: diabetes mellitus; ACV: angiographic
cerebral vasospasm; DCI: delayed cerebral infarction; N/A: not applicable.
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The mean size of aneurysms in the cilonimo group was significantly larger than that
in the nimo group (6.55 mm versus 5.63 mm; p = 0.029). Regarding the treatment method,
the cilonimo group included more coiling cases (82%), and the nimo group included more
clipping cases (72.8%). ACV and DCI were less frequent in the cilonimo group than in the
nimo group (ACV: 13.5% vs. 29.3%; p = 0.003; DCI: 7.9% vs. 20.7%; p = 0.006).

There were no statistically significant differences in age, sex, GCS, Hunt–Hess grade
and Fisher grade, and vascular risk factors between the two groups on admission.

In the multivariate logistic regression analysis of risk factors, cilostazol combined with
nimodipine was independently associated with lowering DCI development. Additionally,
female sex, age, and aneurysm size showed statistical significance (Table 2).

Table 2. Multivariate analysis of risk factors for DCI development.

Variables OR 95% CI p-Value

Cilostazol with nimodipine 0.556 0.351–0.879 0.012

Female sex 3.713 1.683–8.191 0.001

Age 0.972 0.946–0.999 0.042

Aneurysm size 1.106 1.008–1.214 0.034

Treatment method 1.1 0.483–2.502 0.821

3.2. Global Feature Analysis of the Risk Factors Related to DCI Using XAI

Feature importance was analyzed for the importance of the risk factors that could
cause DCI in the patients (n = 321). Through the analysis of the retrospective study results,
17.13% of patients experienced DCI, and 82.87% of patients did not experience DCI. The
result of analyzing the factors contributing to the DCI is shown in Figure 2. The results
showed that the female sex, larger aneurysm size, underlying diseases such as HTN and
DM, presence of intracerebral hemorrhage (ICH) and dyslipidemia, and a higher Hunt–
Hess grade had a positive impact on DCI (red bars). Conversely, the higher the score of
the GCS, the lower the age, within the cilonimo group, the absence of intraventricular
hemorrhage (IVH), and the lower the Fisher grade contribute to a lower probability of DCI
events (blue bars).

The prediction analysis results of the DCI-occurring probability for increased aneurysm
size are shown in Figure 3. In terms of average age (55.47 years) and aneurysm size (0.6
to 27 mm), it was shown that the incidence of DCI increased up to an 80% chance with
an aneurysm size greater than 10 mm and poor Fisher grade (3–4). In terms of prediction
instances, the high-risk DCI instances were predicted for bad Fisher grades in most of
the patients in the nimo group (n = 200, 62.3%). However, medium-risk DCI events were
predicted in the cilonimo group (n = 71, 22.1%). Furthermore, low-risk DCI was predicted
in all the groups (n = 50, 15.6%).

3.3. Local Feature Analysis of the Risk Factors Related to DCI

Figure 4 shows the DCI and no-DCI prediction results for specific patient cases of
the cilonimo group (ground truth was no-DCI) and nimo group. Figure 4(A.1) shows the
DCI prediction results of using nimodipine combined with cilostazol. Figure 4(A.2) shows
the risk factor contributing to the characteristic value. Figure 4(A.3) shows the analysis
of the local explanatory graph for the patient. Conversely, Figure 4(B.1) shows the DCI
prediction results using nimodipine only. Figure 4(B.2) shows the risk factors contributing
to the characteristic value. Figure 4(B.3) shows the local explanatory graph for the patient.
These two cases showed a significant difference between the antiplatelet groups. Patient A
had no underlying disease (HTN, DM, or smoking history) and had a good Hunt–Hess
grade, Fisher grade, and GCS. Because of these factors, the probability of no DCI event
occurring was predicted to be 99% for the case of using both nimodipine and cilostazol
together. Conversely, patient B had underlying diseases (HTN and DM) and had poor IVH,
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GCS, Hunt–Hess grade, and Fisher grade. Based on this, the probability of the occurrence
of a DCI event was predicted to be 87% for the case of using nimodipine only.
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Figure 4. DCI and no-DCI prediction results for specific patient cases of using nimodipine combined
with cilostazol (ground truth was no DCI) or nimodipine only. (A.1) DCI prediction result for
both nimodipine and cilostazol used together. (A.2) Risk factors contributing to the feature value.
(A.3) Local explanation graph for the patient. (B.1) DCI prediction result for nimodipine used only.
(B.2) Contributing risk factors in the feature value. (B.3) Local explanation graph for the patient.
Angio_Vaso: angiographic vasospasm, Tx_method: treatment method, Aneurysm_Loc: aneurysm
location, HH_Excel: good Hunt–Hess grade (1 and 2) or bad grade (3, 4, and 5), and Aneurysm_Sz:
aneurysm size, same as others in Table 1.

3.4. Performance Evaluation Using ML Modeling

The performance of the predictive modeling system was evaluated (Figure 5). The
receiver operating characteristics of the XGBoost classifier and logistic regression are shown
in Figure 5A,B, respectively. The mean area under the curve (AUC) of the XGBoost classifier
and logistic regression models was calculated (0.94 ± 0.03 and 0.95 ± 0.04, respectively).
The accuracy, sensitivity, and specificity of the XGBoost and logistic regression were calcu-
lated in Table 3.
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Table 3. Performance metric of the predictive models.

Models Accuracy Sensitivity Specificity

XGBoost 0.91 0.70 0.95
Logistic regression 0.92 0.80 0.95

4. Discussion
4.1. Conventional Analysis of Cilostazol Effect on DCI in Patients with aSAH

In the literature, there are studies that analyzed the data obtained to confirm the
factors predicting a DCI [28–31]. A young age, aneurysm size, a large volume of SAH,
poor neurologic grade on admission, smoking, HTN, and female gender were known as
risk factors for vasospasm following aSAH [31,32]. Although there are many studies on
patients and disease factors for the occurrence of DCI, DCI still has the most significant
impact on the prognosis of patients with aSAH.

Several studies have been published to clarify the pathogenesis of DCI due to ACV.
However, no definite cause has been identified. Because of multifactorial reasons, there
has not been a single prevention or treatment medication to protect against ACV and DCI.
Nimodipine medication for DCI has been used for preventing DCI in many neurosurgi-
cal centers. CCBs show strong evidence of preventing DCI in patients with aSAH [33].
Nimodipine is the only medication approved by the U.S. Food and Drug Administration
for ACV [10]. Potential mechanisms of the benefits of nimodipine are a neuroprotective
cellular effect and the ability to inhibit platelet function by inhibiting thromboxane B2
release. However, the cerebrovascular vasodilator effect demonstrated in animal studies
has not been demonstrated in a human study [34].

Cilostazol is another option drug studied to prevent ACV [35]. Experimental and small
clinical studies have shown good prognostic results in reducing ACV and DCI [36–38]. A
recent meta-analysis showed that, with the use of cilostazol, the prevalence of symptomatic
vasospasm decreased with an odds ratio of 0.35 (95% confidence interval (CI), 0.21–0.59;
p < 0.0001) [10]. Another meta-analysis by Saber showed that cilostazol was associated
with a decreased risk of symptomatic vasospasm (0.31, 95% CI, 0.20–0.48; p < 0.001) and
DCI (0.32, 95% CI, 0.20–0.52; p < 0.001) [39]. Recently, two meta-analyses reported that the
cilostazol group significantly reduced DCI incidence. In our study, the cilostazol group
showed a marked decrease in DCI, but the odds ratio was about 0.556. We thought that
this difference appeared to be due to the control group. Most of the included and analyzed
papers in the meta-analysis did not use nimodipine in the control groups at all.

Although many studies have reported that nimodipine and cilostazol can reduce
DCI in patients with SAH, there are few reports on whether the combined treatment of
both drugs has a better effect in preventing DCI [11,35]. Our data showed that the use of
cilostazol combined with nimodipine decreases the incidence of DCI and ACV compared
to nimodipine alone. Our study provides implications for future studies that the treatment
using a multidrug with two or more drugs may improve the clinical outcome and prognosis
more than treatment with no or one drug in patients with aSAH.

4.2. Explainable Modeling in Patients with aSAH

There have been several studies on the early prediction of delayed cerebral ischemia
in patients with SAH using ML. Tanioka et al. calculated the 95.1% predictive accuracy of
delayed cerebral ischemia using a random forest model using early stage clinical data from
95 patients with SAH [17]. Periostin, osteopontin, galectin-3, and the aneurysm location
were analyzed in a prognostic factor analysis of delayed cerebral ischemia. However, the
importance of each feature has not been confirmed in a delayed cerebral ischemia model that
combines the matricellular protein and clinical variables concerning how the importance
of each feature affects an individual patient. In other words, it has the limitation of not
analyzing explainable predictive outcomes using the SHAP and LIME models. Furthermore,
Savarraj et al. obtained an accuracy of a maximum of 0.89 ± 0.03 (95% CI, 0.81–0.94) for



Bioengineering 2023, 10, 797 10 of 14

399 patients with DCI using a support vector machine and random forest model [14]. To
improve SAH management, the 3-month outcome for the patient was predicted. They
focused only on identifying the potential of using machine learning algorithms to improve
the prediction of delayed cerebral ischemia and functional outcome after a subarachnoid
hemorrhage. That is, individual patient-specific contributions of clinical prognostic factors
contributing to DCI were not analyzed using global and local interpretations.

Meanwhile, Ramos et al. used a clinical and baseline CT image dataset from 317 pa-
tients with aSAH. To predict delayed cerebral ischemia, they used a logistic regression
model to evaluate the prognostic values of predictors [40]. At this time, the AUC for the
logistic regression model was 0.63 (95% CI, 0.62–0.63). It was reported that the ML algo-
rithm significantly improved delayed cerebral ischemia predictions in patients with aSAH.
Additionally, only local analyses of patients developing delayed cerebral ischemia using
LIME were performed, except for global interpretation concerning the prognostic features.

With our unique approach, the contributing risk factors, including sex, age, underlying
disease, hemorrhage after aSAH, and a common grading system (Hunt–Hess grade, Fisher
grade, and Glasgow coma), were analyzed and interpreted to predict DCI events using ML
models with SHAP and LIME for individual cases (instances). The significant distinction
is between global and local feature importance. The global method measures take all
predictions into account, whereas the local method measures focus on the contribution of
features for a specific prediction with respect to patient cases. SHAP takes the absolute value
of the average of the local interpretation results, which is called global interpretation [41]
(Figure 2). That is, it can be easily used to statistically interpret the overall trend of the data
for the prognostic factors contributing to the dependent variable. However, it is difficult
to interpret the cases of certain patients. The LIME explainer, however, is a method that
calculates the contribution of the independent variable that contributes to the dependent
variable in each instance [42] (Figure 4). Therefore, specific patient cases can be inferred in
detail [24]. It is possible to provide an integrated interpretation of all the cases and a more
detailed interpretation of individual patient cases at the same time by using two explainers
for a consistent interpretation of DCI prediction results.

4.3. In-Depth Understanding of Global and Local Interpretations of Risk Factors

In Figures 2 and 4, SHAP and LIME explainers were used to analyze global and
local feature importance, respectively. In short, it is optimal to sequentially represent the
outstanding values of risk factors with the generalizations of risk factors to all patients.
Obviously, this is a determination method for the contribution of average impact for all
patients, and the results may not reflect individual patients (Figure 2). Thus, to solve these
limitations, an alternative method was used for the locally interpretable model-agnostic
explanatory LIME analysis method (Figure 4). LIME has a local interpretation function for
individual patients, allowing the patient-specific risk factor contribution. This means that
the prediction probability of our AI models has to provide more accurate results in each
case than the average prediction accuracy.

Meanwhile, using the k-fold cross-validation method involves repeatability issues.
The use of the training model under the same conditions may return different results across
the five times of five-split training sets. However, further studies to improve the stability
of our predictive models have not been conducted. Furthermore, complementary indices
such as a variable stability index and a coefficient stability index can be used to evaluate
improvement stability [43].

4.4. Prediction Analysis of DCI Probability by Aneurysm Size

Another approach of this study was to analyze the prediction of the DCI occurrence
probability for enlarged aneurysms (Figure 3). The GCS, Hunt–Hess, and Fisher grades are
factors for diagnosing a patient’s current neurological status and symptoms, and, together
with age and the size of a cerebral aneurysm, are important factors to consider in the
development of DCI (Table 1).
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Regarding the average age (55.47 years) and size of the aneurysm (ranging from 0.6
to 27 mm), the findings demonstrated that the likelihood of DCI occurrence increased
significantly, reaching up to an 80% chance in cases where the aneurysm size exceeded
10 mm, and the Fisher grade was poor (graded as 3–4). In terms of predictive analysis,
the study identified a high-risk category for DCI in the majority of patients within the
nimo group (n = 200, 62.3%), specifically associated with a poor Fisher grade. Conversely,
the cilonimo group (n = 71, 22.1%) exhibited medium-risk predictions for DCI events.
Additionally, all the groups included cases where low-risk DCI predictions were made
(n = 50, 15.6%).

4.5. Hyperparameter Tuning within XAI and the Limitation of this Study

Hyperparameter tuning within XAI involves optimizing the hyperparameters of a
machine learning model specifically used for explainability purposes [44]. Hyperparam-
eters, unlike trainable parameters, are predetermined by the user before model training
commences. In XAI, the process of hyperparameter tuning plays a crucial role in ensuring
that the chosen explainability techniques or algorithms are suitably configured for the
given task and dataset [25,26,45,46]. The effectiveness and interpretability of the model’s
explanations heavily rely on these hyperparameters. Hyperparameter tuning typically
entails a systematic exploration of various combinations of hyperparameter values, with the
aim of finding the optimal configuration that maximizes the desired outcome. Techniques
such as grid search, random search, or more advanced optimization algorithms such as
Bayesian optimization can be employed for this purpose. For instance, in a model-agnostic
XAI method such as LIME used in this study, hyperparameters such as the number of
selected features or the kernel width significantly impact the quality and faithfulness of the
generated explanations. Fine-tuning these hyperparameters enables researchers or prac-
titioners to strike a balance between the explanations’ interpretability and their accuracy
in representing the underlying model’s behavior. Wu et al. studied the optimization of
gcForest (multi-grained cascade forest), one of the decision tree ensemble methods, and
published the results [46]. Before optimization, the prediction accuracy was 85.68%, but,
after optimization, the prediction accuracy increased to 87.05%.

K-fold cross-validation is beneficial when it comes to comparing various models or
fine-tuning hyperparameters. It enables the assessment of different models or parameter
configurations across multiple validation sets. This capability leads to improved decision
making in terms of model selection and hyperparameter tuning, as it is based on more
comprehensive and consistent performance evaluations [25,26].

In future research, we will be able to enhance the clarity, relevance, and reliability
of the resulting explanations. Thus, the overall interpretability and trustworthiness of AI
systems can be improved, and the lack of datasets can be supplemented through multicenter
clinical trials.

5. Conclusions

Cilostazol treatment combined with nimodipine could decrease the prevalence of ACV
and DCI in patients with aSAH, according to both XAI and statistical analysis.

First, the feature importance analysis using SHAP showed that sex, a larger aneurysm
size, underlying diseases such as HTN and DM, the presence of ICH and dyslipidemia,
and a higher Hunt–Hess grade had a significant impact on DCI. In addition, individual
predictions for patient outcomes using LIME indicated that the probability of a DCI event
occurring was predicted to be 87% for the case of a patient who had an underlying disease,
IVH, and a poor GCS. Second, the mean size of aneurysms in the cilonimo group was
significantly larger than that in the nimo group (6.55 mm versus 5.63 mm; p = 0.029). Also,
the cilonimo group included more coiling cases (82%), and the nimo group included more
clipping cases (72.8%). ACV and DCI were less frequent in the cilonimo group than in
the nimo group (ACV: 13.5% vs. 29.3%; p = 0.003; DCI: 7.9% vs. 20.7%; p = 0.006) in the
statistical analysis.
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There were no statistically significant differences in age, sex, GCS, Hunt–Hess grade
and Fisher grade, and vascular risk factors between the two groups on admission.

Although there is a possibility of increasing the prediction accuracy through an op-
timization process such as additional hyperparameter tuning, we tried to demonstrate
explainable predictive modeling by visually analyzing the importance of prognostic factors
and the contribution of individual patients to the occurrence of DCI. Further studies involv-
ing multicenter trials and improving the stability of our prediction models using global
and local interpretations are needed to strengthen our results.
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