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In recent years, the integration of Machine Learning (ML) techniques in the field of
healthcare and public health has emerged as a powerful tool for improving decision-making
processes. The ability of ML algorithms to analyze vast amounts of data, identify patterns,
and generate actionable insights has opened new avenues for enhancing various aspects
of healthcare delivery and public health initiatives. This Special Issue (SI) explores the
applications of ML in health and public health decision support systems, highlighting their
potential benefits and challenges, mainly in the following areas:

1. Disease Diagnosis and Prognosis—In this area, ML algorithms can analyze patient
data, including medical records, lab results, and imaging scans, to aid in the diagnosis
and prognosis of various diseases. By training on large datasets, these algorithms
can learn to recognize patterns and make accurate predictions, helping healthcare
professionals make informed decisions about treatment plans and interventions. ML
models have shown promising results in detecting conditions such as cancer [1],
cardiovascular diseases [2], neurological diseases [3], and infectious diseases [4],
enabling early detection and timely interventions. In this sub-area of study, the SI
contributes with the following studies:

• Mirniaharikandehei et al. [5] explore the feasibility of using a modified deep
learning (DL) method for automatically segmenting disease-infected regions and
predicting disease severity in computed tomography (CT) images. A dataset from
20 COVID-19 patients has been used, incorporating manually annotated lung and
infection masks. An ensemble DL model was trained, combining five customized
residual attention U-Net models for disease-infected region segmentation and
a Feature Pyramid Network model for disease severity stage prediction. The
analysis reveals >90% agreement in disease severity classification between the
DL model and radiologists for 45 testing cases.

• Chen et al. [6] explore a noninvasive, cost-effective tool to assess the risk of sub-
clinical renal damage (SRD) in asymptomatic individuals. Using ML algorithms,
a risk assessment score model was established based on systolic blood pressure,
diastolic blood pressure, and body mass index. The model demonstrated excel-
lent classification ability, with an AUC value of 0.778 for SRD estimation and
0.729 for 4-year SRD risk prediction.

• Zhang et al. [7] investigate the effects of atherosclerotic intracranial internal
carotid artery stenosis (IICAS) on extracranial internal carotid artery (ICA) flow
velocity waveforms to identify sensitive hemodynamic indices for IICAS di-
agnoses. Hemodynamic indices, including peak systolic velocity (PSV), end-
diastolic velocity (EDV), resistive index (RI), and the first harmonic ratio (FHR),
were analyzed in simulations with and without IICAS. In a case-control study
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with patients having mild-to-moderate IICAS, statistical analyses revealed that
the average PSV, EDV, and RI were lower in the stenosis group compared to the
control group, but without significant differences (p > 0.05), except for the PSV of
the right ICA (p = 0.011). However, the FHR showed a significantly higher value
in the stenosis group compared to the control group (p < 0.001), indicating its
potential as a superior diagnostic index for early IICAS detection using carotid
Doppler ultrasound methods.

• Barnawi et al.’s study [8] proposed a simple and efficient approach for recog-
nizing normal and abnormal phonocardiogram (PCG) signals using Physionet
data. The method utilizes data selection techniques like kernel density estimation
(KDE) for signal duration extraction, signal-to-noise ratio (SNR), and Gaussian
mixture model (GMM) clustering. The authors enhance the performance of 17
pre-trained Keras CNN models through these techniques. The results demon-
strate excellent classification performance, achieving an overall accuracy of 97%,
sensitivity of 94.6%, precision of 94.4%, and specificity of 94.6% by fine-tuning
the VGG19 model after selecting the appropriate signal duration using KDE.
This approach holds promise for developing accessible and user-friendly Cardio-
vascular disease recognition solutions, encouraging regular heart screenings for
early detection.

• Ribeiro et al. [9] published a literature review paper about the exploration of
the infection mechanism, patient symptoms, and laboratory diagnosis regarding
COVID-19. They also assess various technologies and computerized models,
such as ECG, voice, and X-ray techniques, used for the accurate detection of
COVID-19. The state-of-art literature reported high accuracy rates ranging from
85.70% to 100% for the diagnostic models. Based on these findings, they con-
cluded that the existing models for COVID-19 detection have shown promising
results, but there is still potential for improvement considering the diverse symp-
tomatology and evolving understanding of the disease in individuals.

• Battineni et al. [10] published a review paper focused on the use of ML models
in the diagnosis of adult-onset dementia disorders. The authors explored the
combination of ML algorithms with conventional magnetic resonance imaging
(MRI) to enhance diagnostic accuracy. The findings indicate that ML techniques
combined with MRI improve the diagnostic accuracy, with reported rates ranging
from 73.3% to 99%. Alzheimer’s disease and vascular dementia were the most
common adult-onset dementia disorders identified. The study concludes that
ML should be integrated with conventional MRI techniques to achieve precise
and early diagnosis of dementia disorders in older adults.

2. Personalized Medicine—ML techniques facilitate personalized medicine by lever-
aging patient-specific data to develop tailored treatment strategies. By considering
individual characteristics, such as genetics, demographics, lifestyle, and medical
history, algorithms can assist in predicting treatment outcomes and recommending
optimal interventions [11]. This approach enables healthcare providers to deliver
targeted therapies, optimize drug prescriptions, and minimize adverse effects, leading
to improved patient outcomes and enhanced healthcare efficiency. This sub-area of
study benefits from the contributions of the SI through the following research studies:

• Kim et al. [12] used transfer transformers to identify drug–drug and chemical–
protein interactions. They utilized the DDI Extraction-2013 Shared Task and
BioCreative ChemProt datasets for extracting drug-related interactions. Two
models were proposed: BERTGAT, incorporating a graph attention network
for sentence structure, and T5slim_dec, adapting T5’s generation task for rela-
tion classification. T5slim_dec achieved remarkable performance with 91.15%
accuracy on the DDI dataset and 94.29% accuracy for the CPR class group in
ChemProt. However, BERTGAT did not significantly improve relation extrac-
tion. This highlights the language understanding capability of transformer-based
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approaches, which can comprehend language effectively without relying on
additional structural information.

• The study by Khadem et al. [13] addresses the challenge of accurate blood glucose
prediction for diabetes management. They highlight the difficulty in determining
the appropriate look-back window length, which affects the availability and
relevance of information for decision-making. To overcome this challenge, the
researchers propose an interconnected lag fusion framework using nested meta-
learning analysis. They apply this framework to Ohio type 1 diabetes datasets
and rigorously evaluate the models. The study demonstrates the effectiveness of
their proposed method in personalized blood glucose level forecasting, providing
valuable insights for informed decisions on insulin dosing, diet, and physical
activity in diabetes management.

3. Public Health Surveillance and Outbreak Detection–ML plays a crucial role in public
health surveillance systems by analyzing diverse data sources, including social media
feeds, internet searches, electronic health records, environmental and bacteriological
data [14]. By monitoring and detecting patterns, ML algorithms can identify potential
disease outbreaks, track the spread of infectious diseases, and forecast disease trends.
These insights enable public health authorities to allocate resources effectively, im-
plement timely interventions, and prevent or mitigate the impact of epidemics. The
SI makes a significant contribution to this particular sub-area of study through the
inclusion of:

• Rodrigues et al. [15] introduced a hybrid method combining pre-trained CNN
keras models and classical ML models to visually discriminate different bacterial
colonies based on their morphology on culture media. The system achieved high
accuracy rates: 92% for Pseudomonas aeruginosa vs. Staphylococcus aureus,
91% for Escherichia coli vs. Staphylococcus aureus, and 84% for Escherichia coli
vs. Pseudomonas aeruginosa.

4. Health Behavior Analysis and Intervention—ML algorithms can analyze large-scale
health behavior data to identify risk factors, understand population health trends,
and develop targeted interventions. By mining data from wearable devices, mobile
apps, and social media platforms, ML models can provide insights into individu-
als’ behaviors, habits, and health outcomes [16]. This information can support the
design of personalized interventions, health promotion campaigns, and policy rec-
ommendations, empowering individuals to make healthier choices and promoting
population-level well-being. The SI actively contributes to this sub-area of study by
including the following manuscripts:

• Promsri et al. [17] studied the relationship between walking stability and fall
risk markers in older adults. Three-dimensional lower-limb kinematic data from
43 healthy individuals were analyzed using principal component analysis (PCA)
to extract principal movements (PMs) representing different components of walk-
ing. The largest Lyapunov exponent (LyE) was applied to the PMs as a measure
of stability. Fall risk was assessed using the Short Physical Performance Battery
(SPPB) and the Gait Subscale of Performance-Oriented Mobility Assessment
(POMA-G). Results indicated a negative correlation (p ≤ 0.009) between SPPB
and POMA-G scores and LyE in specific PMs, suggesting that increased walking
instability is associated with higher fall risk.

• Gupta et al. study [18] aimed to detect and address stress, which is a significant
factor affecting mental health and overall well-being. In this study, a novel ap-
proach utilizing audio-visual data processing is proposed to detect human mental
stress. By employing the cascaded RNN-LSTM strategy, the study achieved a
high accuracy of 91% in classifying emotions and distinguishing between stressed
and unstressed states using the RAVDESS dataset.
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5. Healthcare Resource Optimization—ML can optimize healthcare resource allocation
by predicting patient demand, improving scheduling and resource utilization, and
optimizing healthcare facility operations. By analyzing historical data and considering
factors such as patient demographics, disease prevalence, and resource availability,
ML models can assist in optimizing bed occupancy, staff allocation, and healthcare
supply chains [19]. This approach enhances operational efficiency, reduces costs, and
improves patient access to timely and appropriate care. Within this sub-area of study,
the SI offers the following valuable contribution:

• da Silva et al. [20] proposed a methodology to analyze the performance of mea-
surement systems during the design phase using the Monte Carlo method. The
methodology was applied to a simulated ECG, estimating a measurement uncer-
tainty of 3.54% with 95% confidence. The analysis revealed that the preamplifier
module had a greater impact on the measurement results compared to the final
stage module, suggesting that interventions in the preamplifier module would
yield more significant improvements.

To conclude, ML has revolutionized health and public health decision support sys-
tems by enabling data-driven insights and informed decision-making. By harnessing the
power of ML algorithms, healthcare professionals and public health authorities can im-
prove disease diagnosis and prognosis, personalize treatment strategies, detect outbreaks,
analyze health behaviors, and optimize resource allocation. As technology continues to
advance, the integration of ML in health and public health applications will play an in-
creasingly significant role in transforming healthcare delivery and improving population
health outcomes.
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