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Abstract: Our objective is to develop a model for the prediction of minimum fetal blood pressure
(FBP) during fetal heart rate (FHR) decelerations. Experimental data from umbilical occlusions in
near-term fetal sheep (2698 occlusions from 57 near-term lambs) were used to train a convolutional
neural network. This model was then used to estimate FBP for decelerations extracted from the final
90 min of 53,445 human FHR signals collected using cardiotocography. Minimum sheep FBP was
predicted with a mean absolute error of 6.7 mmHg (25th, 50th, 75th percentiles of 2.3, 5.2, 9.7 mmHg),
mean absolute percentage errors of 17.3% (5.5%, 12.5%, 23.9%) and a coefficient of determination
R2 = 0.36. While the model was unable to clearly predict severe compromise at birth in humans,
there is positive evidence that such a model could predict human FBP with further development.
The neural network is capable of predicting FBP for many of the sheep decelerations accurately but
performed far from satisfactory at identifying FHR segments that correspond to the highest or lowest
minimum FBP. These results indicate that with further work and a larger, more variable training
dataset, the model could achieve higher accuracy.

Keywords: umbilical occlusions; cardiotocography; blood pressure; electronic fetal monitoring

1. Introduction

There is currently no practical and non-invasive method of continuously measuring
fetal blood pressure (FBP) during labour. Non-invasive methods of detecting FBP using
Doppler ultrasound- and computational fluid dynamic-based techniques have been de-
veloped (see [1–4] for example), but their practicality is limited during labour due to the
position of the fetus and fetal/maternal movements. Any such device will face considerable
challenges in reading the blood flow through an artery within a moving fetus undergoing
labour. The key research gap is that fetal blood pressure and the onset of fetal hypotension
cannot be routinely measured in human labour.

The fetal heart rate (FHR) is a far less challenging biomarker to measure and is
routinely recorded using cardiotocography (CTG). Pre-clinical studies in fetal sheep have
utilised repetitive labor-like umbilical cord occlusions, causing severe fetal hypotension
and compromise, but unfortunately showed that FHR patterns were poor indicators of
fetal hypotension [5]. Nonetheless, Bennet et al. [6] showed that fetal compromise was
associated with subtle changes, including an increase in the slope and magnitude of the
initial deceleration of the FHR with fetal hypotension. It has been proposed that the
depth, duration and frequency of intrapartum decelerations of the FHR represent the best
indicators of hypoxaemia and acidaemia, but it is clear that additional biomarkers that more
closely reflecting the onset of hypotension must be sought [7]. Higher deceleration area
and decelerative capacity, as calculated by automated, computer-based methods, have also
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been associated with hypotension in fetal sheep [8]. Additional work has also suggested
that in-depth analysis of FHR patterns may provide early warning of fetal cardiovascular
decompensation and acidemia [9–11].

Continuous fetal monitoring during labour using CTG is known to have many lim-
itations and only provides a proxy measurement of fetal oxygenation. Blood flow is
determined partly by blood pressure and, in turn, by cardiac contractility and vascular
resistance. It is now well established that brain perfusion is critically compromised when
fetal blood pressure falls below baseline values. Thus, hypotension during severe or recur-
rent hypoxia critically compromises cerebral perfusion and precipitates hypoxic-ischaemic
injury across multiple animal models. Fetal blood pressure monitoring would provide a
more direct measure of blood flow reaching the brain, particularly during contractions,
when FBP may dip intermittently to dangerously low levels. Our aim was to investigate the
relationship between FHR and FBP during decelerations, seeking to produce deep learning
models to predict/infer the minimal FBP value based solely on the FHR trace recorded
with standard CTG fetal monitors. If successful, this would enable medical practitioners to
monitor the blood pressure of fetuses non-invasively during labour.

Sheep have been used for over 80 years to study aspects of pregnancy that are im-
practical or unethical to study in humans. Initially, they were used to study umbilical
blood flow and transfer between fetal sheep and their mothers [12,13]. Sheep have been
recognised as an imperfect model for human pregnancy, but have many commonalities
with humans in this regard. The neural and cardiovascular maturation of near-term fetal
sheep at 0.85 of gestation (≈125 days, the term is 147 days) is broadly equivalent to term
human neonates [14–16]. Multiple parallels between the FHR patterns in near-term fetal
sheep experiments and human labour have indeed been observed [8,17,18]. It is also possi-
ble to sample from both the maternal and fetal circulations under steady-state conditions
repetitively and to take measurements, such as blood pressure, making pregnant sheep
an invaluable model for the study of fetal physiology [19]. Lear et al. [20] provide further
details regarding the similarities between sheep and human pregnancies.

Deep learning methods have been applied to CTG records previously, but such studies
have tended to use FHR to predict the severity of birth outcomes (see for example [21–24]).
In this study, we took a novel approach and applied state-of-the-art deep learning meth-
ods to the Auckland experimental data to model a relationship between FHR and the
corresponding minima in FBP. We then applied the model to the Oxford data to examine
whether there was a relationship between predicted FBP and the incidence of severe neona-
tal compromise at birth. Deep learning methods are able to automatically extract and utilise
relevant features from the data on which they are trained to improve their predictions.
These methods may, therefore, be able to find extra biomarkers that have not yet been found
by researchers. The data and model configuration and testing are described in Section 2
with the results of the final model discussed in Section 3 and concluding remarks given in
Section 4.

2. Methods

This work builds on two main datasets: (a) experimental data from Auckland pro-
viding continuous and concurrent FHR and FBP signals from 57 instrumented sheep
undergoing repeated, complete umbilical cord occlusions to simulate contractions during
labour and (b) routinely collected data from Oxford’s delivery ward from over 50,000 term
births monitored with standard CTG during labour.

2.1. Experimental Data for the Fetal Sheep

The Auckland dataset [5,6,8,20,25–27] consists of 1 Hz fetal heart rate and blood
pressure traces from 57 instrumented sheep divided into four experimental groups, as
detailed in Table 1. This includes eight chronically hypoxic sheep, for which current
methods find it more difficult to predict hypotension [28].
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Table 1. Descriptions of the four experimental groups.

Reference
Number of

Sheep Condition
Occlusion

Length
Occlusion
Spacing

Number of
Occlusions

Segments in
Final Dataset

[minutes] [minutes]

N1-5 12 Normoxic 1 5 552 9384
H1-5 8 Hypoxic 1 5 348 5916

N1-2.5 25 Normoxic 1 2.5 1569 26,673
N2-5 12 Normoxic 2 5 229 3843

Fetal sheep experiments were performed as previously described, with full details
given by Lear et al. [20]. Briefly, fetuses were surgically instrumented under general
anaesthesia. Femoral artery catheters and subcutaneous electrodes over the right shoulder
and left fifth-intercostal space were placed to measure FBP (sampled at 64 Hz) and fetal
electrocardiogram (sampled at 1024 Hz), respectively. An inflatable silicone occluder was
placed around the umbilical cord (18HD, in vivo Metric, Healdsburg, CA, USA). Fetal leads
were exteriorised through the maternal flank and a maternal long saphenous vein was
catheterised for post-operative care. Maternal incisions were infiltrated with a long-acting
analgesic, bupivacaine plus adrenaline (AstraZeneca). Ewes were revived from anaesthesia
and housed together in separate metabolic cages with ad libitum access to food and water,
in temperature-controlled rooms (16 ± 1°C, humidity 50 ± 10%) with a 12 h light/dark
cycle. Daily intravenous antibiotics were administered to the ewe for 4 days (600 mg of
benzylpenicillin sodium; Novartis, Auckland, New Zealand and 80 mg of gentamicin).

Experiments began 4 to 5 days after surgery at 0.85 of gestation. Normoxic fetuses
(PaO2 ≥ 17 mmHg) were randomly assigned to groups N1-5, N1-2.5 or N2-2, as defined
in Table 1; fetuses with stable chronic hypoxaemia (PaO2 < 17 mmHg for ≥3 days) were
assigned to the H1-5 group. No animals were in labour during these experiments. Umbilical
cord occlusions were induced by rapid inflation of the umbilical cord occluder with a
volume of saline known to completely occlude the umbilical cord. At the end of the
occlusion, the occluder was rapidly and completely deflated. After a period of reperfusion,
the process was repeated continually for a maximum of 4 hours or until MAP fell below
20 mmHg on two successive occlusions. The duration of occlusions and reperfusion in each
group are shown in Table 1. Ewes and fetuses were killed after the end of the experiments by
an intravenous overdose of pentobarbital sodium administered to the ewe (9 g, Chemstock
International, Christchurch, New Zealand).

2.2. Extracting the Fetal Sheep Data

The start time of the first occlusion for each sheep was located manually and sub-
sequent occlusions were located at regular spacings of 2.5 or 5 min, depending on the
experimental group. The FHR signal was then sliced into 150 s segments, each containing
a deceleration of heart rate corresponding to the start of each umbilical occlusion and a
subsequent portion of the recovery period. Where more than 50 s of a segment was missing
due to data loss (n = 6), it was excluded. Linear interpolation was then used to fill in any
missing data within the remaining segments, as shown in Figure 1c.
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Figure 1. Examples of (a) the fetal heart rate and fetal blood pressure traces over the course of an
experiment on a single subject, (b) a single occlusion from the same trace with start positions and the
calculated minimum blood pressure marked, (c) a segment of the raw fetal heart rate trace for the
same occlusion with the missing data filled in using linear interpolation and (d) the normalised form
of the same segment of the fetal heart rate trace.

Due to the controlled experimental conditions, there were few noise spikes in the
Auckland FHR signals and we considered noise removal to be unnecessary. Retaining
natural variation in the FHR was considered important and having some noise in the
inputs also helps to regularise the neural network models that are to be used [29]. For each
deceleration, the minimum FBP was determined as the 3rd percentile of the last 135 s of
each segment, to ensure that any low FBP values resulted from this occlusion and not the
previous one. For decelerations where the 3rd percentile was <10 mmHg (n = 20), this was
considered abnormally low or was observed to be caused by signal noise. In this case, the
minimal FBP value was recalculated as the 20th percentile FBP during the deceleration. An
example of the FHR and FBP traces marked with start locations for the FHR segments and
minimum FBPs experienced during the occlusions are presented in Figure 1a,b.

Decelerations were discarded where the change in FBP between consecutive occlusions
was more than 18 mmHg (n = 13), a value that was tuned to ignore spurious values due to
noise. They were also discarded if the minimum FBP was found to be <10 mmHg (even
after re-calculation) or >80 mmHg (n = 2), as these values are outside the expected range.
The traces of all sheep were visually checked to ensure the most accurate minimum FBP
was detected without excluding too many of the decelerations.

2.3. Data Pre-Processing

A total of 2698 occlusions from the 57 sheep are included in the dataset, as detailed
in Table 1. Neural networks are often trained on datasets of hundreds of thousands to
millions of records. We experimented with different approaches to increase the size of
the dataset artificially, a strategy called ‘data augmentation’. Data augmentation through
translation or by duplicating records with added uniform noise of different scales was not
found to improve the accuracy of predictions during initial development of the model.
We also noticed that models trained on accurately located decelerations were unable to
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predict FBP for time-offset FHR segments, where the deceleration started before or after
the start of the segment. It is important for the model to handle cases for which the start
time is less certain, as this is likely to occur when automated methods are used to locate the
decelerations. Therefore, we constructed an augmented dataset consisting of 17 segments
for each occlusion (as demonstrated in Figure 1b). These start up to 16 s before the true
starting time and then at 2 s intervals until 16 s after the located start time. The result is a
dataset containing 17 times as many segments, with 45,866 in total.

The detection of dangerously low FBP is of particular interest to this study and there
were fewer occlusions where this occurred than there were where FBP was at normal
levels. The segments that corresponded to a minimum FBP < 35 mmHg were, therefore,
duplicated in the training and validation sets. Records of each of these segments were
duplicated up to a maximum of five times, or until the next duplication would have resulted
in more records below the threshold than above.

Neural networks operated more effectively when the input values were small, so
standardization was applied. For each segment, we subtract the corresponding baseline
FHR and then divide by 47.7 bpm, which represents the overall standard deviation of FHR
for all segments of all sheep. An example of a normalised segment can be seen in Figure 1d.

2.4. Model Testing

The FHR segments were processed using a convolutional neural network (CNN)
consisting of convolutional layers with max pooling and batch normalisation after each [30].
The first convolutional layer detects shapes in the FHR segments and subsequent layers
detect features consisting of combinations of these shapes. The output from the final
convolutional layer is then fed into one or more fully connected neural layers. These assign
weight to the different features that are found and these weighted features are used to
predict the minimum FBP corresponding to each FHR segment. Various architectures
were considered and tested by varying the number and type of layers and the associated
hyperparameters, such as the number of convolutional filters and their sizes or the number
of neurons in the fully connected layers (see Appendix A for further details).

To determine the accuracy of the model during optimisation, it was important not to use
predictions for data that the model had used for training. Therefore, a test set was extracted, kept
separate from the other data (see Figure 2) and used to calculate accuracy metrics by comparing
the predicted FBP to the measured FBP after each model was trained: the mean absolute error,
δ, mean absolute percentage error, δ% and coefficient of determination, R2. During this process
of model optimisation, the test sets consisted of all FHR segments from eight sheep, with two
sheep selected randomly from each experimental group (Table 1).

After the selection of a test set, a validation set was extracted from the remaining data (Figure 2).
During training, at specific intervals, the validation set was used to assess the accuracy of the model
for data that had not directly influenced the training process. The training was halted when the
accuracy of predictions for the validation set did not improve for 50 training epochs. This standard
training procedure prevents the model from losing the ability to generalise (‘over-fitting’), i.e., learning
too well the training FHR segments and losing the ability to predict for unseen FHR segments.

The non-test data were binned by sheep and by minimum FBP before being split into
training and validation sets with a 5:1 ratio of records, respectively. This binning ensured that
both sets contained representative samples of the data, with both containing similar quantities
from the sheep and similar FBP distributions. The located and time-offset FHR segments for
the same deceleration were kept in the same set during the split of training and validation to
prevent information learned from one segment from reducing the error on predictions for a
very similar segment in the validation set.

The accuracy of the model can vary depending on the records selected for the validation
and testing sets. Every model architecture and hyperparameter selection was, therefore, trained
multiple times, each time using a different split of training, validation and test sets. The test set
predictions from each training run were then combined and used to calculate overall metrics to
assess the predictive ability of each model configuration (Figure 2).
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Figure 2. A flow chart showing the process used to handle the data and test different model
architectures during the process of optimisation (FHR: fetal heart rate, FBP: fetal blood pressure).

Examples of the mean absolute percentage errors for the training and validation sets during
the training process are presented in Figure 3. The red line represents the point at which the error
on the validation set is at a minimum (9.8% in this example) and is the point at which the model
is saved. After this, the model begins to ‘over-fit’ the data, with the validation error staying the
same or even increasing, while the training set error is still reducing.
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Figure 3. Mean absolute percentage error between the predicted and measured minimum fetal blood
pressure during model training.

2.5. Final Configuration

The optimal model configuration (Figure 4) that produced the best predictions was
used to produce the results displayed in Section 3. This configuration was trained using
the ADAM optimiser [31] with a learning rate of 1 × 10−4 and using the mean absolute
percentage error as the loss function. This was chosen over the commonly used mean
squared error to make the loss penalty larger for errors on the predictions of the lowest
blood pressures (as these are of the highest interest). Rectified linear unit (ReLU) activation
functions [32] were used on all layers, including the output layer, which was also initialised
with a bias of 40 in an attempt to bring initial predictions close to the mean FBP value.
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Input – 150 s FHR segments (shape: 150 × 1)

Convolutional Layer (shape: 144 × 1, filter: 7 × 1)

Maximum Pooling (shape: 48 × 1, pool: 3 × 1)

Batch Normalisation

Convolutional Layer (shape: 42 × 32 × 1, filter: 7 × 1)

Maximum Pooling (shape: 14 × 32 × 1, pool: 3 × 1)

Batch Normalisation

Fully Connected Layer (shape: 512 × 1, dropout: 0.26)

Fully Connected Layer (shape: 512 × 1, dropout: 0.26)

Output – Predicted minimum blood pressure (shape: 1)

Figure 4. A flow chart showing the structure of the neural network model used in this study (FHR:
fetal heart rate).

In the discussion and figures of Section 3, the predicted FBPs for each sheep are
calculated with a model trained and validated using the FHR segments from all of the
other sheep. This ensures that the predictions are made by a model that was not trained
using the FHR segments from the sheep that we are assessing. The validation split was
similar to that described in Section 2.4, but the selection from the binned records was
done sequentially rather than randomly. This was done to maintain maximum consistency
between the training and validation sets for each model. However, it is not feasible for
them to be identical since a different sheep was selected for the test set each time. The
overall metrics for all sheep were then generated by combining the results from the model
for each individual sheep.

2.6. Oxford Dataset

The Oxford dataset consists of 58,488 CTG recordings made at John Radcliffe Hospital,
Oxford, UK. These were recorded between April 1993 and December 2011 from singleton
pregnancies of gestation at ≥36 weeks. All of these pregnancies were high-risk, where
intrapartum CTG monitoring was used as per standard clinical care. Births that involved
metabolic disorders, breech presentation and congenital problems were excluded from
the dataset.

The final 90 min of FHR signals from this dataset were analysed and 608,177 decel-
erations were located using automated methods. No decelerations were extracted from
5043 of these FHR signals, either because they did not contain any decelerations or due to
missing data or noise. For each located deceleration, a 150 s FHR segment was extracted.
Segments were discarded if more than 50 s of data were missing and any missing data
in the remaining segments were linearly interpolated. Standardisation was applied by
subtracting the concurrent baseline FHR calculated over a 15 min window around the
deceleration. To maintain equivalent gradients in the deceleration and the recovery of heart
rate, the segments were then divided by the same standard deviation value that was used
to standardise the animal data.

A model in the final configuration (see Figure 4) was trained on segments from all
57 sheep without an extracted test set and used to predict FBP from the human FHR
segments. The records were split into 5279 segments from 451 cases for which severe fetal
compromise occurred and 602,898 segments from 52,994 births where the outcome was not
severe. Severe fetal compromise is defined as a composite outcome that includes one or
more of the following: stillbirth, neonatal death, neonatal seizures, neonatal encephalopathy,
hypoxic-ischaemic encephalopathy, intubation or cardiac massage, followed by 48 h in a
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neonatal intensive care unit. The distributions of predicted FBP from each group were then
compared to explore the applicability of the model to human input data.

3. Results and Discussion
3.1. Overall Predictions for the Auckland Dataset

The predictions of minimum FBP for all FHR segments in the augmented Auckland
dataset are shown in Figure 5. For each occlusion, there are 17 predicted values that
appear as a vertical column of points, one for each time-offset segment. The mean absolute
error between the predictions for the located and time-offset segments over all occlusions
for all sheep is 1.9 mmHg with a standard deviation of 2.0 mmHg and a maximum error
of 18.4 mmHg. Despite some outliers, the predictions for time-offset FHR segments are,
therefore, generally in close agreement with the predictions made from the located segment.

Figure 5. Comparison between the measured and predicted minimum fetal blood pressure during
experimental occlusions. The dashed, red zero-error line shows where perfect predictions would
lie. Median and interquartile range values for predictions in bins with a width of 5 mmHg of their
corresponding measured minimum fetal blood pressures are shown with solid and dashed blue
lines, respectively.

The blue lines in Figure 5 mark the median and interquartile ranges of the predictions
for 5 mmHg wide windows of the measured minimum FBP during the decelerations. These
tend to lie close to the red zero-error line between the measured FBP of 30 to 50 mmHg but
the predictions tend to be less accurate outside this range. The results are skewed, such
that lower measured values tend to be over-predicted while the higher measured values
tend to be under-predicted.

The models were able to predict the minimum FBPs in all 57 fetal sheep with a mean
absolute error of δ = 6.7 mmHg. The mean absolute percentage error was δ% = 17.3%,
equating to errors of 3.5 mmHg at the lower end of the measured minimum FBP and
12 mmHg at the higher end. The coefficient of determination R2 = 0.36 indicates that
approximately 36% of the variation in FBP is explained by the modelled interpretation of
the FHR segments. If low blood pressure is defined as being below a specified threshold,
then we can assess the model based on the sensitivity, as shown in Table 2. If the model
could be shown to provide accurate predictions for human fetuses, then thresholding the
results in this way could provide a warning for medical practitioners during labour.
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Table 2. Sensitivity and specificity of low fetal blood pressure detection given different fetal blood
pressure thresholds.

Threshold True True False False Sensitivity Specificity
[mmHg] Positives Negatives Positives Negatives [%] [%]

30 2845 35,790 2154 5077 35.9 94.3
35 7419 29,495 4267 4685 61.3 87.4

3.2. Predictions for Individual Sheep

The distribution of minimum fetal blood pressure during the decelerations for each
sheep is presented in Figure 6 in the form of a box plot. The grey boxes show the distribution
of the measured minimum FBP and the blue boxes show the distribution of minimum FBP
predicted by the models. As mentioned in Section 3.1, the model tends to over-predict for
those sheep with the lowest FBPs and under-predict for those with the highest FBPs.
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Figure 6. Box plots showing the median, interquartile range, minimum and maximum measured
(grey) and predicted (blue) blood pressure for the occlusions of each individual subject of the four
experimental groups (a) N1-5, (b) H1-5, (c) N1-2.5 and (d) N2-5.

The average accuracy of the predictions for a given fetal sheep depends on the range of FBP
during the experiment. Sheep from the different experimental groups tended to have different
ranges of blood pressure based on the frequency and duration of the occlusions and whether they
were chronically hypoxic or not. It is likely that training a model only on similar sheep would
increase the accuracy of predicting minimum FBP for those sheep. However, this would also bias
the model towards similar sheep and lead to a less general interpretation of FHR segments.

Figure 7 shows examples of the FHR and FBP of four sheep presented in the order of
the accuracy of the predictions made. A mean absolute error δ% of less than 10% was only
found for 9 of the 57 sheep, as for the example in Figure 7a. The example shown in Figure 7b
is from one of the 26 of the sheep for which δ% is between 10 and 20%. The model predicts
FBP to be around 35 to 40 mmHg throughout the experiment, despite slightly higher FBP for
the first few decelerations. Figure 7c shows a trace for one of 14 sheep, where δ% is between
20 and 30%. The first few decelerations are again predicted inaccurately by the model but
the predictions then tend to follow the decline in minimum FBP well. However, about
halfway through the experiment the FBP continues to drop, while the model continues
to predict higher than measured FBP. There were only 8 sheep for which δ% was larger
than 30% and an example from this group is shown in Figure 7d. The decelerations for this
animal tended to end with an overshoot of FHR before dropping to a baseline level and
the minimum FBP tends to be predicted with poor accuracy by the model for sheep where
these overshoots occur.
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Figure 7. Fetal heart rate and fetal blood pressure traces marked with model predictions for subjects
(a) N1-2.5-12, (b) N1-5-08, (c) H1-5-06 and (d) N1-2.5-11. The green (error less than 20%) and red
(error greater than 20%) horizontal lines represent the prediction of fetal blood pressure for fetal heart
rate segments located at the occlusion start time. The surrounding grey-shaded boxes show the range
of predictions made on the time-offset segments for the same occlusion.

3.3. Interpretation

The importance of the accountability [33] and interpretability [34] of neural network
models has been highlighted in recent years, especially for their use in the medical field.
In the present study, the inputs are short one-dimensional time series, so a fairly simple
analysis can provide some insight into the workings of the model.

Figure 8 shows the averaged form of decelerations for four ranges of predicted and
measured FBP. The lowest minimum FBPs tend to be predicted by the model for the FHR
segments with the deepest deceleration of heart rate and those for which the deceleration
occurs over the longest period of time. The presence of this association in both the measured
and predicted minimum FBP supports the findings of Bennet et al. [6] and suggests a
link between the deceleration shape and minimum FBP during an occlusion, where low
minimum FBP suggests that fetal compromise is likely to occur.
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Figure 8. A comparison between the mean averaged fetal heart rate segments after being grouped by
the range of predicted (a,c,e) and measured (b,d,f) minimum fetal blood pressure during occlusions
for experimental groups N1-5 and N1-2.5 (a,b), hypoxic subjects of group H1-5 (c,d) and subjects of
group H2-5 that experienced 2-min occlusions (e,f).

For the hypoxic sheep (group H1-5) and the normoxic sheep that experienced 2 min oc-
clusions (group N2-5), the decelerations also increased in depth with decreasing measured
minimum FBP (see Figure 8d,f, respectively). The difference between the deceleration depth
of the lowest and highest FBP groups appears to be more exaggerated for the predictions
made by the model (see Figure 8c,e). This is likely due to the model learning a relationship
between the minima of the FHR segment and the FBP, from the larger numbers of sheep in
the other two groups. Another feature common to groups H1-5 and N2-5 is an overshoot of
heart rate after the end of the occlusion. The overshoot is most pronounced when the FBP
is high and the model appears to have recognised this relationship for the sheep of group
N2-5 where this feature is most pronounced. For group H1-5, the model does not appear to
have made this association. Westgate et al. [35] identified that large overshoots only tended
to occur after total occlusions of the umbilical cord for 2 min or after prolonged periods of
repeated total occlusions for 1 min.

Taking the FHR segments for the same ranges of measured FBP and then grouping
them by the absolute error on the predicted blood pressure provides further information
about the predictions of the model (see Figure 9). The predictions with the largest absolute
errors (of 15 to 35 mmHg) tend to be for the shallowest decelerations in the lower FBP
groups and for the deepest decelerations in the higher FBP groups. The averaged decelera-
tions for the 30 to 40 mmHg and > 50 mmHg groups also clearly contain a large proportion
of decelerations for which overshoots occur.
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Figure 9. The mean averaged fetal heart rate segments grouped by the error on the predicted fetal blood
pressure for measured blood pressure in the ranges (a) <30 mmHg, (b) 30–40 mmHg, (c) 40–50 mmHg
and (d) >50 mmHg. Segments are shown in their normalised forms to distinguish differences in the
data used as input for the model. The decelerations of group N2-5 were excluded to avoid distortions
in the shape of decelerations due to the 1-min longer occlusion time. The ranges shown in the legend are
the absolute errors between the predicted and measured fetal blood pressure in mmHg.

3.4. Analysis of the Oxford Dataset

The analysis of the predictions made by the model for the Oxford dataset is more
challenging due to the lack of fetal blood pressure measurements in the human data. The
dataset was split into births with severe compromise and those without, as defined in
Section 2.5. The model predictions for the severely compromised group are, on average,
0.5 mmHg lower than for the group where severe compromise did not occur (see Figure 10).
The upper-quartile and 95th percentile values of predicted FBP are similar to those of the
non-severely compromised group, but the lower-quartile and 5th-percentile values are
0.85 mmHg and 1.5 mmHg lower, respectively. While these differences between the two
groups are small, they are found to be statistically significant with p = 2.1 × 108 for an
independent Student’s T-test and p = 2.4 × 106 for a Mann–Whitney U-test, as carried out
using the Python SciPy module.

The lower average of predicted FBP for the severely compromised cases indicates that
the model is finding more low blood pressures for decelerations in the severe group, as
would be expected. The larger range of the outliers in the non-severely compromised cases
is unsurprising, given that there are 47,715 more cases in this group. The lowest outliers
of predicted FBP, especially those below 20 mmHg, are likely anomalous predictions but
could also be accurate and relate to single contractions that did not result in long-term
harm or fetuses that experienced harm but were not classified as severe.

There are many factors affecting the relationship between FBP during single decelerations
and the severity of the birth outcome, such as infection, placental defects or intrauterine growth
restriction. In Figure 11, the predicted FBP is compared to other metrics that allow for a less
ambiguous assessment of the predictive ability of the model. The predicted minimum FBP
during the deceleration reduces as the number of previous decelerations during the final
90-min period of the CTG trace increases (see Figure 11a). The lower FBP is what would
be expected after a fetus has experienced many consecutive decelerations and the average
prediction drops by 5.5 mmHg, between 0 and 50 prior decelerations.
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Figure 10. Box plots showing the predicted blood pressures for the fetal heart rate segments extracted
from the Oxford dataset grouped by severity of the outcome. The orange lines mark the median
values and the green diamonds mark the mean values, which are also written explicitly alongside
the result of each group. The top and bottom of the boxes show the interquartile ranges, the capped
vertical lines show the limit of results within the 5th and 95th percentiles and the small horizontal
lines above and below mark the outliers beyond this range.

It is also expected that lower FBP would be seen towards the end of the CTG traces
when a fetus has been undergoing the stresses of labour for the longest period of time and
contractions are likely to be at their highest frequency. The model appears to detect such a
signal and predicts lower minimum FBP during decelerations that are closest to the end
of the CTG trace (see Figure 11b). The average prediction for decelerations at the end of
the trace is 2.9 mmHg lower than those 90 min from the end. This provides some more
confidence in the ability of the model to infer characteristics of the decelerations in human
FHR that indicate the corresponding minima in FBP.

Figure 11. Predicted minimum FBP for each deceleration compared to the (a) number of prior
decelerations within the final 90 min of the CTG and the (b) time between the deceleration start and
end of the CTG in seconds.
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4. Conclusions

The model was often able to predict the minimum fetal blood pressure experienced
by near-term lambs during complete umbilical occlusions of 60 to 120 s from 150 s of fetal
heart rate segments with high accuracy. There was a tendency to predict close to the mean
value of the minimum FBP experienced during the occlusions. This suggests that the model
was not always able to extract enough information from the FHR to predict the highest or
lowest FBP to a high degree of accuracy.

The accuracy of the predictions was equivalent to a similar model that was trained as
part of this work (see Appendix A for further details) to predict the minimum FBP from
FHR segments that were 10 min in length. This suggests that the relationship between
FHR and FBP can be determined using a minimal amount of data and analysing a single
deceleration can provide as much information about this relationship as the analysis of
several consecutive decelerations. However, the accuracies of the predictions for both 150 s
and 10 min models were improved by including additional human-inferred characteristics
of the FHR (see Appendix A). This shows that while neural networks are powerful tools, it
is important not to abandon metrics that research has identified as being of importance.
Our results suggest that the combination of human inference and deep learning can provide
better results than using either in isolation.

The accuracy of the predicted minimum FBP during decelerations varies between the
different fetal sheep analysed in this study. This is partly due to the tendency of the model
to predict closer to the mean FBP. Sheep with the highest or lowest FBP will tend to have
less accurate predictions. However, the error on the predictions also tends to increase for
animals that experience overshoots in the recovery of FHR after the end of the occlusions.
This may suggest that the underlying reason for these overshoots leads to a reduction in
the relationship between FHR and FBP.

When applied to human data from the Oxford dataset, the results are more difficult
to interpret. Without human FBP data, it is not possible to confirm the accuracy of the
predicted blood pressure. The difference in predicted minimum FBP during decelerations
between the births that were defined as severe and those that were not is small, but
still statistically significant. The 5th percentile of the predictions for severe cases is also
1.5 mmHg lower than for the other cases. The non-linear relationship between FBP and the
likelihood of fetal compromise means that even these small changes at the lower end of
the scale can lead to serious consequences. The model also tended to predict lower FBP
for decelerations near the end of labour and those that occurred after larger numbers of
prior decelerations. These small differences between the two groups provide encouraging
evidence that the neural network used a relationship learned from the sheep FHR segments
in the Auckland dataset that transferred to human FHR segments in the Oxford dataset.

One limitation of using animal experiments as training data for the model is the
nature of the occlusions. The umbilical cord of each sheep was occluded completely for
1 or 2 min at regular time intervals. Decelerations in human labours can be shorter and
are much more variable in depth and duration, with less regular intervals. Many of the
decelerations captured from the Oxford dataset were also spaced closely enough that
multiple decelerations were present within the 150 s segments used in this study, something
unseen by the model during training on the animal data.

The training of the model created here would, therefore, have benefited from more
variations in the length and spacing of the occlusions in the training data. Partial occlusions
of different magnitudes could also provide more variation in the depth and shape of FHR
decelerations, to enable the model to learn more general features that relate FHR to FBP.
With more experimental data and further development and testing, such a model could be
used to predict FBP and the potential for fetal compromise from FHR signals collected by
CTG during human labours.
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Appendix A. Model Methodology and Development

Due to the limited input sizes, the number of convolutional layers and associated hyper-
parameters available were limited. Maximum pooling was required to reduce the influence
of locality on the features that were detected by the convolutional neural network (CNN), so
that features in time-offset fetal heart rate (FHR) segments could be detected in a similar way.
With each convolutional layer, the size of the output is reduced to (i − f + 1)/p, where i is the
size of the input, f is the odd-numbered size of the one-dimensional filter and p is the size of
the pooling kernel. Too much pooling or too many layers reduces the number of outputs of
the CNN and this results in too few inputs for the interpretation layers. Although many more
configurations of the hyperparameters were tested, limited selections are shown in Table A1,
and the final model (top row) and other model configurations are discussed below. There is
generally a middle ground for each hyperparameter, where increasing or decreasing will result
in reduced accuracy for the model predictions. The largest differences in accuracy are seen when

http://dx.doi.org/10.5281/zenodo.22558
http://dx.doi.org/10.5281/zenodo.22558
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the number of filters and the number of interpretation neurons used are modified, but tuning
the shape of the pooling and convolutional filters also provides some small improvements.

The purpose of this study was to utilize the FHR response to a single occlusion as
input for the model in order to predict the minimum fetal blood pressure (FBP) experienced
during the corresponding time period. A model similar to that described in Section 2 was
applied to a longer 10 min segment of the FHR time series. Due to the longer time period of
the input, it was practical to add three more layers to the CNN (five in total), which could
allow for more complex, larger-scale features to be detected. While the hyperparameter
space was not explored as thoroughly as for the single deceleration model, fine-tuning of
the hyperparameters tended to only lead to small differences in accuracy. The difference in
δ between the configurations with the best and worst predictions was only 0.4 mmHg, with
a difference in δ% of 1.4% for the different numbers of convolutional filters, their shapes
and the pooling amounts that were tested. In general, the most significant improvements
in the accuracies of all models were made through data processing, normalisation and
augmentation, rather than through modification of hyperparameters.

The overall mean absolute error δ for the predicted minimum FBPs of the model using
the 10 min FHR segments was 0.2 mmHg smaller than for the single deceleration model.
The predictions for segments relating to the smallest minimum FBPs were not, in general,
more accurate, which can be seen in Table A1 from the 0.8% larger δ%. The dataset used for
this model was processed in a very similar way to that described in Section 2 but 10 min
segments were extracted starting every 25 s throughout the FHR trace. This method provided
half as many records overall, 22,281 compared to the augmented single deceleration dataset
that contained 45,866 records, so some differences in average errors could be due to this
discrepancy. However, R2 was 0.13 smaller than for the single deceleration model, indicating
that the 10 min model was less accurate overall at predicting minimum FBP. The models were
also trained using 26 pre-calculated features related to the FHR for 15 or 30 min windows
as additional input. These features were generated as part of a study by Georgieva et al. [8]
to identify hypoxia–ischaemia and involved statistics, such as the number of prolonged
decelerations, deceleration capacity, deceleration area and acceleration capacity. Features
for the time period associated with each FHR segment were normalised globally to values
between 0 and 1 and fed into the fully connected interpretation layer of the model with the
outputs of the convolutional layers. These extra inputs resulted in 0.2 mmHg smaller δ, a
reduction in δ% of 0.7% and an increase in R2 of 0.08. The same was also true for the 10 min
model, where δ reduced by 0.4 mmHg, δ% was 1.6% smaller and R2 increased by 0.13.

The predictions for this combined input model are not shown here, as the focus of this
study was to investigate what a neural network could learn from the FHR signal alone.
However, the results show that combining FHR data with calculated statistics can improve
the ability of neural networks to predict the minimum FBP during umbilical occlusions
experienced by sheep. The model was able to learn a relationship between the raw FHR
signal and the minimum FBP, however, the provision of human-inferred characteristics
of the FHR signal only increased the predictive ability of the models. It is likely that such
benefits could be transferred to other deep learning models, such as those being used to
predict birth outcomes for humans using cardiotocography analysis.
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Table A1. Summary of model architectures and exploration of the hyperparameter space with
associated metrics of mean absolute error δ [mmHg], mean absolute percentage error δ% and the
coefficient of determination R2. Where values are marked in bold, these represent the hyper-parameter
being modified in each section of the table. “Ft.” is an abbreviation of features, for the models where
human inferred features were included.

Convolutional Layers Interpretation Layers Metrics
Model Type Filters Shape Pooling Neurons δ δ% R2

150 s FHR 64, 32 7, 7 3, 3 512, 512 6.7 17.3 0.36
150 s FHR + Ft. 64, 32 7, 7 3, 3 512, 512 6.5 16.6 0.44
Features - - - 512, 512 6.8 17.2 0.38
10 min. FHR 64, 32, 16, 8, 8 5, 5, 5, 3, 3 5, 2, 2, 2, 2 40,20 6.5 18.1 0.23
10 min. + Ft. 64, 32, 16, 8, 8 5, 5, 5, 3, 3 5, 2, 2, 2, 2 74,37 6.1 16.5 0.36

150 s FHR 16, 8 7, 5 4, 3 512, 256 7.2 18.2 0.27
150 s FHR 32, 16 7, 5 4, 3 512, 256 6.7 17.1 0.36
150 s FHR 32, 32 7, 5 4, 3 512, 256 6.6 16.7 0.39
150 s FHR 64, 32 7, 5 4, 3 512, 256 6.4 16.0 0.43
150 s FHR 64, 64 7, 5 4, 3 512, 256 6.5 16.5 0.41
150 s FHR 128, 64 7, 5 4, 3 512, 256 6.6 16.6 0.36
150 s FHR 128, 128 7, 5 4, 3 512, 256 6.5 16.6 0.37

150 s FHR 128, 64 5, 5 4, 3 512, 256 6.5 16.3 0.42
150 s FHR 128, 64 7, 7 4, 3 512, 256 6.4 16.3 0.42
150 s FHR 128, 64 9, 5 4, 3 512, 256 6.6 16.7 0.40

150 s FHR 128, 64 7, 5 0, 0 512, 256 6.6 16.5 0.41
150 s FHR 128, 64 7, 5 2, 2 512, 256 6.5 16.5 0.41
150 s FHR 128, 64 7, 5 3, 3 512, 256 6.4 16.3 0.43
150 s FHR 128, 64 7, 5 4, 4 512, 256 6.6 16.7 0.40

150 s FHR 128, 64 7, 5 4, 3 128, 64 6.7 17.0 0.38
150 s FHR 128, 64 7, 5 4, 3 256, 512 6.6 16.6 0.40
150 s FHR 128, 64 7, 5 4, 3 512, 512 6.4 16.2 0.42
150 s FHR 128, 64 7, 5 4, 3 1024, 512 6.5 16.5 0.40
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