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Abstract: It is estimated that globally 425 million subjects have moderate to severe obstructive sleep
apnea (OSA). The accurate prediction of sleep apnea events can offer insight into the development of
treatment therapies. However, research related to this prediction is currently limited. We developed
a covert framework for the prediction of sleep apnea events based on low-frequency breathing-
induced vibrations obtained from piezoelectric sensors. A CNN-transformer network was utilized to
efficiently extract local and global features from respiratory vibration signals for accurate prediction.
Our study involved overnight recordings of 105 subjects. In five-fold cross-validation, we achieved
an accuracy of 85.9% and an F1 score of 85.8%, which are 3.5% and 5.3% higher than the best-
performed classical model, respectively. Additionally, in leave-one-out cross-validation, 2.3% and
3.8% improvements are observed, respectively. Our proposed CNN-transformer model is effective
in the prediction of sleep apnea events. Our framework can thus provide a new perspective for
improving OSA treatment modes and clinical management.

Keywords: respiratory event prediction; transformer; CNN; contactless monitoring

1. Introduction

Obstructive sleep apnea (OSA) is a highly prevalent disorder characterized by the
instability of the upper airway during sleep, which results in markedly reduced (hypopnea)
or absent (apnea) airflow at the nose/mouth, leading to disrupted sleep and drops in
blood oxygen levels [1]. OSA can have substantial consequences in the long term, such
as hypertension and cardiovascular morbidities [2–4]. According to a systematic review,
the prevalence of OSA in the average adult, with an Apnea–Hypopnea Index (AHI) of
≥15 events/h, ranges from 6% to 17%. The prevalence can be as high as 49% in advanced
ages [5]. Another study estimated that 936 million adults aged 30–69 years have mild to
severe OSA [6].

Positive airway pressure (PAP) is the primary treatment for OSA. It provides a positive
airflow to the upper airway to prevent airway collapse and obstruction, thereby improving
respiratory events, sleep quality, and quality of life [7]. To improve treatment compliance
and effectiveness, in addition to the original continuous PAP (CPAP), more PAP therapy
modes have been developed, including automatic titration CPAP and bi-level PAP. A recent
study showed that positional OSA was present in 53% of the general population and in
75% of OSA subjects [8]. Positional therapy can diminish OSA severity in positional OSA
patients. Thus, some studies have focused on inducing head and posture changes with
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a pillow [9,10]. The prediction of sleep apnea events may provide strategies for developing
PAP therapy modes and pillow adjustment algorithms.

Many studies have been conducted in sleep apnea detection. Pant et al. [11] proposed
an ECG-based sleep apnea detection method using flexible analytic wavelet transform
and optimize ensemble classifier. Nassi et al. [12] developed a neural network approach
based on WaveNet and a respiratory effort signal from a single belt to screen for sleep
apnea. Chen et al. [13] proposed a lightweight multi-scaled neural network for sleep apnea
detection based on single-lead ECG signals. Meanwhile, few methods and algorithms have
been proposed to predict sleep apnea events using multiple physiological signals. The
study in Waxman et al. [14] employed large memory storage and retrieval (LAMSTAR)
artificial neural networks to predict apnea and hypopnea using six physiological signals
obtained from a set of polysomnography studies. The prediction performed best using 30 s
segments to predict events up to 30 s into the future. The study in Taghizadegan et al. [15]
used common single signals (EEG, ECG, and respiration) to represent the dynamic behavior
of the signals before and during OSA events. ResNet-18 and ShuffleNet were implemented
as classifiers and the classification results obtained from different signals are fused using
the weighted majority voting method. However, measuring all these signals is obtrusive
and inconvenient for the patient. The study in Zhang et al. [16] developed an autonomous
system to detect and predict respiratory events during sleep using a covert bed-integrated
radio-frequency sensor. The system can retrieve continuous respiratory waveforms without
the user’s awareness and feed them into a random forest machine learning model for
disorder detection and prediction. However, their study was conducted on 27 participants,
excluding individuals diagnosed with severe OSA.

We developed a sleep event prediction framework based on low-frequency breathing-
induced vibrations obtained from contactless piezoelectric sensors. According to the scoring
criteria of sleep apnea, the respiratory signals are most directly related to respiratory
dynamics. Since the breathing vibration signal contains body movement information
and similar information with the respiratory signals, it is promising to provide enough
information for the event prediction task. Physiological signals are inherently time-varying
and sensitive to noise, making accurate feature extraction crucial for optimal classification
performance. Deep learning methods enable the automatic extraction of features from data,
facilitating their application in time series analysis [13,17,18]. Deep learning methods that
have been successfully applied to sleep data analysis include recurrent neural networks
(RNNs) [19–21], convolutional neural networks (CNNs) [22,23], transformers, and their
combinations [24–26]. Our method leverages a combination of a CNN and a transformer to
effectively capture local and global features in the respiratory vibration signals for accurate
prediction. We evaluate our model on a clinical dataset of 105 subjects and demonstrate
its effectiveness in the prediction of respiratory events. Our method shows promise for
improving the clinical management of OSA.

The main contributions of our work are the following:

• A novel contactless scheme based on deep learning and breathing vibration signals
is developed for sleep apnea event prediction. Our method can effectively predict
respiratory events without disturbing the sleep of the subjects.

• A novel CNN–transformer network is proposed for prediction. It leverages the advan-
tages of both CNN and transformer architectures, to effectively capture both local and
global features present in the respiratory signals for prediction.

• The proposed method is validated on a dataset of 105 subjects from a public hospi-
tal and obtained a prediction accuracy of 85.9%. The method outperformed classi-
cal time series classification methods in terms of accuracy, sensitivity, and F1 score,
demonstrating its effectiveness for the prediction of sleep apnea events. Two types of
cross-validation were performed to demonstrate the generalization of our model.
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2. Materials and Methods
2.1. Data Collection and Preparation

Our model was trained on a dataset collected from the Beijing Anzhen Hospital, which
includes 105 participants (87 males and 18 females). The Ethics Committee of Beijing
Anzhen Hospital approved this study. Patients who met any of the following criteria
were excluded: (1) previously diagnosed with OSA, currently receiving CPAP therapy, or
undergoing oxygen therapy; (2) disabled patients with heart failure or stroke. The detailed
demographic information is shown in Table 1. The severity of OSA is determined by AHI,
defined as the average number of respiratory events per hour of sleep. AHI scores of less
than 5 indicate a normal condition, while scores between 5 and 15 are considered mild OSA.
If the AHI falls between 15 and 30, it is classified as moderate OSA, and scores exceeding
30 indicate severe OSA.

Table 1. Demographics of the participants.

Participants (#) (male) 105 (87)

Age (years) 51.0 ± 13.1

BMI (kg/m2) 28.7 ± 4.7

AHI (events/h) 21.9 ± 18.8

Normal/mild/moderate/severe OSA cases (#) 17/35/20/33
BMI: Body Mass Index; AHI: Apnea and Hypopnea Index; OSA: Obstructive Sleep Apnea.

As illustrated in Figure 1, Breathing activity is recorded by five piezoelectric sensors
placed in rows under the mattress. These sensors measure body recoil micro-movements
caused by respiration at a sampling rate of 5 Hz. Each participant took a home sleep apnea
test (HSAT) for one night while the micro-movements were recorded simultaneously. HSAT
was carried out using Alice PDx (Amsterdam, The Netherlands) [27], which compromises
several channels with attached sensors that record oxygen saturation (SpO2), ECG, nasal
airflow, respiratory effort, and body position. Recordings with missing respiratory signals
due to sensor detachment or misplacement or those with a recording time less than 4 h
were excluded from this study. The non-contact respiratory signals and HSAT signals were
synchronized based on signal correlation. The HSAT signals was labeled by a sleep center
specialist according to the American Academy of Sleep Medicine (AASM) manual [4].
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Figure 1. Illustration of the sleep data recording procedure, where the blue represents the sensors.
They are located between the mattress and the bed frame, not in contact with the human body, and
positioned near the chest.

The recordings were segmented into epochs of 40 s with a sliding step of 15 s. We
first divided the epochs into two types: respiratory events and normal breathing. If an
apnea or hypopnea event occurs for more than 16 s within an epoch, the epoch is defined as
a disordered epoch; otherwise, it is considered a normal breathing epoch. Epochs under
off-bed conditions and segments affected by artifacts are excluded. We define the three
normal breathing epochs before a respiratory event as “prior.” By distinguishing them from
other normal breathing epochs, we can predict respiratory events. An example of epoch
annotation is shown in Figure 2. Since the number of normal epochs is 5.2 times that of
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prior epochs, we randomly select the same number of epochs as the latter from the former
to form a dataset, with a total of 38,985 epochs.
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Figure 2. Sample data depicting: the green line in the figure represents the 5-channel respiratory
vibration signals, the shaded area represents the occurrence of respiratory events, and the blue and
orange lines, respectively, represent labels of “normal” and “prior”.

2.2. Analysis Model

We employ a CNN–transformer network for predicting respiratory events. The predic-
tion architecture is shown in Figure 3. Firstly, we input the respiratory signal into the CNN
module for high-dimensional feature learning and dimensionality conversion. Then, we
feed the features into the transformer module for sequence modeling and capturing long-
range dependencies. Finally, we perform average pooling on the output of the transformer
module and feed it into a fully connected layer to perform binary classification, predicting
whether the current segment is a precursor to a respiratory event. The following are the
details of the model:
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1. Feature extraction: We employ three 1D convolutional blocks to extract features.
Each of the blocks consists of three sub-layers, which perform in turn: 1D-CNN
layer, batch normalization (BN) layer, and ReLU activation layer. The first block has
a convolutional kernel size of 3, while the next two blocks have convolutional kernel
sizes of 29. The number of output channels is set to 64, and the padding is 1 in the
first block and 14 in the last two blocks. The smaller kernel size captures local features
with a smaller receptive field, while the larger kernel size captures global features
with a larger receptive field. By combining them, the model can capture both local and
global features, leading to a more comprehensive representation of the input signals.

2. Transformer encoder: We employ a stack of 2 transformer encoders to encode the high-
dimensional features output. These encoded representations can effectively capture
long-range dependencies in the sequence, providing strong support for subsequent
classification tasks. Each transformer encoder consists of a multi-head self-attention
layer and a position-wise feed-forward layer (FFN) [28].

The multi-head attention mechanism allows for the parallel computation of multiple
attention heads, which can focus on different subspaces of information, capturing different
attentional features. This helps to reduce noise and uncertainty in individual attention
heads and improve the robustness of attention. The multi-head self-attention layer is
calculated as

MultiHead(Q, K, V) = Concat(Head1, . . . , Headh)Wo (1)

where Wo denotes the multi-headed trainable parameter weights, and Headi refers to the
i-th attention head. The latter is calculated as

Headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(2)

where Q, K, and V are the query, key, and value matrices, respectively, and WQ
i , WK

i , WV
i

are the projection matrices for the i-th attention head. The attention score for input features
is computed as the dot product of their respective query, key, and value vectors, which are
obtained by linearly transforming the input features. The function can be expressed as

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (3)

where 1√
dk

is the scaling factor. The self-attention mechanism allows each position in the

input sequence to be computed as a weighted average of the other positions, thus modeling
dependencies between different parts of the sequence. The FFN layer consists of two linear
layers with a ReLU activation function in between. It applies a non-linear transformation
to enhance the model’s representational power. The FFN is calculated as

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

After experiments, we set the number of attention heads in each self-attention mecha-
nism to 8. In the FFN, we set a hidden layer with a middle dimension of 128 and use the
ReLU activation function. For the input and output dimensions, we set them to 64.

3. Prediction: After the output of a transformer encoder, an average pooling layer and
a dropout layer are typically applied. We use the average pooling layer to reduce
the dimensionality of the output. A dropout layer is used to prevent overfitting with
a parameter set to 0.5. Then, the result is mapped to the target output dimension
through a linear layer and finally mapped to between 0 and 1 through a sigmoid layer
to obtain the output probability.

Table 2 summarizes the parameters of the layers in the proposed model. In this table,
“d_model” denotes the embedding output size, “nhead” represents the number of attention
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heads, “dim_feedforward” indicates the dimension of the hidden layer, and “num_layers”
specifies the number of stacked transformer encoders.

Table 2. The parameters of the proposed model.

Module Layer Output Size Parameters

Feature
Extraction

Convolutional block 32 × 200 Kernel size: 3, stride: 1, padding: 1
Convolutional block 32 × 200 Kernel size: 29, stride: 1, padding: 14
Convolutional block 64 × 200 Kernel size: 29, stride: 1, padding: 14

Transformer
Encoder Transformer 200 × 64

d_model: 64, nhead: 8
dim_feedforward: 128
dropout: 0.3, num_layers: 2

Prediction
Average Pooling 64 Kernel size: 200
Dropout 64 p: 0.5
Linear 1

2.3. Model Evaluation

We adopt commonly used metrics to assess the performance of binary classification,
which include accuracy, sensitivity, and F1-score. The sensitivity metric is an important
indicator in the field of biomedical research. In our task, the sensitivity metric can help
us evaluate the ability of the model to identify real respiratory event precursors. F1-score
provides a single value to reflect the overall performance of the model. The details are
as follows:

Accuracy =
TP + TN

TP + FP + FP + FN
(5)

Sensitivity =
TP

TP + FN
(6)

F1 =
2× TP

2× TP + FP + FN
(7)

3. Experiments and Results
3.1. Experiment Details

We adopted two manners to train and test our model. First, we employed the k-fold
cross-validations (CV) to test the skill of the model on new data. We divided the whole
dataset into a separate training set (70%), validation set (10%), and test set (20%), and the
process was repeated five times until all cases had been tested as unseen data. Then, we
employed the leave-one-out (LOO) CV to test the skill of the model on data from new
subjects. We performed stratified sampling according to the severity of OSA cases and
divided the dataset into five groups as shown in Table 3. The process was repeated five
times until all subjects had been tested. Stratified sampling according to the severity of
OSA cases helps to ensure that each group is represented fairly in the evaluation process.

To validate the effectiveness of our proposed model, we conducted ablation and
comparative experiments on our clinical dataset. Firstly, we designed ablation experi-
ments to evaluate the impact of the CNN and transformer modules on the performance.
Additionally, since there are few studies related to respiratory prediction, we compared
the CNN–transformer model with other commonly used deep learning models for time
series data processing and classification tasks, including GRU, LSTM, BiLSTM, and their
combinations with a CNN. These comparisons were performed to verify the effectiveness
and superiority of our proposed model.

The experiments were performed on a computer with 1 CPU at 2.6 GHz, 1 NVIDIA
GeForce RTX2060 GPU, and 64 GB memory. The proposed model was developed using
Pytorch [29]. In the model, we used the adaptive moment estimation (Adam) optimizer
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with default parameters and a learning rate of 1 × 10−4 [30]. Binary cross entropy loss was
used as the loss function.

Table 3. Five groups in the leave-one-out CV.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Normal cases 3 3 4 4 3 17

Mild cases 7 7 7 7 7 35

Moderate cases 4 4 4 4 4 20

Severe cases 7 7 6 6 7 33

Total 21 21 21 21 21 105

3.2. Ablation Study

To verify the effectiveness of the CNN and transformer modules, a set of ablation
experiments were conducted in this study with the same experiment setup. The CNN refers
to the modified proposed model with the transformer blocks removed. The transformer
refers to the modified proposed model with the CNN blocks removed. A 1D convolution
with a kernel size of 1 was employed to realize the dimensionality conversion instead of
the original CNN module.

The results are listed in Table 4. It is noted that the proposed model outperforms the
other two models. The CNN–transformer model achieved an overall accuracy of 85.9%
in the five-fold CV, which demonstrated the effectiveness of the proposed model for the
classification of respiratory signals. There was a clear decrease in the model’s ability to
identify the prior cases, with the F1-score dropping by 8.8% and 5.9% on the five-fold CV
and the LOO CV, respectively, when the transformer module was removed. When the
CNN module was removed, there was a decrease in the accuracy, sensitivity, and F1 score
metrics by 5.6%, 3.5%, and 5.3%, respectively, on the five-fold CV and by 2.3%, 2.8%, and
2.6%, respectively, on the LOO CV.

Table 4. Results of the ablation study.

Five-fold CV LOO CV

Accuracy Sensitivity F1 Accuracy Sensitivity F1

CNN 0.798 0.685 0.770 0.715 0.600 0.678

Transformer 0.803 0.812 0.805 0.718 0.698 0.711

Proposed 0.859 0.847 0.858 0.741 0.726 0.737

3.3. Performance Comparison

We compared multiple commonly used deep learning time series data classification
models, including GRU, LSTM, BiLSTM, and their combinations with a CNN. Specifically,
the CNN-GRU, CNN-LSTM, and CNN-BiLSTM models were created by replacing the
transformer blocks with GRU, LSTM, and BiLSTM blocks, respectively. The GRU, LSTM,
and BiLSTM models refer to the CNN-GRU, CNN-LSTM, and CNN-BiLSTM models with
the CNN blocks removed. For all these models, the number of hidden layer features is set
to the same as it in the transformer encoder, i.e., 128. Additionally, the number of layers is
also the same, i.e., 2.

As demonstrated in Table 5, the proposed model outperforms the hybrid models
combining a CNN and different RNNs, and the RNN models perform the worst. The
hybrid models combined of a CNN and different RNNs achieved similar performances.
In the five-fold CV, BiLSTM achieved better performance than the CNN-RNN models.
However, in the LOO CV, the performance of BiLSTM was significantly worse than that of
the CNN-RNN models. Among the compared models, CNN-BiLSTM achieved the best
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performance. Our proposed model showed significant improvements over CNN-BiLSTM
in both five-fold cross-validation and LOO validation. Regarding the F1 score, our model
achieved increases of 5.3% and 3.8%, while in terms of sensitivity, the improvements were
11.3% and 7.4%.

Table 5. Performance comparison of different time series classification models.

Five-Fold CV LOO CV

Accuracy Sensitivity F1 Accuracy Sensitivity F1

GRU 0.734 0.692 0.724 0.569 0.583 0.575

LSTM 0.728 0.597 0.685 0.572 0.586 0.578

BiLSTM 0.809 0.746 0.797 0.622 0.600 0.614

CNN-GRU 0.801 0.714 0.783 0.723 0.605 0.686

CNN-LSTM 0.801 0.754 0.791 0.720 0.633 0.694

CNN-BiLSTM 0.824 0.734 0.805 0.719 0.652 0.699

Proposed
(95%CI 1)

0.859
(0.856 0.860)

0.847
(0.843 0.867)

0.858
(0.856 0.859)

0.741
(0.736 0.743)

0.726
(0.718 0.737)

0.737
(0.735 0.738)

1 CI: Confidence interval.

We further analyzed the prediction performance of the first, second, and third seg-
ments preceding sleep apnea events. Figure 4 demonstrates that our model achieved the
best performance in detecting “prior” segments at three different time intervals. The “first”
segment represents the closest segment to the apnea event, while the “third” segment
corresponds to the furthest segment preceding the apnea event. Sensitivity represents the
detection rate of the segments, and our proposed model achieved detection rates of 88.0%,
86.5%, and 76.4% for the three different time intervals. This performance is higher than that
of all other models. Our model achieved a detection rate of 76.4% for the earliest precursor
segments, which is 13.9% higher than that of the CNN-BiLSTM model.
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4. Discussion

In this study, we aim to develop a novel unobtrusive framework for predicting breath-
ing events to improve OSA treatment schemes and clinical management. We proposed
a CNN–transformer model to classify normal breathing and breathing event precursors.
We evaluated our framework on a clinical dataset of 105 subjects with different types
of OSA severities in both five-fold CV and LOO CV. We achieved an accuracy of 85.9%,
a sensitivity of 85.8%, and a F1 score of 84.7%, which is better than other common time
series classical models.

The results in Table 4 illustrated that combining a CNN and a transformer is advan-
tageous for the prediction of OSA events. CNNs are good at capturing local patterns for
modeling short-term dependencies, but they cannot learn long-term dependencies due to
the limited receptive field. The CNN model performs much worse than the models with
transformer blocks in identifying prior segments. Transformers, on the other hand, are
capable of learning global contexts and long-term dependencies. By combining a CNN and
a transformer, the proposed method can effectively model both short-term and long-term
dependencies within respiratory signals. The addition of CNN modules with different
kernel sizes improved the overall performance of the proposed model. Good predictive
performance in the OSA population is meaningful as it can help optimize the clinical man-
agement of OSA patients. Table 6 further confirms the effectiveness of our model, as our
model outperforms individual modules and the classical model in predicting respiratory
events in OSA patients across different severity levels. This suggests that our method has
the potential to be applied in clinical settings to optimize the treatment of OSA patients.

Our framework has several advantages. First, our method does not interfere with
subjects’ sleep or treatment, and the signal acquisition devices are suitable for both hospital
and home environments. Secondly, the proposed CNN–transformer model achieves better
performance compared to common methods. The CNN–transformer model utilizes self-
attention mechanisms to achieve global interaction between any two positions without
relying on hidden states to pass information. Apart from this, it utilizes multi-head
attention mechanisms to achieve parallel computation in multiple subspaces, thereby
capturing features of different levels of the temporal signal. In contrast, RNN models
typically only capture features of a single dimension or aspect of the temporal signal.
Finally, we performed two modes of validation on a real clinical dataset, including five-
fold CV and LOO CV, demonstrating the effectiveness and robustness of our framework
for predicting respiratory events. Our model achieved high accuracy and robustness in
predicting non-intrusive respiratory events, with an average accuracy of 85.6% using five-
fold CV and 75.4% using LOO CV. These results indicate that our method can effectively
predict respiratory events in real clinical situations, promising to provide strategies for the
treatment and management of OSA.

Table 7 summarizes the inter-subject and intra-subject results of the proposed system
and the previous events prediction studies that used respiratory-related signals. The pro-
posed system demonstrated better per-segment prediction results. Taghizadegan et al. [15]
computed the recurrence plot (RP) of the signals by selecting appropriate parameters and
focused on distinguishing signals before and during the occurrence of OSA events. Our
proposed method achieved slightly inferior results in inter-subject results. Zhang et al. [16]
extracted 37 features for the prediction of respiratory events, and the proposed method
does not require manual feature extraction. These two studies involved 16 and 27 subjects,
respectively, with 12 out of the 16 subjects in Taghizadegan et al. [15] having severe OSA,
while Zhang et al. [16] did not include subjects with severe OSA. In contrast, our study
included 105 subjects with varying degrees of severity, providing a more comprehensive
validation of our model.
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Table 7. Comparison results of sleep apnea event prediction studies using respiratory-related signals.

Study No. of Subjects Sensor Type Method
Per-Segment Per-Subject

Sen Acc Sen Acc

[15] 16 Respiratory belts ShuffleNet 0.803 0.808 0.766 0.767

[16] 27 Radio-frequency sensors Random Forest 0.746 0.819 0.727 0.817

Proposed 105 Piezoelectric sensors. CNN–Transformer 0.847 0.859 0.726 0.741

Acc: Accuracy; Sen: sensitivity.

Further improvements can be made in our study. Our dataset includes 105 whole-
night recordings from 87 male patients and 18 female patients. To improve our study, more
female subjects could be included in our dataset to achieve a more balanced representation
of both genders.

5. Conclusions

We developed a novel deep-learning-based framework for unobtrusive breathing
event prediction. We proposed a novel CNN–transformer model for respiratory event
prediction, which proved to be effective on a clinical dataset of 105 subjects. Our model
combined the strengths of CNN and transformer architectures, allowing it to capture both
local and global features of the input signals. Via extensive evaluations, we demonstrated
that our model outperformed several classical models, including the RNN-based and CNN-
RNN-based models, in terms of accuracy, sensitivity, and F1 score metrics. We believe that
our framework can provide a new perspective for improving OSA treatment modes and
clinical management.
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