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Abstract: (1) Background: Design thinking is a problem-solving approach that has been applied in
various sectors, including healthcare and medical education. While deep learning (DL) algorithms
can assist in clinical practice, integrating them into clinical scenarios can be challenging. This study
aimed to use design thinking steps to develop a DL algorithm that accelerates deployment in clinical
practice and improves its performance to meet clinical requirements. (2) Methods: We applied the
design thinking process to interview clinical doctors and gain insights to develop and modify the DL
algorithm to meet clinical scenarios. We also compared the DL performance of the algorithm before
and after the integration of design thinking. (3) Results: After empathizing with clinical doctors and
defining their needs, we identified the unmet need of five trauma surgeons as “how to reduce the
misdiagnosis of femoral fracture by pelvic plain film (PXR) at initial emergency visiting”. We collected
4235 PXRs from our hospital, of which 2146 had a hip fracture (51%) from 2008 to 2016. We developed
hip fracture DL detection models based on the Xception convolutional neural network by using these
images. By incorporating design thinking, we improved the diagnostic accuracy from 0.91 (0.84–0.96)
to 0.95 (0.93–0.97), the sensitivity from 0.97 (0.89–1.00) to 0.97 (0.94–0.99), and the specificity from
0.84 (0.71–0.93) to 0.93(0.990–0.97). (4) Conclusions: In summary, this study demonstrates that design
thinking can ensure that DL solutions developed for trauma care are user-centered and meet the
needs of patients and healthcare providers.

Keywords: design thinking; artificial intelligence; deep learning; trauma; hip fracture

1. Introduction

Deep Learning (DL) is a rapidly evolving subcategory of machine learning and is
proving to be especially valuable in the healthcare sector [1–4]. DL has revolutionized
medical image analysis and has the potential to transform healthcare delivery [5–8]. Pre-
viously, medical image analysis relied heavily on manual interpretation by radiologists
and physicians, which was often time-consuming and prone to human error. However, DL
algorithms have demonstrated remarkable accuracy in analyzing medical images. They
have been successful in performing several classification tasks, such as diagnosing le-
sions, analyzing images, and classifying radiography abnormalities, comparable to or even
exceeding those of human experts [9–13].

The integration of DL algorithms in trauma care has the potential to revolutionize the
field by fostering the development of innovative solutions [14,15]. Despite its promise, the
application of DL algorithms in trauma care is still in its nascent stages when compared
to other sectors [16–18]. In trauma management, time is of the essence, and a timely
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and accurate diagnosis, coupled with appropriate management, can make a significant
difference in the final prognosis. While physician experience is essential for providing
high-quality clinical trauma care and treatment [19,20], information from various imaging
modalities is also critical [21–23]. The goal of incorporating DL in trauma care is to hasten
the diagnostic process, streamline therapeutic decision-making, and ultimately improve
patient outcomes [24,25]. Therefore, it is crucial to develop an iterative DL algorithm that
can be effectively implemented in clinical practice.

Design thinking is a problem-solving approach that prioritizes empathy, prototyping,
and collaboration to generate innovative solutions [26,27]. It is a human-centered approach
that places the needs, wants, and preferences of end-users at the center of the design
process [28]. Several authors and educators have applied design thinking to medical
education [29–32] and medical device development [33,34]. The design thinking process
typically involves five steps: empathy, define, ideate, prototype, and test. The empathy
stage involves understanding the needs and preferences of the end-users, including clinical
physicians and patients. The define stage involves defining the problem and identifying the
criteria needed for success. The ideate stage involves brainstorming potential solutions to
the problem. The prototype stage involves creating a tangible representation of the solution.
Finally, the test stage involves testing the prototype with end-users and gathering feedback
to improve the solution.

Although design thinking has shown great breakthroughs in other areas [35–39], there
is no previous experience in developing DL algorithms for trauma care. The integration of
design thinking into the development of DL algorithms for trauma care has the possibility
to modify clinical decision-making and improve patient outcomes. By prioritizing the needs
and preferences of end-users, design thinking can lead to the creation of more effective and
user-friendly tools [40].

In this study, we aim to demonstrate that incorporating design thinking into the
development of DL algorithms for trauma care can help clinical physicians to create the
most appropriate algorithm for a clinical scenario. Furthermore, we conducted a multicenter
validation to prove the performance of the design thinking-based algorithm.

2. Materials and Methods

We utilized the design thinking process to develop a solution to solve clinical problems.
Design thinking can be a useful approach for medical innovation. The process includes five
steps: empathy, define, ideate, prototype, and test, with continuous iteration throughout
the process [26]. The five steps of design thinking where empathy, define, ideate, prototype,
and test (Figure 1).
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Figure 1. The design thinking process: the five steps include empathy, define, ideate, prototype, and
test. Each step can be repeated individually, allowing for an iterative approach to problem-solving.

By utilizing this approach, we were able to develop a solution to address the clinical
problems faced by physicians. To ensure that our study was ethical and informed, we
interviewed the clinical physicians to understand the clinical unmet need and defined the
research question. All of the physician participants were well-informed and consented to
participate in the study.
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Furthermore, we utilized the Chang Gung Trauma Registry Program (CGTRP) in
Chang Gung Memorial Hospital (CGMH), Linkou, Taiwan. Demographic data, medical
data, perioperative procedures, hospital procedures, medical imaging findings, follow-up
data, and information regarding complications were recorded prospectively in a comput-
erized database. We extracted the data and images of all trauma patients treated from
August 2008 to December 2017 at CGMH, which is a level I trauma center for further DL
algorithm development. The Internal Review Board of CGMH approved the study with
No: 202002343B0.

2.1. Empathize the Clinical Physicians

The first step in design thinking is to empathize with the user. In the context of surgical
innovation, this means understanding the needs and challenges of both the patient and
the surgical team. We interviewed the physicians before developing the algorithm and
labeling the data. The trauma surgeons who work in the trauma bay were interviewed
for clinical challenge search and identification. We conducted the interviews to collect any
issues about clinical difficulty and to explore the problem.

2.2. Defining the Clinical Unmet Needs and Ideating the Solution for the Clinical Unmet Needs

The research team initiates the process by gathering insights and defining the problem
or opportunity. This step will guide the rest of the process of clinical issues and unmet
needs into one dominant question that is used to further develop the algorithms. Through
brainstorming sessions involving a multidisciplinary team, a broad range of ideas and
potential solutions to the problem or opportunity were generated. This involves adjusting
the process and concept to integrate the clinical problems with the technological solutions.
In the present study, we would like to define the unmet needs and generate ideas for the
application of a proper deep learning algorithm to assist clinical physicians in addressing
their specific challenges.

2.3. Prototyping the DL Algorithm

The next step is to create a prototype of the potential solution. For this step, we
developed a DL algorithm based on the dataset of CGTRP. The PXR was collected from
patients registered from May 2008 to December 2016. The demographic and trauma-related
data including age, gender, date of injury, mechanism of injury, Abbreviated Injury Scale
(AIS), final diagnosis, and outcome, were recorded. We extracted the final diagnosis of
hospitalization, operative finding, and the anteroposterior PXR of the patient was acquired
from the picture archiving and communication system (PACS) repository.

The architecture of a DL algorithm in this study is based on Xception [41], a convo-
lutional neural network (CNN). The CNN architecture combines depth-wise separable
convolutions with residual connections to achieve high accuracy with fewer parameters
and reduced computational requirements. The architecture of Xception is based on the
idea of using depth-wise separable convolutions, which split the standard convolution
operation into two separate operations: depth-wise convolution and pointwise convolution.
The depth-wise convolution applies a single convolutional filter to each input channel
independently, while the pointwise convolution applies 1 × 1 convolutions to combine the
output channels of the depth-wise convolution. This separation reduces the computational
cost of convolutions by factorizing the standard convolution operation. The images were
resized into 512 × 512 pixels on the maximum dimension with zero paddings. The input of
the model is the whole image, and the output of the model is a binary classification result
representing either hip fracture or no hip fracture. We used 10 image augmentation meth-
ods, including blur, brightness, color jitter, contrast adjustment, noise addition, cropping,
rotation, shifting, and zooming during the training process (Figure 2).
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Figure 2. The augmentation methods used for training this deep learning algorithm.

The images after augmentation methods applied were reviewed to check whether
the visual features of positive class images can still be recognized. During the training
process, the augmented images were randomly added. To test the effect of each image
augmentation method, we strategically utilized a diverse set of 10 distinct augmentation
methods, each applied individually, to train our model. This approach allowed us to
explore the unique impact of each augmentation technique on the performance of the model.
Building upon this initial stage, we then proceeded to combine all 10 augmentation methods
together, employing a mixed model of training. This subsequent training phase aimed to
comprehensively assess and analyze the variations in model performance resulting from
the combined use of these diverse augmentation techniques. The models were initialized
with the ImageNet pre-trained weight. During the training process, each model was trained
with the Adam optimizer using an initial learning rate of 10−3, a batch size of 8, and stopped
at 70 epochs. We used Gradient-weighted Class Activation Mapping (Grad-CAM) [42] to
visualize the portion of the image that the model focused on to give the prediction. The
data of the development dataset from hospital A was divided to 80%, 10%, and 10% as the
train, validation, and test dataset, respectively.

We utilized TensorFlow 2.2.0 with Keras 2.3.1, running on Python 3.8.2, to build the
structure of the DL algorithm on the Ubuntu 18.04 operating system. The whole training
process was run on a GeForce® GTX 1080 Ti GPU. Based on our current hardware config-
uration, we conducted 70 epochs of training for each model, with each epoch requiring
approximately 4 min to complete. Consequently, the entire training process for a single
model lasted approximately 280 min.

2.4. Testing, Validating, and Remodeling the Algorithm

The final step is to test the prototype with the testing dataset from CGMH. The test set
consisted of 100 PXRs including 25 femoral neck fractures, 25 intertrochanteric fractures,
and 50 without fracture. We evaluated the performance of the algorithm and incorporated
GradCAM visualization to aid user recognition. Following the iterative design-thinking
cycle, we carefully reviewed the results and conducted user interviews to gather insights
regarding their perception of the algorithm. Specifically, we sought feedback on the
performance of the algorithm, the effectiveness of augmentation methods in accounting for
variations in clinical environments, and the accuracy of heatmap localization generated by
each developed model.
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Based on the feedback received, we made enhancements to the algorithm. Instead of
solely relying on zoom, horizontal flip, vertical flip, and rotation as augmentation methods
in the original version, we introduced multiple additional augmentation techniques to
increase the generalizability of the model. Furthermore, we refined the presentation of the
algorithm to better cater to user needs and address problem areas identified during the
review process.

2.5. Statistical Analysis and Software

The analysis of continuous variables involved using the Kruskal–Wallis rank-sum test
for comparison. For categorical variables, the Chi-square test and Fisher’s exact test were
used for comparison.

The performance of the model was evaluated with the receiver operating character-
istic (ROC) curve. The area under the ROC curve (AUC) was used for evaluation of the
performance of the model.

3. Results
3.1. Finding Empathy and Definition

Five trauma surgeons were interviewed to assess their approach to clinical challenges
and to identify any unmet needs in handling emergency trauma cases at our hospital. A
total of eight unmet needs were identified by the surgeons. These include: (1) detecting a
life-threatening hemorrhage that required immediate intervention; (2) predicting critical
head injuries that require surgery or intensive care; (3) predicting delayed trauma pre-
sentation with secondary complications; (4) determining the need to apply anticoagulant
agents and intervention to prevent trauma-induced coagulopathy; (5) detecting subtle
fractures in essential x-ray images, such as chest plain films and pelvic plain radiographs
(PXR); (6) determining the necessity of surgery in mild blunt or penetrating trauma patients
(7) predicting infections or sepsis in patients with multiple trauma; and (8) diagnosing
spinal cord injuries that require urgent diagnosis and management. We selected the most
frequently reported issue among the surgeons as our primary focus for the study. This issue
was detecting subtle fractures in essential x-ray images. Our research team initiated internal
discussions and brainstorming sessions, with specific emphasis on the undiagnosed subtle
fractures that could result in dismal sequelae such as avascular necrosis, using the prin-
ciples of design thinking. Finally, the clinical unmet need was defined as “how to reduce
the misdiagnosis of femoral fracture by PXR at initial emergency visiting”. To address this
unmet need, we developed a visualization-based deep learning algorithm to help clinical
physicians identify the presence of possible fractures in PXR in the emergency department.

3.2. Prototyping—Testing Cycle to Improve the Performance of the Algorithms

We collected 4235 anteroposterior PXRs from our hospital, of which 2146 had a hip
fracture (51%) from 2008 to 2016. Hip fracture DL detection models based on the Xcep-
tion CNN were developed using these images. We trained a model without any image
augmentation method as a baseline. The developing details were listed in our previous
study [43]. In the last layer, we applied Grad-CAM to highlight the lesion predicted by
the DL algorithm and explain the process of the algorithm. On the visualization heatmap,
all the models highlighted the fractured hip on the PXR image, therefore, we can use the
image to assist the clinical doctors to detect the possible area (Figure 3).

After the models developed, the models were directly applied to the emergency
department for evaluating the clinical performance of hip fracture detection. The initial
results are shown in Table 1. The accuracy, sensitivity, specificity, false-negative rate, and
F1 score of the model were 91% (n = 100; 95% CI, 84–96%), 97% (95% CI, 89–100%), 84%
(95% CI, 71–93%), 2% (95% CI, 0.3–17%), and 0.916 (95% CI, 0.845–0.956), respectively. The
details of these aspects were comprehensively described in a previous study [43]. However,
unlike previous studies, we implemented this model in a clinical setting and found several
limitations in its application. Furthermore, we reevaluated the clinical feedback and
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engaged in a process of rethinking to make the necessary modifications to the algorithm to
suit its deployment status. Using the feedback from clinical and background calculation, we
remodeled the algorithm by using individual image augmentation methods and a model
using a mixed method. In addition, the clinical requirement is as follows: “ensure that
all the patients discharged from the hospital are free from any fractures”. Therefore, we
refine the issue as “increase the sensitivity and reduce the false negative rate”. The cut-off
value of the algorithm was adjusted. Furthermore, we refined the presentation from the
initial yes/no fracture shift to the visualized presentation, which increased the acceptance
of clinical users. Initially, we offered a yes/no fracture presentation to the clinical doctors
who did not prefer this suggestion and gave our team their opinion to modify it. After
discussion, the algorithm was designed to analyze the X-ray images and provide visual cues
to the physician for any possible fracture locations. The physician could then confirm the
diagnosis with further investigation or imaging. By these modifications, the performance
of the post-design thinking model on the dataset was shown in Table 1. Some of the models
trained with augmentation methods, including blur, contrast adjustment, image shifting,
and mixed augmentation, performed significantly better than the baseline.
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reference for review. (C) The plain pelvic X-ray shows an occult right intertrochanteric fracture
without displacement. The arrowhead indicates the fracture line. (D) The heatmap again indicates
the fracture location for review by clinical doctors.



Bioengineering 2023, 10, 735 7 of 12

Table 1. The difference in performance before and after the introduction of design thinking for the
deep algorithm.

Pre DT Model (95%CI) Post DT Model (95%CI)

Accuracy 0.91 (0.84–0.96) 0.95 (0.93–0.97)

Sensitivity 0.97 (0.89–1.00) 0.97 (0.94–0.99)

Specificity 0.84 (0.71–0.93) 0.93 (0.90–0.97)

False negative rate 0.02 (0.003–0.17) 0.0286 (0.0095–0.0667)

F1 score 0.916 (0.845–0.956) 0.951 (0.930–0.973)

The Receiver Operating Characteristic (ROC) curve of the Post-DT model is presented
as Figure 4. We can identify the area under the curve as 0.97.
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4. Discussion

In this study, we presented a project based on Design Thinking to develop DL algo-
rithms that meet the needs of end-users. By identifying their needs quickly and testing
the prototypes, we were able to make modifications and deploy the algorithms rapidly. By
incorporating feedback from clinical doctors, we were able to improve the diagnostic accu-
racy from 91% to 95%, the sensitivity from 97% to 97%, and the specificity from 84% to 93%.
Trauma care is time-sensitive, and the use of deep learning algorithms can significantly
improve the diagnostic rate and time. With the support of these projects, clinicians can
make more accurate diagnoses and provide timely treatment to patients.

The management of trauma patients is a complex process, and time is of the essence.
Triage plays a crucial role in differentiating patients into appropriate dispositions, and
according to advanced trauma life support, it is the first step before the primary survey
in managing severely wounded patients. The PXR is a low-cost tool that is essential
for detecting possible fractures in trauma patients [44]. With the support of innovative
information technology, we have developed AI algorithms capable of accurately classifying
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trauma patients within a constrained timeframe. Deep learning technology has been
applied to the medical sector for years, and previous works have focused on fracture
detection by plain films with excellent performance [6,15,45,46]. Meanwhile, continuous
improvement and follow-up results are necessary to ensure optimal performance. In this
study, we provide a follow-up and improved performance results of the DL algorithm
in fracture detection systems. Once a deep learning algorithm is developed, continuous
input of the labeled data can improve its performance [47]. By incorporating increasing
data, the algorithm can be trained to recognize new patterns and improve its accuracy.
Additionally, clinical feedback is essential for improving and modifying the algorithm to fit
clinical needs. This feedback loop is critical for the ongoing development and deployment
of deep learning algorithms in clinical practice [48,49].

The continuous improvement of our algorithm is heavily influenced by the insights
and expertise of physicians, particularly when it comes to adjusting augmentation methods.
Augmentation methods play a crucial role in generating images that serve as valuable
training material, enabling us to enhance the generalizability of the algorithm. Physicians
provide essential guidance by describing the potential changes that images may undergo
in clinical environments, such as blurring and shifting caused by patient movement, as
well as variations in brightness and contrast across different machines. These inputs from
physicians are invaluable as they help us create augmentation strategies that better reflect
real-world scenarios. In the early stages, our algorithm relied solely on traditional augmen-
tation methods, which inevitably limited its generalizability. To address this constraint, we
embarked on an iterative journey, systematically integrating various augmentation tech-
niques. Based on the recommendations of the physicians, we constructed model prototypes
to experiment with and refine the algorithm. Each iteration allowed us to evaluate the
effectiveness of various augmentation methods in enhancing the performance. Through
this iterative process, we progressively incorporated a diverse range of augmentation meth-
ods. These included techniques for image cropping, rotation, shifting, and zooming, as
well as adjustments to blur, brightness, color jitter, contrast adjustment, and noise addition.
By integrating multiple augmentation strategies, we aimed to expose the algorithm to
a wider range of data variations, thereby enhancing its ability to generalize to unseen
scenarios. Once all the augmentation methods were integrated, we observed a significant
improvement in performance. The algorithm demonstrated enhanced robustness and
adaptability, showcasing its ability to handle various clinical environments and imaging
conditions effectively.

The deployment of novel DL algorithms in clinical practice has the potential to revolu-
tionize the field of medicine. However, there are multiple factors that must be considered
to ensure successful implementation in real-world settings. Clinical doctors may lack
confidence in the new tool, especially if the workings of the algorithm are not explained
clearly [50–52]. The heavy computational power and cost of hardware are additional
considerations that must be taken into account. Furthermore, most deep learning algo-
rithms only solve one problem separately, which may not be compatible with the clinical
workflow and the expectations of frontline physicians [6]. As a result, the deployment
of deep learning algorithms in medical scenarios is still in its initial phase. To overcome
these challenges, following the design thinking process can help clinical physicians develop
deep learning algorithms that are tailored to the specific needs of trauma care [53]. Initially
used for business development, the power of design thinking has been recognized for its
applicability in various sectors, including the medical field. The Stanford Byers Center for
Biodesign has applied design thinking to develop a range of medical innovations [54,55],
including surgical tools and devices [56,57]. They have developed a specific process for
medical innovation that involves identifying clinical needs, brainstorming potential solu-
tions, creating prototypes, and testing the prototypes with users to refine the design [58].
Some educators use design thinking to arrange and allocate the resources and the coaching
system for medical students and young medical residents with great performance [59,60].
In this study, we used design thinking to arrange the process of DL algorithm development.
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Involving end-users in the design process is critical to ensure that deep learning algorithms
are developed with their needs in mind, leading to increased adoption and usability. By
involving frontline physicians in the design process, clinical feedback can be gathered,
and the algorithm can be modified to fit clinical needs. This approach can lead to a more
effective and efficient deployment of deep learning algorithms in clinical practice. Continu-
ous improvement and follow-up results are necessary to optimize the performance of the
algorithms, which is compatible with the core value of design thinking. Rapid iteration of
the design thinking cycle and improving the performance of algorithms can enhance the
confidence of clinical doctors in the project.

Limitations

While this study demonstrated the efficacy of the design thinking-based deep learning
algorithm and its potential for clinical adoption, there were several limitations that should
be acknowledged. First, although we attempted to minimize selection bias by randomizing
the selection of images, it cannot be completely eliminated due to the nature of the dataset
composition. Future studies with larger and more diverse datasets may be required to
address this limitation. Second, because the feedback from clinical doctors was an essential
part of the study, it was not possible to conduct a double-blind study. This may have
introduced bias into the feedback process, potentially affecting the performance of the
algorithm. However, we made efforts to minimize this by using a standardized survey
form and ensuring that the clinical doctors providing feedback were not involved in the
development of the algorithm. Third, as this was a single-center study, the generalizability
of the findings may be limited. Further institutional collaborations to expand the data
number and improve labeling may be necessary to develop the algorithm according to the
global user requirements. This can help ensure that the algorithm is more representative of
a broader patient population and healthcare settings, leading to improved performance
and more widespread adoption.

5. Conclusions

Design thinking can be used to ensure that the DL solutions developed for trauma care
are user-centered and address the needs of patients and healthcare providers. By following
the design thinking process, we can gather insights into the needs of users, ideate potential
solutions, create prototypes, and test the solutions with users to refine the design. By
prioritizing the needs, and preferences of physicians, we can develop DL algorithms that
are tailored to the specific needs of trauma care. This can lead to more accurate diagnoses,
more efficient treatment, and improved patient outcomes, ultimately contributing to the
advancement of trauma care.
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