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Abstract: Artificial intelligence and emerging data science techniques are being leveraged to interpret
medical image scans. Traditional image analysis relies on visual interpretation by a trained radiologist,
which is time-consuming and can, to some degree, be subjective. The development of reliable,
automated diagnostic tools is a key goal of radiomics, a fast-growing research field which combines
medical imaging with personalized medicine. Radiomic studies have demonstrated potential for
accurate lung cancer diagnoses and prognostications. The practice of delineating the tumor region of
interest, known as segmentation, is a key bottleneck in the development of generalized classification
models. In this study, the incremental multiple resolution residual network (iMRRN), a publicly
available and trained deep learning segmentation model, was applied to automatically segment CT
images collected from 355 lung cancer patients included in the dataset “Lung-PET-CT-Dx”, obtained
from The Cancer Imaging Archive (TCIA), an open-access source for radiological images. We report
a failure rate of 4.35% when using the iMRRN to segment tumor lesions within plain CT images in
the lung cancer CT dataset. Seven classification algorithms were trained on the extracted radiomic
features and tested for their ability to classify different lung cancer subtypes. Over-sampling was
used to handle unbalanced data. Chi-square tests revealed the higher order texture features to be
the most predictive when classifying lung cancers by subtype. The support vector machine showed
the highest accuracy, 92.7% (0.97 AUC), when classifying three histological subtypes of lung cancer:
adenocarcinoma, small cell carcinoma, and squamous cell carcinoma. The results demonstrate the
potential of AI-based computer-aided diagnostic tools to automatically diagnose subtypes of lung
cancer by coupling deep learning image segmentation with supervised classification. Our study
demonstrated the integrated application of existing AI techniques in the non-invasive and effective
diagnosis of lung cancer subtypes, and also shed light on several practical issues concerning the
application of AI in biomedicine.

Keywords: deep learning; radiomics; CT tumor segmentation; lung cancer; classification

1. Introduction

Lung cancer is the leading cause of cancer-related death in the United States [1,2].
Computed tomography (CT) imaging remains one of the standard-of-care diagnostic tools
for staging lung cancers. However, the conventional interpretation of radiological images
can be, to some degree, affected by radiologists’ training and experience, and is there-
fore somewhat subjective and mostly qualitative by nature. While radiological images
provide key information on the dimensions and extent of a tumor, they are unsuitable
for assessing clinical–pathological information (e.g., histological features, levels of differ-
entiation, or molecular characteristics) that is critical for the treatment selection process.
Thus, the process of diagnosing cancer patients often requires invasive and sometime
risky medical procedures, such as the collection of tissue biopsies. Finding new solu-
tions for collecting critical microscopic and molecular features with non-invasive and
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operator-independent approaches remains a high priority in oncology. The development of
reliable, non-invasive computer-aided diagnostic (CAD) tools may provide novel means to
address these problems.

Image digitalization coupled with artificial intelligence is emerging as a powerful
tool for generating large-scale quantitative data from high-resolution medical images
and for identifying patterns that can predict biological processes and pathophysiological
changes [3]. Preliminary studies have suggested that objective and quantitative structures
that go beyond conventional image examination can predict the histopathological and
molecular characteristics of a tumor in a non-invasive way [4]. Several new tools are
now available for image analysis, and the machine learning processing pipeline enables
automatic segmentation, feature extraction, and model building (Figure 1).
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Figure 1. Diagram describing the process of the radiomic machine learning workflow. First, CT
image scans are acquired. Tumor regions are delineated during segmentation. Mathematical features
are extracted from the tumor segmentations using software tools. These features are used to train
machine learning models to make predictions using new data.

Segmentation is a critical part of the radiomic process, but it is also known to be
challenging. Manual segmentation is labor-intensive and can be subject to inter-reader
variability [5,6]. To improve segmentation efficiency and accuracy, the development of
automated or semi-automated segmentation methods has become an active area of re-
search [7]. Several deep learning models have been used to segment lung tumors from CT
scans. However, validation of the reproducibility of these proposed methods using large
datasets is still limited [8–11], and this has hindered their application in clinical settings.
Deep learning tools such as U-Net and E-Net have been previously used to automatically
segment non-small cell lung tumors and nodules in CT images, but these models were not
specifically trained using lung cancer patient data [8].

The incremental multiple resolution residual network (iMRRN) is one of the best
performing deep learning methods to have been developed for volumetric lung tumor
segmentation from CT images [8–10,12]. The iMRRN extends the full resolution residual
neural network by combining features at multiple image resolutions and feature levels. It
is composed of multiple blocks of sequentially connected residual connection units (RCU),
which in turn are convolutional filters used at each network layer. Due to its enhanced
capability in recovering input image resolution, the iMRRN has been shown to outper-
form other neural networks commonly used for segmentation, such as Segnet and Unet,
in terms of segmentation accuracy, regardless of tumor size, and localization [7,8,13,14].
Additionally, the iMRRN has also been shown to produce accurate segmentations and
three-dimensional tumor volumes when compared with manual tracing by trained radi-
ologists [8]. Its excellent segmentation performance and its public availability make the
iMRRN an excellent candidate for other researchers to use.

In this study, we assessed the extent to which the iMRRN coupled with supervised
classification can predict lung tumor subtypes based on CT images acquired from lung
cancer patients. Segmentation performance was used to inform improvements to the tumor
delineation process when deep learning models were used. The automated segmentation
of lung tumors yielded quantifiable radiomic features to train classification algorithms.
Seven machine learning classifiers were compared for their accuracy in differentiating three
histological subtypes of lung cancer using CT image features. The most discriminating
features and most accurate classification learners were ranked.

Our study was prompted by the fact that disconnections between AI research and
clinical applications exist, and we have provided a framework to close such gaps. These
gaps are not due to a lack of advanced and sophisticated AI models, but to insufficient
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validation of the integration of existing methods using new datasets and new clinical
questions. Our study validated a framework to close one such gap. Our key contributions
are summarized as follows. First, we demonstrated the feasibility of directly applying a
trained DL model that is publicly available to a completely new CT dataset collected for
other purposes with minimal inputs from radiologists. We recognized the limitations of
applying trained DL models to new datasets and proposed the incorporation radiologists’
input on approximate tumor locations for reliable and targeted segmentation. Second, we
systematically examined the accuracy of this integrated approach through lung cancer
subtype prediction using the segmentation results from the DL model. Third, we discerned
the practical issue of unbalanced data and demonstrated that an over-sampling approach
such as SMOTE (synthetic minority oversampling technique) can effectively improve
the accuracy with which real clinical data are classified. Fourth, for the first time, we
demonstrated that radiomic analysis is able to classify three subtypes of lung cancers with
accuracy comparable to that of two-subtype classification.

We believe that our study outcomes are of more use to researchers in the applied AI
and/or biomedicine communities than to those whose expertise is novel AI methodology
development. This is because our objective is not to build new deep learning or machine
learning approaches. Instead, we identified important, practical limitations of existing AI
methods when applied to new clinical data. Clinical data need to be carefully processed to
be more specific and balanced so that the performance of AI methods can be maximized.

2. Materials and Methods
2.1. Data Description

We used the previously collected and publicly available CT images in the dataset
named “A Large-Scale CT and PET/CT Dataset for Lung Cancer Diagnosis (Lung-PET-
CT-Dx)”, obtained from The Cancer Imaging Archive (TCIA) [15]. TCIA is an open-
access information platform created to support cancer research initiatives where open
access cancer-related images are made available to the scientific community (https://www.
cancerimagingarchive.net/, accessed on 30 May 2021) [15]. The Lung-PET-CT-Dx dataset
contains 251,135 de-identified CT and PET-CT images from lung cancer patients [16]. These
data were collected by the Second Affiliated Hospital of Harbin Medical University in
Harbin, Heilongjiang Province, China. Lung cancer images were acquired from patients
diagnosed with one of the four major lung cancer histopathological subtypes using biopsy.
Radiologist annotations on the tumor locations were also provided for each CT/PET-CT
image. Each image was manually annotated with a rectangular bounding box of similar
length and width to the tumor lesion using the LabelImg tool [17]. Five academic thoracic
radiologists completed the annotations: the bounding box was drawn by one radiologist
and then verified by the other four.

For our analysis, we only processed CT images with a resolution of 1 mm. CT scans
with resolutions other than 1 mm were excluded from the analysis. We made this choice
because CT images of different intervals may introduce variability in the radiomic features
that complicate the interpretation of the results. A thickness of 1 mm is the most commonly
acquired slice resolution in clinics [18], and such CT images were indeed the most well
represented in our dataset. Therefore, focusing on 1 mm thick CT images was the most
relevant choice for future clinical utilization. In some cases, a patient had more than one
chest CT scan. The anatomical scan taken at the earliest time point for a given patient
was included in the analysis. This earliest timepoint CT scan is referred to as the patient’s
primary CT scan. We decided to exclude non-primary scans for the following reasons:
non-primary scans, such as contrast-enhanced or respiratory-gated scans, do not provide
radiomic features comparable to those of CT scans, and thus are not appropriate for
inclusion in our analysis. Furthermore, the non-primary CT scans might have been acquired
after treatment had begun, at which point potential tumor necrosis and cell-death may
affect the radiomic features within the CT image. In such cases, the non-primary CT
images would not truly represent the radiomic properties of the tumors, which would have

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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changed in response to treatment. A summary of patient demographic information and
tumor TNM stages is provided in Table 1 [19].

Table 1. Summary of the demographic and clinical information of the 355 patients with CT images in
the TCIA dataset.

Subgroup A—
Adenocarcinoma

B—Small Cell
Carcinoma

E—Large Cell
Carcinoma

C—Squamous
Cell Carcinoma p-Value

Sex <0.01
M 118 21 4 47
F 133 17 1 14

Age 0.604
Median 62 63.5 63 61
Range 28–63 32–77 41–72 47–90

Smoking History <0.01
S 91 18 3 43

NS 160 28 2 18

T-Stage <0.01
T1 139 10 1 19
T2 74 13 0 19
T3 29 11 1 16
T4 9 4 3 7

N-Stage <0.01
N0 145 5 1 33
N1 58 12 1 14
N2 5 0 1 2
N3 43 21 2 12

M-Stage <0.01
M0 161 25 0 44
M1 90 13 5 17

M = male; F = female; S = smoking; NS = non-smoking.

2.2. Semi-Automated Segmentation and Manual Inspection

To perform machine learning-based radiomic analysis, the Computational Environ-
ment for Radiologic Research (CERR, Memorial Sloan Kettering Cancer Center, New York,
NY, USA) software platform was used to apply the trained iMRRN to automated segmenta-
tion [20]. CERR is an open-source, MATLAB-based (Mathworks Inc., Natick, MA, USA)
tool with methods optimized for radiomic analysis. Using CERR, CT images in the DICOM
format were converted to planC format in preparation for segmentation. Deployment
of the iMRRN to the planC object enabled the segmentation of tumor ROIs and the pro-
duction of a morphological mask over the tumor lesion. The Linux distribution Xubuntu
20.04 (Canonical Ltd., London, UK) was chosen for segmentation to execute the iMRRN
Singularity (Sylabs, Reno, NV, USA) container.

A visual comparison of the iMRRN segmentations and the radiologist annotations is
given in Figure 2. One image from each of the four pathologic tumor subtypes is presented.
In comparison with the rectangular delineations made by the radiologist, the automated
segmentations followed the contours of the tumor lesions more precisely. In these examples,
the iMRRN was able to adequately segment the tumors.
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Figure 2. Comparisons between representative examples of tumor regions of interest annotated by
radiologists (in red) (A–D) and automatically segmented by the iMRRN (in green) (E–H). Panels A
and E represent a patient with adenocarcinoma (group A); panels B and F represent a patient with
small cell carcinoma (group B), panels C and G represent a patient with large cell carcinoma (group
E); panels D and H represent a patient with squamous cell carcinoma (group C).

After the direct application of the iMRRN segmentation tool, the images were visually
examined and compared with the manual box annotations. We found that in some patient
CT scans, non-tumor structures, such as the heart, vertebrae, or sections of the patient’s
couch, were mistakenly segmented as tumor nodules. Many of these structures were quite
distant from where the tumors were located. To deal with such mistakes, we decided
to supply the iMRRN only with CT images near the tumor locations. When performing
segmentation within these focused tumor regions of interest (ROI), the iMRRN no longer
erroneously segment unrelated structures. Using a Matlab program developed in house,
original CT scans were trimmed by discarding the parts of the images outside the anno-
tation boxes known not to contain the tumor lesion (Figure 3). Since there were cases in
which the radiologist annotations did not cover the entire tumor, which may have led to
incomplete segmentation, an upper and lower buffer were included in the ROI to increase
the segmentation ROI (Figure 3, bottom panel).

2.3. Radiomic Feature Extraction

Using CERR methods, histogram intensity features and tumor morphology features
were extracted from the segmented ROIs. These features included 17 shape features,
22 first-order features, and 80 texture features from the tumor regions in each CT scan.
Texture features were further broken down into the following 5 subgroups: gray level
co-occurrence matrix (26), gray level run length matrix (16), gray level size zone matrix (16),
neighborhood gray tone difference matrix (5), and neighborhood gray level dependence
matrix (26). Each of these features were defined mathematically in the Image Biomarker
Standardization Initiative reference manual [21]. A list of extracted radiomic features
is given in Supplementary Table S1. All attributes were continuous variables, and each
feature was normalized to a range between zero and one so that the scales of the feature
values did not affect the results. Observations containing missing values and infinite values
were removed.

In order to evaluate the predictive role of 2D and 3D CT-scan features in determining
tumor subtype, we initially narrowed down the analysis to the central transverse plane
of the Region of Interest (ROI) for the 2D examination. Subsequently, we expanded the
analysis to encompass the entire tumor mask for the 3D examination.To examine how well
the center CT slice represents other slices in the same CT volume in terms of radiomic
analysis, we trained several classifiers using only center slices from the CT volumes and
then tested the classification accuracy on the off-center slices that were 4 mm away from
the center slices. No test slices were acquired if there was no tumor lesion 4 mm away from
the center.
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Figure 3. Overview of the process used to increase segmentation accuracy for images that failed
initial screening. Top: In images for which unrestricted segmentation failed, the radiologist-defined
ROI was isolated from the entire image stack (left) along with buffer images above and below the ROI.
Automated segmentation using the iMRRN was then restricted to the target area. Bottom: example
of incorrect segmentation of a non-tumor anatomical structure in which the iMRRN tool was used
without restriction (left) compared with correct lesion segmentation after the field of analysis was
restricted to the ROI and buffer images (right).

When the 2D CT images were analyzed, only those shape features applicable in 2D
(i.e., major axis, minor axis, least axis, elongation, max2dDiameterAxialPlane, and surfArea)
were included. We hypothesize that these shape features are the most robust against CT
scanner variation, and, therefore, will be the most important when identifying lung tumors
by histological subtype.

2.4. Radiomic Model Building

To examine the effectiveness of supervised learning methods in classifying lung cancer
subtypes using radiomic features extracted from segmented tumor CT data, we trained and
tested seven classifiers. The MATLAB Classification Learner App (Statistics and Machine
Learning Toolbox version 12.3) was used to perform the classification and evaluation. The
training data contained the extracted radiomic features as well as the confirmed lung cancer
subtypes. The following classification algorithms were considered and compared: decision
tree, discriminant, naïve Bayes, support vector machine, k-nearest neighbors, ensemble,
and a narrow neural network. Each of these models was trained in over fifty iterations.
Five-fold cross-validation (CV) was used to evaluate the performance of each model. Five-
fold CV divides the whole dataset into five subsets of equal size. Each model was trained
using four subsets and then tested on the fifth subset; the process was repeated five times,
and the averaged results were reported.

Three lung cancer subtypes, namely adenocarcinomas (group A), small cell carcinomas
(group B), and squamous cell carcinoma (group C), were used as response variables for
our analysis. Large-cell carcinomas were not included in the analysis as they were poorly
represented in the dataset (only five instances). Clinically, large-cell carcinomas account for
less than 10% of all lung cancer types, so omitting this particular type did not impact our
study objectives.

A principal component analysis (PCA) was used to reduce data complexity [22]. A
PCA works by transforming the original dataset into a new set of variables (principal
components) that are linear combinations of the original features. This is a widely used
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technique in machine learning and is especially useful when analyzing data with many
features. We used the synthetic minority over-sampling technique (SMOTE) to address
the problem of class imbalance in our dataset, in which adenocarcinoma patients (n = 251)
greatly outnumbered small cell carcinoma patients (n = 38) and squamous cell carcinoma
patients (n = 61). SMOTE was used synthesized new observations using a k-nearest
neighbors approach to balance the number of training observations for each histotype
group [23]. The MATLAB implementation of SMOTE we used created a more balanced
dataset for radiomic modeling and feature analysis [24].

Chi-square tests have been used in machine learning to select features [25]. Although
chi-square tests are restricted to categorical data, discretization enables the examination
of continuous variables [26]. In our study, we used chi-square tests to obtain a chi-square
feature ranking. This ranking describes the degrees of association between each feature and
the response variable, which is the class label for classification. Using the feature ranking,
we determined which were the most important shape, texture, and first-order histogram
intensity features for classifying lung cancer histological subtypes.

3. Results
3.1. Patient Demographics

We summarized the demographic and clinical information of our lung CT patient
cohort (Table 1). Over-representation in the adenocarcinoma group (A) in comparison with
all other histotype groups was observed. The number of large cell carcinoma observations
(five) was insufficient to proceed with radiomic analysis, so these observations were not
considered for the training of the classification models. Sex, age, smoking history, and
TNM stage are summarized by histotype. Of note is the relatively large number of T1
observations, which denote tumor lesions less than 3 cm across.

3.2. Segmentation Accuracy

The accuracy of the automated segmentation performed by the iMRRN was first
evaluated against the radiologist-defined regions of interest in 436 lung cancer images
spanning various tumor subtypes and dimensions (ROI). Based on visual inspections
of the morphological masks, the iMRRN initially produced accurate segmentations for
195 of the 436 (44.7%) plain CT images, and incorrectly placed the tumor region outside
the radiologist’s ROI in 241 of the 436 cases (55.3%) (Figure 4). In the 241 scans that
were incorrectly segmented, the iMRRN had placed the segmentation mask over a non-
tumor anatomical structure outside of the radiologist-delineated ROI bounding box. This
demonstrated a need for additional guidance to produce a higher number of accurate
lesion contours for radiomic analysis. The 241 failed segmentations were again processed
within the radiologist-defined bounds (Figure 4). An additional description of the data
segmentation and exclusion process can be found in Supplementary Table S2. Of these
241 CT scans, the iMRRN segmentations matched the radiologist delineations in 222 cases.
In the remaining 19 scans, the iMRRN masks did not match the radiologist’s annotations.
These 19 scans, which represent different histological subtypes as well as a range of T-stages,
were excluded from further radiomic analysis, resulting in an overall segmentation failure
rate of 4.35%.

Overall, the restriction of the segmentation execution to the ROI produced a higher
number of accurate masks compared with the unrestricted analysis. Segmentation accuracy
was improved across histological subtypes and lesions of different dimensions (Table 2).
We performed two different comparisons, one by histotype and one by T-stage, in which
the group size was the number of patients and the successes were the number of segmented
CT scans. The percentage increase in each histotype was between 25% and 130%. The
segmentation accuracy for all tumor sizes was improved by different degrees in relation
to the T-stage, ranging between 10% and 2100%. The earlier the T-stage was, the higher
the segmentation improvement that was achieved. As expected, the greatest improvement
was seen for lesions smaller than 1 cm in diameter. As is shown in Table 2, only one CT
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scan containing a tumor smaller than 1 cm was successfully segmented when automatic
segmentation was performed on the entire CT volume. After a refined CT volume was
supplied to the automatic segmentation model, 22 CT datasets containing tumors smaller
than 1 cm were successfully segmented. Without this refinement, the iMRRN either incor-
rectly segmented a non-tumor anatomical structure or failed to produce a segmentation
mask. Taken together, our data suggest that the automatic and unrestricted segmentation of
relatively small tumor lesions still requires manual intervention from a trained radiologist.
However, a single radiologist annotation in the coronal plane may be sufficient to guide
automated software segmentation of the tumor mass even within all the corresponding
transverse plane images. This form of semi-automated segmentation may represent the
best of both worlds, with trained radiologists supervising precision mathematical models
with high accuracy and repeatability and minimal intervention.
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ume was supplied to the automatic segmentation model, 22 CT datasets containing tu-

mors smaller than 1 cm were successfully segmented. Without this refinement, the iMRRN 

either incorrectly segmented a non-tumor anatomical structure or failed to produce a seg-

mentation mask. Taken together, our data suggest that the automatic and unrestricted 

segmentation of relatively small tumor lesions still requires manual intervention from a 

trained radiologist. However, a single radiologist annotation in the coronal plane may be 

sufficient to guide automated software segmentation of the tumor mass even within all 

the corresponding transverse plane images. This form of semi-automated segmentation 

may represent the best of both worlds, with trained radiologists supervising precision 

mathematical models with high accuracy and repeatability and minimal intervention. 

Table 2. Summary of segmentation results by histological group and by T-stage before and after the 

restriction of the image to the spatial range based on the annotation bounding box. 

Histotype 

Symbol 
Group Size Group Description 

Pre-Restriction 

Successes 

Post-Restriction 

Successes 

Percentage In-

crease 

A 251 Adenocarcinoma 127 292 130% 

B 38 Small cell carcinoma 27 47 74% 

E 5 Large cell carcinoma 4 5 25% 

C 61 Squamous cell carcinoma 37 73 97% 

T-Stage Group Size Group Description 
Pre-Restriction 

Successes 

Post-Restriction 

Successes 

Percentage In-

crease 

Figure 4. This flowchart describes the segmentation and data exclusion process. Morphological
segmentation masks were manually inspected for spatial accuracy against radiologist annotations
following segmentation iterations. Segmentations that matched the annotations proceeded to feature
extraction. Segmentation masks that did not adhere to the radiologist annotations were segmented
again within the radiologist-defined region of interest (ROI). Masks that did not match the radiologist
annotations (n = 19) after this step are excluded from downstream analyses.

Table 2. Summary of segmentation results by histological group and by T-stage before and after the
restriction of the image to the spatial range based on the annotation bounding box.

Histotype Symbol Group Size Group Description Pre-Restriction
Successes

Post-Restriction
Successes

Percentage
Increase

A 251 Adenocarcinoma 127 292 130%
B 38 Small cell carcinoma 27 47 74%
E 5 Large cell carcinoma 4 5 25%
C 61 Squamous cell carcinoma 37 73 97%

T-Stage Group Size Group Description Pre-Restriction
Successes

Post-Restriction
Successes

Percentage
Increase

1a 12 Tumor smaller than 1 cm 1 22 2100%
1b 29 Tumor smaller than 2 cm 8 33 312%
1c 128 Tumor smaller than 3 cm 52 158 203%
2 106 Tumor smaller than 5 cm 69 116 68%
3 57 Tumor smaller than 7 cm 46 67 45%
4 23 Tumor larger than 7 cm 19 21 10%

3.3. Radiomic Model Analysis Using SMOTE

From the 417 successfully segmented patient CT scans, we excluded follow-up studies
to produce a training dataset of 324 unique observations. This training data included
one representative segmentation mask per patient. We demonstrated how the SMOTE
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function rebalanced the number of observations in the training data (Table 3). Rebalancing
was applied to the small cell carcinoma (B) and squamous cell carcinoma groups (C);
the adenocarcinoma group (A), in contrast, was over-represented in this dataset. We
applied SMOTE to the B and C groups to approximate an equal number of observations
between each of the response types. Before applying SMOTE, the total number of training
observations was 324, and this increased to 672 after applying SMOTE.

Table 3. Summary of the number of training observations by histotype class both before and after
applying SMOTE.

A B C Total

Before SMOTE 226 38 60 324
After SMOTE 226 224 222 672

To assess whether machine learning classification algorithms can be used to predict
histological subtypes from lung cancer CT images, we next extracted first- and second-order
characteristics from the segmented images. To account for differences in the numbers of
cases across histotype groups, we first examined how classification accuracy was affected
by inherit variations caused by the application of SMOTE to the training data. We trained
models using five separate instances of the SMOTE function and compared the resulting
classification accuracy (Table 4).

Table 4. Summary of the classification results for five instances of models trained with SMOTE-
resampled observations.

Model Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Tree 80.10% 80.10% 78.30% 79.60% 79.30%
Discriminant 73.20% 72.90% 74.40% 73.10% 70.40%
Naïve Bayes 71.40% 70.80% 73.10% 69.90% 71.30%
SVM 92.70% 93.20% 91.70% 92.40% 87.80%
KNN 89.00% 90.30% 89.90% 89.90% 89.60%
Ensemble 89.00% 90.60% 90.30% 89.90% 88.10%
Narrow Neural Network 83.00% 83.80% 83.00% 84.20% 83.80%

SVM = support vector machine; KNN = K-nearest neighbors.

3.4. Radiomic Analysis: Center and Center-Offset Slices

We next used our pipeline to evaluate the ability of seven machine learning models to
accurately distinguish adenocarcinomas from the two other histological subtypes using
103 first- and second-order features in two dimensions using the central slide of the entire
CT stack. We first conducted a two-class comparison (adenocarcinomas and squamous cell
carcinomas vs. small cell carcinomas). The two-class comparison analysis represents the
distinction between non-small cell carcinoma (NSCLC) and small-cell carcinoma (SCLC)
cancer types. The dataset included 30 small cell carcinomas and 171 combined adenocarci-
noma and squamous carcinomas. The accuracy of the classifiers in distinguishing NSCLC
from SCLC ranged between 77% and 85% (Table 5). The results show minimal interference
by the SMOTE function in the classification accuracy. Although the SMOTE function did
not significantly improve the histological classification performance, the AUC did increase.
This is possibly because the two classes of data were severely unbalanced (Table 5).
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Table 5. Summary of the classification results using features extracted from the central axial slice of
the tumor volume from the patients’ primary CT scans before and after SMOTE resampling.

Two-Class Classification

Classification Model Pre-SMOTE CV
Accuracy

Post-SMOTE CV
Accuracy Pre-SMOTE AUC Post-SMOTE AUC

Tree 85.10% 74.40% 0.50 0.73
Discriminant 83.60% 77.60% 0.73 0.87
Naïve Bayes 81.60% 74.00% 0.61 0.82
SVM 85.10% 77.60% 0.50 0.84
KNN 85.10% 80.50% 0.71 0.9
Ensemble 85.10% 78.00% 0.50 0.86
Narrow Neural Network 77.1% 78.30% 0.48 0.80

Three-Class Classification

Classification Model Pre-SMOTE CV
Accuracy

Post-SMOTE CV
Accuracy Pre-SMOTE AUC* Post-SMOTE AUC*

Tree 70.10% 73.30% 0.75 0.81
Discriminant 70.60% 77.50% 0.82 0.88
Naïve Bayes 68.20% 68.90% 0.81 0.85
SVM 72.10% 85.00% 0.82 0.84
KNN 71.60% 87.00% 0.84 0.97
Ensemble 71.60% 84.30% 0.77 0.93
Narrow Neural Network 60.70% 77.50% 0.65 0.78

AUC = area under curve (* adenocarcinoma is the positive class); CV = five-fold cross-validation; SVM = support
vector machine; KNN = K-nearest neighbors.

We then assessed the ability of our model system to accurately distinguish between
three different tumor subtypes, namely adenocarcinomas, small cell carcinomas, and
squamous cell carcinomas. As is shown in Table 3, the unbalanced three-group comparison
yielded lower accuracy levels compared with the two-group comparison (ranging between
60.7% and 72.1%). However, after the groups were rebalanced using the SMOTE function,
the accuracy of the ensemble, SVM, and KNN models increased to 84.3%, 85%, and 87%,
respectively (Table 5).

Lastly, we applied a PCA to the 103 features to assess whether reducing the dimension-
ality of the variables would improve the accuracy of the classifiers. The PCA reduced the
number of variables from 103 to 13 features while keeping 95% of the variability. However,
the application of the PCA did not impact the performance of the algorithms when the
analysis was limited to the central slide of the CT stack. The effect of the PCA on the
SMOTE-resampled data is summarized in Supplementary Table S3.

3.5. Radiomic Feature Analysis: Whole Tumor

To account for the complex three-dimensional structures of the tumors, we next
repeated the analysis using the whole stack of CT images. A total of 129 2D and 3D features
were identified and tested in two- (adenocarcinomas and squamous carcinomas vs. small
cell carcinomas) and three-class (adenocarcinomas vs. squamous carcinomas vs. small
cell carcinomas) comparisons (Table 6). The two-class comparison analysis represents the
distinction between non-small cell carcinoma (NSCLC) and small-cell carcinoma (SCLC)
cancer types. In the two-class comparison, the rebalancing of the groups via the SMOTE
function increased the accuracy of the models (ranges of 79.6–92.6% and 82.1–88.3% with
and without the SMOTE function, respectively). As with the single image analysis, the
addition of the PCA did not significantly affect the overall performance of the algorithms. In
the three-class comparison, the discriminatory ability of the algorithms was slightly lower,
although in this case rebalancing between the groups also increased the performance of the
classifiers (unbalanced comparisons range: 67.6–89.1% versus balanced comparisons range:
73.2–92.7%). When the PCA was applied to the dataset, the SMOTE function appeared to
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have a greater impact than the reduction in dimensionality. For example, the SVM model
had an accuracy of 76.5% and an AUC of 0.86 in the unbalanced comparison, but it has an
accuracy of 92.7% and an AUC of 0.97 after the SMOTE function was applied.

Table 6. Summary of the classification results using features extracted from the whole tumor volume
in the patients’ primary CT scans.

Two-Class Classification

Classification Model Pre-SMOTE CV
Accuracy

Post-SMOTE CV
Accuracy Pre-SMOTE AUC Post-SMOTE AUC

Tree 88.30% 82.30% 0.48 0.85
Discriminant 87.30% 82.50% 0.75 0.90
Naïve Bayes 84.00% 79.60% 0.71 0.86
SVM 88.30% 92.60% 0.69 0.98
KNN 88.30% 88.70% 0.69 0.90
Ensemble 88.30% 92.60% 0.48 0.98
Narrow Neural Network 82.10% 89.90% 0.61 0.92

Three-Class Classification

Classification Model Pre-SMOTE CV
Accuracy

Post-SMOTE CV
Accuracy Pre-SMOTE AUC* Post-SMOTE AUC*

Tree 76.5% 80.1% 0.84 0.87
Discriminant 73.5% 73.2% 0.86 0.87
Naïve Bayes 74.7% 71.4% 0.83 0.89
SVM 76.5% 92.7% 0.86 0.97
KNN 89.1% 89.0% 0.87 0.86
Ensemble 77.2% 89.0% 0.86 0.96
Narrow Neural Network 67.6% 83.0% 0.71 0.86

AUC = area under curve (* adenocarcinoma is the positive class); CV = five-fold cross-validation; SVM = support
vector machine; KNN = K-nearest neighbors.

3.6. Radiomic Feature Analysis: Three-Class Classification with Whole Tumor Features

We performed chi-square feature ranking to identify the key features in the three-class
classifications using unbalanced responses. The ranking is shown in Figure 5. While
texture features, particularly gray level run length matrix (GLRLM) characteristics, scored
highest in importance for predicting histological subtype, shape features did not emerge as
important predictors, as was previously hypothesized.

After applying the SMOTE function to the training data for three-class classification,
we proceeded to analyze the chi-square feature ranking. The top 30 features were again
ranked according to their predictor importance score (Figure 6). In comparison with the
pre-SMOTE feature ranking (Figure 5), the post-SMOTE feature ranking places a higher
emphasis on texture features, particularly GLRLM and GLCM features, in addition to first-
order histogram intensity features. These features have infinite value predictor importance
scores, indicating the strongest relationship between these characteristics and histological
subtype classification.
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4. Discussion

Radiomic analyses provide valuable quantitative descriptions of medical images
and have great potential to be used clinically for the improved management of cancer
patients [27]. One bottleneck obstructing the clinical application of radiomics in cancer
diagnosis and treatment is the need for manual tracing of the tumor by a certified radiologist.
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In this study, we showed that a pre-trained deep learning segmentation model with minimal
input from radiologists on tumor locations can be used to replace the tedious manual
segmentation of lung tumors.

We examined three primary types of lung cancer in our analysis. Lung adenocarci-
noma, lung squamous cell carcinoma, and small cell lung cancer exhibit distinct physical
characteristics. Adenocarcinoma is the most common type and appears as irregular glands
or clusters of cells, resembling glandular tissue. It typically develops in the outer regions of
the lungs and is more common in non-smokers and in women. In contrast, squamous cell
carcinoma is characterized by cancerous cells resembling flat, thin squamous cells arranged
in layers. It commonly arises in the central airways, such as the bronchi, and is strongly
associated with smoking, particularly in male smokers. Small cell lung cancer is character-
ized by small, round cancer cells with minimal cytoplasm that grow in clusters [28]. By
carefully analyzing the CT images, radiologists can identify specific patterns associated
with each type of lung cancer.

To our knowledge, our study is the first that has attempted to classify three histological
subtypes of lung cancer using clinical CT/PET images. Li et al. made an attempt to classify
the same three subtypes; however, their analyses were primarily binary in nature. This is
because their results focused solely on comparing classification accuracies between two out
of the three subtypes, without testing the accuracy of distinguishing all three subtypes from
each other [29]. Every other study has classified only two subtypes (either adenocarcinoma
versus squamous cell carcinoma [30–32] or small cell lung cancer versus non-small cell lung
cancer). Our best performing model was the support vector machine, which achieved a
classification accuracy of 92.7% with an AUC of 0.97 when the three lung cancers subtypes
were distinguished. The SVM and ensemble models performed the best when two classes
(small cell lung cancer versus non-small cell lung cancer) were considered, both achieving
an accuracy of 92.6% with an AUC of 0.98. Our models outperformed those used in
previous studies [32].

Our analysis provides important insights into how the proposed framework can be
contextualized and used for radiomic analysis. First, although automated segmentation
algorithms such as the iMRRN are designed to operate without prior information concern-
ing the location of the tumor lesion, we found that segmentation accuracy was improved
when the general location of the tumor was provided (Table 3). The annotation can be as
simple as the index of the slice which contains the tumor. A deep learning (DL) model
can then be applied to the tumor-adjacent slices to remove the need to search through the
entire stack for the tumor. The latter method was shown by our data to have a higher rate
of misidentification of the tumor lesion. As this process will only require labeling a single
tumor slice, this approach requires very limited effort from the radiologist. Thus, it may
boost the use of automated DL segmentation and radiomics in oncology. From a clinical
perspective, developing radiomics-based tools that can predict tumor histology may spare
patients from invasive procedures and help physicians capture histological changes that
may emerge in response to targeted treatments [33,34].

A second important issue that emerged from our analysis is the role of an unbalanced
dataset, which truly poses challenges in radiomic analysis. When working with retrospec-
tive clinical samples, it is common for a dataset to contain unequal numbers of subjects
across comparison groups. However, it is also known that many machine learning methods
are sensitive to unbalanced data, as the minority classes may not be learned as sufficiently
as the dominant classes. One should carefully examine the distribution of data before
applying machine learning based radiomic analysis because unsatisfying results could
partially stem from the underrepresentation of some classes. This is especially true for
multi-class classifications, in which samples can be significantly skewed. As Table 6 shows,
over-sampling increased the accuracy of the two-class classification by a few percentage
points (up to 4%), while more significant improvements in the accuracy of the models were
seen in the three-class classification (up to 16.2%). These results are comparable to other
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lung radiomic studies that have demonstrated increased classification performance after
applying re-sampling techniques [35].

Lastly, effective classification methods rely on features that are informative and dis-
criminating across compared groups. Radiomic features are divided into distinct classes:
shape features, sphericity and compactness features, histogram-based features, and first-
and second-order features. Shape features include geometric and spatial characteristics
such as size, sphericity, and the compactness of the tumor. Sphericity and compactness are
features known to have strong tumor classification reliability [36]. First-order characteristics
are features that describe pixel intensity values and may be expressed as histogram values.
Histogram-based features have been shown to have a high degree of reliability in radiomic
studies [36]. Second-order features, or texture features, rely on statistical relationships
between patterns of gray levels in the image. The gray level run length matrix and gray
level zone length matrix features each describe homogeneity between pixels and have been
shown to be reliable second-order features [37]. Our study showed that 3D CT data outper-
form single 2D CT data by up to 5% when their radiomic features are used in classification.
There are several factors that might cause this. First, 3D CT data provides a richer set of ra-
diomic features, such as the true shape and size information of the three spatial dimensions
described above. Second, tumor morphometric and texture characteristics are subject to
spatial heterogeneity, which can only be captured by 3D features. Two-dimensional texture
features may not be sufficient to accurately describe spatial heterogeneity. However, if
clinical 3D CT data are unavailable, 2D radiomic analysis can still be used to achieve useful
classification with decent accuracy.

Improving the accuracy of such classifications will rely on the selection of discrim-
inating features. This study utilized each of the shape, first-order, and texture features
available in CERR, as these are shown to be robust against differences in image acquisition
techniques [38]. Incorporating clinical features such as age, sex, weight, and smoking
history are likely to improve classification accuracy as these have been shown to correlate
with risk for lung cancer [39].

5. Conclusions

This study demonstrated a successful application of the deep learning method iM-
RRN to the segmenting of independent lung CT data and identified a procedure to make
automatic segmentation more accurate. The direct use of segmentation with existing deep
learning models leads to classification accuracy comparable with that typically achieved in
published studies. The necessity of balancing data samples was demonstrated, as was a suit-
able data balancing method. The feasibility of performing classifications with three classes
was shown by systematically comparing various machine learning methods. Overall, we
demonstrated that the classification of subtypes of lung cancer can be semi-automated with
minimal radiologist intervention in terms of segmentation and radiomic analysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10060690/s1, Table S1: Extracted Radiomic Features
Using CERR; Table S2: Segmentation and Data Exclusion Process; Table S3: Classification Accuracy
Before and After Applying PCA to the Training Dataset With SMOTE applied.
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