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Abstract: Chronic pain (CP) has been found to cause significant alternations of the brain’s structure
and function due to changes in pain processing and disrupted cognitive functions, including with
respect to the prefrontal cortex (PFC). However, until now, no studies have used a wearable, low-cost
neuroimaging tool capable of performing functional near-infrared spectroscopy (fNIRS) to explore
the functional alternations of the PFC and thus automatically achieve a clinical diagnosis of CP. In this
case-control study, the pain characteristics of 19 chronic pain patients and 32 healthy controls were
measured using fNIRS. Functional connectivity (FC), FC in the PFC, and spontaneous brain activity
of the PFC were examined in the CP patients and compared to those of healthy controls (HCs). Then,
leave-one-out cross-validation and machine learning algorithms were used to automatically achieve a
diagnosis corresponding to a CP patient or an HC. The current study found significantly weaker FC,
notably higher small-worldness properties of FC, and increased spontaneous brain activity during
resting state within the PFC. Additionally, the resting-state fNIRS measurements exhibited excellent
performance in identifying the chronic pain patients via supervised machine learning, achieving F1
score of 0.8229 using only seven features. It is expected that potential FC features can be identified,
which can thus serve as a neural marker for the detection of CP using machine learning algorithms.
Therefore, the present study will open a new avenue for the diagnosis of chronic musculoskeletal
pain by using fNIRS and machine learning techniques.

Keywords: chronic pain; fNIRS; machine learning; graph theory

1. Introduction

Chronic pain (CP) refers to pain that persists after a normal healing period, lasting
or recurring for over 3 months [1,2]. CP affects approximately 20% of the population
worldwide, demonstrating a myriad of biomedical, psychosocial, and behavioral distur-
bances [3]. In particular, CP patients are more vulnerable to developing emotional and
cognitive disorders. According to previous studies (Barnett, Mercer [4]), 20–50% of CP
patients might develop co-morbid depression and cognitive disorders such as dysfunctions
in executive function, decision making, and social cognition [5]. Meanwhile, CP patients
might also exhibit significant brain structural and functional alterations due to changes in
pain processing and disrupted cognitive functions [6,7]. Presently, a reliable neurophysio-
logical measure for objectifying pain is still lacking [8]. Interestingly, due to the role of the
prefrontal cortex (PFC) in pain processing and regulating high functions, the functional
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connectivity (FC) of the PFC might be a promising measure for the diagnosis of CP [9].
For example, Ihara, Wakaizumi [10] discovered that CP patients exhibited significantly dif-
ferent functional brain networks in the PFC compared to pain-free controls. Moreover, the
degree of altered FC between the nuclear accumbens and the medial PFC was significantly
correlated with pain chronicity [11]. In addition to the FC changes of the PFC, studies have
revealed impaired topographical properties of FC associated with CP via graph theory
analysis [12,13].

More importantly, recent advances in neuroimaging techniques and methods such
as electroencephalography (EEG), functional magnetic resonance (fMRI), and functional
near-infrared spectroscopy (fNIRS) have offered better opportunities to fully understand
the cognitive neural mechanisms underlying CP during a task [14] or at rest [15]. In addi-
tion, fNIRS is a wearable-conducive, low-cost, and noninvasive neuroimaging technique
that measures the concentration changes of oxygenated (HbO) and deoxygenated (HbR)
hemoglobin in brain tissue following neuronal activity [16,17]. Unlike EEG and fMRI,
fNIRS can be carried out in a natural environment, which is not very sensitive to mo-
tion artifacts [18]. Further, fNIRS data combined with machine learning can assist the
medical and clinical diagnosis of various psychiatric and neurological disorders, such as
Alzheimer’s disease, Parkinson’s disease, post-neurosurgery dysfunction, anxiety disor-
ders, and childhood disorders [19]. For example, Yang and Hong [20] utilized fNIRS and a
pre-trained convolutional neural network model to analyze the difference in FC between
mild cognitive impairment patients and healthy controls (HCs). Xu, Liu [21] used fNIRS
and a deep learning model to examine the potential patterns of temporal variation in the
resting state in patients with autism spectrum disorder, achieving a high classification
accuracy of 95.7%. These studies demonstrated the promising potential of fNIRS-based
machine learning in detecting and classifying disorders and predicting their severity. To the
best of our knowledge, no work has been conducted using fNIRS and machine learning
methods to reveal the unique FC patterns for the detection of CP.

In this study, we will analyze whether FC and spontaneous brain activity of the
PFC are changed in CP patients compared to those of HCs. We will also examine the
topological properties of the PFC, such as the clustering coefficient and path length, by
using graph theoretical network analysis [22]. It is expected that potential FC features can
be identified, which can serve as a neural marker for the detection of CP using machine
learning algorithms. Therefore, the present study will open a new avenue for the diagnosis
of chronic musculoskeletal pain through fNIRS and machine learning techniques.

2. Methods
2.1. Participants

In this study, 52 right-handed participants, including 19 chronic musculoskeletal pain
patients (25.3 ± 4.6 years, 12 females) and 32 age- and gender-matched HCs (24.7 ± 4.2 years,
18 females), were recruited from the First Affiliated Hospital of Sun Yat-sen University.
All patients, who were afflicted with pain that had lasted over 6 months and free of any
neurologic or metabolism diseases, were diagnosed with chronic musculoskeletal pain by three
physicians. All participants provided informed consent prior to the experiment. The present
study protocol was approved by the Institutional Review Board at both the University of
Macau and Sun Yat-sen University.

2.2. fNIRS Data Acquisition and Preprocessing

All participants underwent a 5 min session of resting-state fNIRS recordings. They were
seated in a comfortable chair and instructed to keep still and not to think about anything
purposely. It was observed that none of the participants slept during the fNIRS data record-
ing. Our experiment was conducted by utilizing a fNIRS system (Oxymon Mk III, Artinis,
The Netherlands) transmitting at two wavelengths, namely, 760 and 850 nm, to measure
HbO and HbR concentration changes with 50 HZ sampling rate (Figure 1). The fNIRS sys-
tem consisted of 2 near-infrared light source emitters and 8 detectors, yielding 8 channels in
total. The distance between each source and detector pair was set to 3 cm. In addition, the
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Montreal Neurological Institute (MNI) coordinates of each fNIRS channel were measured
using an ICBM-152 head model, which was based on the international 10–20 system for
EEG recording. Then, the coordinates were processed using NIRS-SPM to estimate the
MNI coordinates and associated brain regions of the optodes and channels together with
the probability of the channels (Table 1). This probability measure describes how well the
estimated MNI coordinates accurately correspond to specific brain regions.
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Table 1. The 3D MNI coordinates, anatomical labels, and coverage percentage of fNIRS channels.

Channel Numbers
MNI

Anatomical Label Percentage of Overlap
X Y Z

1 51 46.33 16.33

45—pars triangularis
Broca’s area;

46—Dorsolateral
prefrontal cortex;

60.517%
39.483%

2 31.67 65 17
10—Frontopolar area;

46—Dorsolateral
prefrontal cortex;

80.989%
19.011%

3 50.33 51.67 −1.33

45—pars triangularis
Broca’s area;

46—Dorsolateral
prefrontal cortex;

47—Inferior prefrontal
gyrus;

2.9197%
96.35%

0.72993%

4 30.67 68.33 −1.67 10—Frontopolar area;
11—Orbitofrontal area;

36.093%
63.907%
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Table 1. Cont.

Channel Numbers
MNI

Anatomical Label Percentage of Overlap
X Y Z

5 −25.67 66.67 17.67
10—Frontopolar area;

46—Dorsolateral
prefrontal cortex;

86.716%
13.284%

6 −46 49.33 17.33

45—pars triangularis
Broca’s area;

46—Dorsolateral
prefrontal cortex;

41.985%
58.015%

7 −27.67 67.33 0.67 10—Frontopolar area;
11—Orbitofrontal area;

51.495%
48.505%

8 −47.67 51.67 −0.67

10—Frontopolar area;
45—pars triangularis

Broca’s area;
46—Dorsolateral
prefrontal cortex;

2.2642%
3.7736%
93.962%

The fNIRS data were preprocessed using NIRS-KIT (http://www.nitrc.org/projects/
nirskit/ accessed on 9 December 2022). The recordings from the first and last 15 s were
excluded due to potential body movements. We then used detrending and the temporal
derivative distribution repair method to reduce data drift and correct artificial motions,
respectively [23]. To minimize physiological noise due to heart pulsation (1~1.5 Hz),
respiration (0.2~0.5 Hz), and blood pressure (Mayer) waves (~0.1 Hz), the data were further
filtered with a bandpass of 0.01–0.1 Hz [24]. In this study, only HbO signals were analyzed
since they exhibited more sensitive changes to regional cerebral blood flow [25].

2.3. Brain Network Analysis

fNIRS channels and connections between them were defined as nodes and edges,
respectively. Pearson correlation coefficient between the time courses of each pair of
channels was calculated to construct individual-level brain networks, generating an 8 by
8 connection matrix for each participant. Fisher r-to-t method was used to convert the
correlation coefficients to t values [26]. Two sample tests were applied to determine the
altered connectivity networks in CP patients compared to those of HCs while correcting for
the false discovery rate (FDR) [27].

2.4. Analysis of the Amplitude of Low-Frequency Fluctuations

Previous studies demonstrated that spontaneous neural activity during rest were
particularly correlated with low-frequency blood-oxygen-level-dependent (BOLD) signals,
which can be represented by the amplitude of low-frequency fluctuations (ALFF) [28].
In particular, significantly altered ALFF values were identified in the PFC at rest or while
performing a task among CP patients compared to HCs [28–30]. These functional abnor-
malities in the PFC have been revealed in resting state fMRI, which is now extended to the
fNIRS field. Therefore, to characterize spontaneous brain activity, ALFF was calculated
as the averaged amplitude within 0.01–0.1 Hz for fNIRS data [31]. According to Fourier
transform, the time series of each channel was converted into the amplitude spectrum
in the frequency domain. Then, to increase the normalization of fNIRS data distribution,
the standard ALFF (zALFF) was obtained by subtracting the global mean value across all
channels, which was then divided by the standard deviation across all channels [26].

2.5. Graph Theory Analysis

Graph theory measurements were generated using the GRETNA toolbox
(https://www.nitrc.org/projects/gretna/ accessed on 12 December 2022). The network or-
ganizations were assessed through defined sparsity, which is the number of existing edges
divided by the maximum possible number of edges within a network [32]. The selected
range of the sparsity threshold was from 0.2 to 1 (interval = 0.01) due to the small-worldness

http://www.nitrc.org/projects/nirskit/
http://www.nitrc.org/projects/nirskit/
https://www.nitrc.org/projects/gretna/
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of human brain networks [33]. For each subject at each time-scanning duration, binarized
adjacency networks were generated by using these chosen thresholds. Once the graphs
were constructed, the properties of the graphs were inspected. Compared with random
networks, small-world networks have similar characteristic path lengths but higher charac-
teristic clustering. The small-world index was calculated as follows:

σ =
C/Crand
L/Lrand

(1)

When the value of σ was larger than 1, the network was defined as possessing small-
world characteristics [33]. The graph measurements can be categorized as global measure-
ments and local node measurements, where each graph has only one value as a global
measure and eight node values for local measures. The global measurements, including
global and local efficiency, assortativity, synchronization, and hierarchy, were examined to
reveal the properties of functional segregation, functional integration of information flows
within the brain network, and network resilience against failure. By contrast, the local nodal
measures (i.e., clustering coefficient, shortest path length, local efficiency, degree centrality,
betweenness centrality, community index, and participant coefficient) were computed to
investigate the properties of 8 putative functional areas of brain [33]. These measures
then generated the final feature vector for each chronic pain patient and healthy control.
Local metrics were calculated for each regional node to identify the most important nodes
during graph analysis at a connection density of 43%, which has shown the best ability to
differentiate CP patients from HCs with small world properties [34].

2.6. Feature Selection and Classification

A large number of features might cause overfitting, so the number of
√

n values with
highly correlated features is generally used, with n referring to the sample size [35]. Feature
selection module can select an optimal subset of features from the original feature set,
which is a required step for high-dimensional data (such as fMRI). Here, we adopted the
Fisher score feature selection algorithm, which is a univariate feature selection algorithm.
It is independent of the class distribution when applied to determine the discriminatory
power of individual features between two classes of equal probability [36]. Fisher score for
each feature in a two-class problem is defined as:

FS =
n1(m1 −m)2 + n2(m2 −m)2

n1σ1 + n2σ2
(2)

in which m is the mean of the feature, m1 and m2 are feature mean values of each class, σ1
and σ2 are respective variances, and n1 and n2 are the numbers of samples in the classes.

Thus, according to the sample size, seven features with the highest Fisher scores from the
graph theory measurements and ALFF results were selected to classify the samples, in which
two were global measurements (network efficiency and clustering coefficient) and five were
node measurements (local efficient of channel 5, cluster efficient of channel 5, local efficient of
channel 8, community index of channel 7, and efficient of channel 7) (Table 2).

Table 2. The selected features with the highest Fisher scores.

Selected Measurement HC (Mean ± Standard Deviation) Pain Patients (Mean ± Standard
Deviation) t Value p Values

Network Efficiency 0.6596 ± 0.1093 0.7528 ± 0.0855 −3.1684 0.0027

Nodal Local Efficiency_5 0.5703 ± 0.3846 0.8632 ± 0.2392 −2.9788 0.0045

Nodal Cluster Efficiency 5 0.5129 ± 0.3675 0.8035 ± 0.2646 −2.9981 0.0043

Local Efficiency of Nodal 8 0.6031 ± 0.4249 0.8784 ± 0.1535 −2.7089 0.0093

Community Index of Nodal 7 1.7419 ± 0.6308 1.1053 ± 0.8753 2.9849 0.0045

Clustering coefficient 0.5920 ± 0.1174 0.6829 ± 0.1024 −2.7854 0.0076

Efficiency of Nodal 7 0.6859 ± 0.1328 0.4743 ± 0.3383 3.1267 0.0030



Bioengineering 2023, 10, 669 6 of 12

After the feature selection stage, three well-established supervised machine learning
methods were used to construct the classifier. The supervised machine learning algorithms
were trained by using a set of input data to produce the desired output. The supervised
machine learning algorithms used in this study were linear support vector machines
(SVMs), which determined a linear maximum-margin hyperplane to maximize separa-
tion between groups. All the machine learning algorithms were implemented in MAT-
LAB (The Math Works, Natwick, MA, USA), and SVM was conducted using LIBSVM
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/, accessed on 20 December 2022). Linear re-
gression was used to model the relationship between a dependent variable and one or
more independent variables, whose goal is to find the best-fitting line that minimizes the
distance between the predicted values and the actual values of the dependent variable.
Naive Bayes works by using Bayes’ theorem to calculate the probability of each class label
given the values of the input features. Naive Bayes states that the probability of a label
given some evidence (the input features) is proportional to the probability of the evidence
given the hypothesis multiplied by the prior probability of the hypothesis. Since the small
number of participants in this study might undermine the generalizability of the classifier,
we employed leave-one-out cross-validation (LOOCV). LOOCV was repeated until data
from all participants had been used as the test sample once. The classification performance
values from all the repetitions were averaged to obtain the final result. Accuracy was
defined as measuring the proportion of correctly classified instances over the total number
of instances, and another four metrics, namely, sensitivity, specificity, F1 score, and area-
under-the-curve (AUC) value, were used to comprehensively evaluate the performance of
the classifier in discriminating HC and CP groups.

3. Results
3.1. Correlation Matrix

By using resting-state fNIRS data, a group-level correlation matrix was generated
for both the CP group and HC group, which was calculated using the mean value of the
individual-level correlation matrix. Then, the network strengths between two groups were
compared using an independent t-test and corrected. Group-level connectivity differences
between the HC and CP groups are shown in Figure 2. Group-level analysis demonstrated
that the resting-state FC strength was significantly higher (pFDR < 0.05) between channels
5 and 4 for the HCs.
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3.2. ALFF Results

As demonstrated in Figure 3, compared to the HCs, the CP patients exhibited signifi-
cantly increased zALFF values in channel 8 after FDR correction (HC = −0.2495 ± 0.8044,
chronic pain = 0.5176 ± 1.0098, t = −2.9683, p = 0.0047, Cohen’s d = 0.8403, power = 0.806,
and 93.962% Dorsolateral prefrontal cortex (DLPFC)). However, no significantly decreased
zALFF values were detected for the patient group. The findings demonstrate that the brain
activation in the PFC of the CP patients was significantly higher than that in the HCs.
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3.3. Comparison of Functional Network Characteristics

The measures of small-worldness (σ) and other functional network characteristics
were calculated for both the CP and HC groups, respectively, and are provided in Figure 4
as a function of sparsity (i.e., threshold T). It was discovered that the σ values of the
constructed brain functional networks for both groups were above 1 (Figure 4), but the
CP patients showed stronger small-worldness. More importantly, among the five global
measurements, we discovered that the CP group presented significantly lower global
efficiency and synchronizations than the HC group.

3.4. Classification Results

Three machine learning algorithms were tested with respect to their ability to classify
CP and HC groups. As shown in Table 3, the SVM achieved an accuracy of 75.59%, a 75.17%
precision rate, a 91.35% recall rate, an F1 score of 0.8229, and an AUC of 0.8719. Logistic
regression achieved an accuracy of 75.59%, a 75.17% precision rate, a 91.35% recall rate, an F1
score of 0.7131, and an AUC of 0.8719. Naïve Bayes achieved an accuracy of 75.59%, a 75.17%
precision rate, a 91.35% recall rate, an F1 score of 0.7279, and an AUC of 0.8719 (Figure 5).
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Figure 4. Functional network characteristics of the HC and CP groups. Panel (A) represents the
measure of small-worldness, and the dashed curve is 1. Panel (B) displays the global efficiency, while
Panel (C) presents the synchronizations. The curves show the network indicators under different
thresholds (from 0.21 to 1), in which blue represents the HCs while orange denotes the CP patient
group. The rectangles in the background denote the significant differences of the functional network
characteristics (p < 0.05).

Table 3. The performance of three classifiers, namely, SVM linear, logistic regression, and naïve bayes.

Learning Model Accuracy Precise Recall F1 Score AUC

SVM (linear) 0.7559 0.7517 0.9135 0.8229 0.8719

Logistic Regression 0.7898 0.7418 0.9135 0.7131 0.8754

naïve Bayes 0.7755 0.7297 0.7269 0.7279 0.8781
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4. Discussion

Pain is a complex nociceptive stimulus that activates brain regions and networks.
Among these brain regions and networks, the PFC plays a vital role in perceiving, mod-
ulating, and reappraising pain through various ascending and descending tracts [37].
As proposed by Garcia-Larrea and Peyron [38], the PFC receives encoded pain-related
information from the thalamus, incurring attentional and cognitive modulation. Moreover,
the PFC is able to reappraise pain-related information and suppressively or facilitatively
regulates pain stimuli based on individual psychological and emotional factors. However,
for chronic pain patients, the ascending and descending pain pathways are abnormally ac-
tivated by long-lasting (more than six months) aberrant pain-related information, inducing
peripheral and/or central sensitization [39]. Therefore, alterations in brain morphometry
and functional connectivity are detected in chronic patients. In particular, the disrupted
functional connectivity of the PFC has been associated with chronic patients’ deficits in
decision making [40], fear avoidance [41], and working memory [42].

The current study investigated the resting-state brain activity in CP patients com-
pared to HCs using the ALFF as a measure. The results showed significantly increased
zALFF values in channel 8, mainly located in the DLPFC, in CP patients compared to
HCs. This finding suggests that CP patients may exhibit hyperactivity in the DLPFC,
which is consistent with previous studies that have reported altered prefrontal activity in
chronic pain conditions [29]. The DLPFC is a region of the brain that is structurally and
functionally diverse and plays a crucial role in several brain networks involved in sensory,
affective, and cognitive processing. Experimental pain studies consistently reveal DLPFC
activation, while CP populations exhibit abnormal increases in DLPFC function, indicat-
ing its significance in pain-processing activities such as encoding and modulating acute
pain [9,10]. As research has consistently demonstrated the association between chronic pain
and structural and functional changes in the DLPFC, this brain region may hold potential
as a therapeutic target for pain management. Non-invasive brain stimulation techniques
have been shown to effectively alleviate both acute and chronic pain through modulation
of the DLPFC, offering promise for future treatment options [43,44].

Interestingly, our findings demonstrated that the CP patients exhibited abnormal
emotional responses and were hypersensitive to pain [45], leading to the further worsening
of symptoms. Our study also demonstrated that CP patients were associated with higher
small-worldness properties and distinct global and local topographic properties of the PFC
functional networks as compared to HCs. Consistent with previous findings [46,47], the
CP group presented significantly lower global efficiency and synchronizations than the
HCs. Synchronizations and global efficiency are reported to be measures of the network
information transmission rate, which reflects the PFC’s capacity for information exchange
and resource utilization underlying the concurrent processing of information [48,49]. We de-
tected higher small-worldness properties corresponding to the CP patients due to the fact
that nodes of processing long-lasting aberrant pain-related information are more likely to
communicate together [50,51]. The change in topographic properties might be an important
predictive or prognostic biomarker for the identification of the CP phenotype. The normal-
ization of global and local topographic properties can be a valid marker with which to note
the efficacy of treatment.

Three supervised machine learning classifiers, namely, linear SVM, logistic regression,
and naïve bayes, were used to classify CP patients and HCs, achieving at least 75% accu-
racy and an F1 score of 0.8229 according to the features from the global and local graph
measurements. A previous study [52] used fNIRS and machine learning to identify feelings
of different types of pain in HCs, thereby advancing the assessment of pain. Numerous
studies have been carried out to determine biomarkers enabling the automatic diagnosis of
CP by combing MRI with machine learning using data concerning brain structure [53–55],
resting state [15,56–58], or obtained during the completion of a task [59], with accuracy
ranging from 63% to 86%. Compared to fMRI and EEG, the cheap, convenient, and less
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contraindicatory characteristics of resting-state fNIRS data make them more likely to be
widely used in realistic clinical settings, thus benefiting CP patients.

Our study has several limitations. Firstly, it included a limited sample size, which can
limit the generalizability of the results. Secondly, the fNIRS technique used in the study
has a limited number of channels, which made it difficult to perform regions-of-interest
(ROI)-based analysis. Thirdly, the study did not measure the participants’ emotional
responses using validated clinical scales, which made it difficult to establish the functional
connectivity between the brain regions and the clinical scales.

5. Conclusions

In this study, we discovered significantly weaker functional connectivity and notably
higher small-worldness properties of resting-state brain networks in the PFC of the CP
groups compared to those of the HCs. The detected alternations in macroscopic PFC
organization in the chronic pain patients support our central hypothesis that chronic pain
can be characterized according to the type of network disorder, which is defined as altered
network organization and connectivity. Additionally, the resting-state fNIRS measurements
exhibited excellent performance as screening tools for automatically diagnosing chronic
pain patients via supervised machine learning, SVM, logistic regression, and naïve bayes,
yielding an F1 score of 0.8229 with only seven features.
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