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Abstract: Omics data was acquired, and the development and research of metabolic simulation
and analysis methods using them were also actively carried out. However, it was a laborious task
to acquire such data each time the medium composition, culture conditions, and target organism
changed. Therefore, in this study, we aimed to extract and estimate important variables and necessary
numbers for predicting metabolic flux distribution as the state of cell metabolism by flux sampling
using a genome-scale metabolic model (GSM) and its analysis. Acetic acid production from glucose
in Escherichia coli with GSM iJO1366 was used as a case study. Flux sampling obtained by OptGP
using 1000 pattern constraints on substrate, product, and growth fluxes produced a wider sample
than the default case. The analysis also suggested that the fluxes of iron ions, O2, CO2, and NH4

+,
were important for predicting the metabolic flux distribution. Additionally, the comparison with the
literature value of 13C-MFA using CO2 emission flux as an example of an important flux suggested
that the important flux obtained by this method was valid for the prediction of flux distribution.
In this way, the method of this research was useful for extracting variables that were important
for predicting flux distribution, and as a result, the possibility of contributing to the reduction of
measurement variables in experiments was suggested.

Keywords: genome-scale metabolic model; flux sampling; flux distribution prediction; important
flux extraction

1. Introduction

Numerous measurement data have been obtained at various layers, such as gene
expression, protein, metabolites, and so on. In addition, in metabolic simulations using
genome-scale metabolic models (GSMs) for metabolism, there is a growing research effort in
developing simulations and analysis methods using omics data and in improving prediction
accuracy based on these results [1–4].

In addition, the mass isotope 13C labeling data [5–10], metabolome data [1] by LC-
MS, and other methods were also used to predict and estimate intracellular metabolic
states in previous studies. However, it was still a time-consuming and labor-intensive
process to reacquire, simulate, and analyze omics data every time the culture medium
composition, culture conditions, or target organisms or strains changed. The more accurate
and comprehensive the available data was, the better the prediction accuracy through
simulation and analysis, but it was not known how much data was useful for the purpose
or how much the prediction accuracy could be improved.

One such previous study was a patent that uses L-lysin production as an example [11].
In this method, the fluxes important for L-lysin production were predicted by (1) elementary
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mode analysis [12], which was very computationally demanding, and (2) selection of
independent metabolic fluxes (called free fluxes) equal to the number of degrees of freedom
in the stoichiometric matrix [13], generation of their combinations, and application to
metabolic models. However, the GS, a commonly used metabolic model for metabolic
simulation, was a very large model in terms of both the number of constituent metabolites
and metabolic reactions. Therefore, it was difficult to apply elementary mode analysis due
to the limitation of computational costs. Similarly, the method that used the same number
of free fluxes as the stoichiometric matrix was difficult to apply in a large-scale model,
such as the GSM because the degrees of freedom were very high. Furthermore, it was very
difficult to obtain the solution space and its bounds analytically in GSM.

Therefore, in this study, we aimed to propose a search for fluxes and their combina-
tions/numbers that were important for predicting metabolic flux distributions based on
simulation using GSM, in view of the labor savings of experimental measurements. Flux
sampling is used to obtain the candidate solutions (flux distribution) necessary for this
purpose [14]. Flux sampling was a method of sampling a set of possible solutions from
the solution space defined by GSM. Algorithms, such as ACHR (the artificially centered
hit-and-run) [15], CHRR (the coordinate hit-and-run with rounding) [16], and OptGP (the
optimized general parallel) [17], have been implemented, including flux balance analysis
(FBA) [18] to find the optimal value for the objective function and flux variability analysis
(FVA) [19], which found the range of possible fluxes for an objective function [20,21], which
was used to compare and analyze GSMs and metabolic differences due to strain character-
istics and conditions, such as correlations between fluxes that could not be determined by
these methods alone [20,21]. In this study, OptGP [17], which supports parallelization, was
used as the flux sampling algorithm. As a case study, acetic acid production from glucose
in Escherichia coli was assumed, and iJO1366 [22] was used as the GSM. A comparison of
flux sampling results under default conditions [14] with experimental fluxes for substrates,
growth, and products suggested that flux sampling under default conditions might not
be sufficient to cover the range obtained experimentally for these fluxes. Therefore, the
utility of flux sampling was tested by constraining the representative fluxes for substrate,
growth, and products to allow for sufficient variation. The flux sampling results were
then analyzed to identify the variables important for estimating flux distributions and
estimating the number of variables needed. The flux distribution extracted from the flux
sampling results using the values of important variables was compared with the 13C-MFA
results [5] and compared with the flux distribution of the central carbon metabolic pathway.
This suggested that the modified flux sampling method used in this study was useful for
predicting flux distributions, extracting key variables for this purpose, and estimating the
number of necessary variables.

2. Materials and Methods

The workflow of the simulation and analysis, using the metabolic model as a starting
point, is shown in Figure 1.

2.1. Metabolic Model

As a test case, a culture of E. coli with acetic acid production using glucose as the
carbon source was used. The metabolic model used was the E. coli GSM iJO1366 [22].

2.2. Flux Sampling

ACHR [15], CHRR [16], and OptGP [17], which were commonly used algorithms in
flux sampling, were based on a hit-and-run (HR) algorithm. These algorithms performed
the next sampling based on the information from the current sampling (current sample,
search direction, step size). In the HR algorithm, direction and step size were randomly
chosen, iteratively [17]. ACHR algorithm was tailored to sample in the elongated direction
of the solution space [15]. With OptGP, more sampling was performed by setting multiple
starting points for sampling in ACHR and parallelizing them [17]. On the other hand, it
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has been suggested that the sampling performance of the HR-based algorithms, including
ACHR and OptGP, was greatly affected by the nonuniform shape of solution space [16].
Therefore, CHRR performed faster and more efficient sampling than ACHR by uniformly
rounding the solution space [16]. Previous studies have compared the performance of
these algorithms, and the results suggested CHRR as the best flux sampling algorithm [14].
However, in CHRR, empirically, when there were multiple fluxes with a very narrow range
that could be taken in a large-scale GSM, there were cases where the first rounding of
solution space did not go well, and the flux sampling could not proceed. On the other
hand, with ACHR and OptGP, flux sampling was possible even with GSMs that did not
work well when CHRR was applied (including the E. coli GSM iJO1366 used in this study).
Therefore, we thought that ACHR and OptGP would be more useful than CHRR in terms
of flux sampling in a wider range of GSMs. As a result, we decided to use OptGP [17], as
implemented in COBRApy [23], as the flux sampling algorithm.
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Figure 1. Workflow diagram from the metabolic model (GSM) to the proposal of key measurement
variables for predicting metabolic flux distribution. In the flux grouping, the diagonal panels show the
distribution of samples, while the other panels show scatter plots of flux pairs in rows and columns.
Blue lines indicate sample distributions and red dots indicate samples. The linear scatterplots suggest
a high correlation between the two fluxes. The color of the time course data corresponds to the color
of the group list, indicating to which group each variable belongs.

Flux sampling was compared to the default OptGP, which used the GSM, and OptGP,
which ensured sufficient variation in fluxes such as substrates, products, and growth, which
were important as phenotypes.

For the default OptGP, flux sampling was performed with the following parameters
(thinning = 10,000, sample number = 20,000, and process = 10). For the latter implementation,
1000 patterns of flux value sets were generated using FBA within the range of these three
fluxes to ensure sufficient variation to cover the experimentally measured data for the
phenotypically important substrate, product, and growth fluxes. First, the specific uptake
flux values for the carbon source, glucose, were generated uniformly at random over the
predefined range based on experimental data. Next, the specific uptake flux of glucose
was fixed at the generated value, and FBA was performed with the objective functions of
maximizing and minimizing the specific growth rate for each specific glucose uptake flux,
respectively. In this way, the possible range of the specific growth rate was set between the
minimum and maximum values of the flux for each glucose uptake condition. The specific
growth rate values were randomly selected within each set range. Finally, using the two flux
values generated and selected above as constraints, FBA was performed with the objective
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function of maximizing and minimizing the specific acetic acid production flux, respectively.
The possible ranges of specific acetic acid production flux values were similarly set, and
those flux values were randomly selected within those ranges. These values were then used
as constraints for flux sampling, and sequential flux sampling was performed by OptGP
for each constraint (sample number per a flux constraint = 20; other parameters, such as
thinning and total number of samples, were the same as the default OptGP shown above).

2.3. Verification of the Effect of Using Constraints on Sampling by Dimensional Compression

To verify whether it was important to ensure variations in flux values for substrates,
growth, and products, which were important for phenotyping, samples (solution sets)
obtained in the same way except with and without the use of constraints were visualized
and compared on a two-dimensional plane using multidimensional scaling (MDS) [24].

2.4. Search and Evaluation of Fluxes and Combinations of Fluxes Important for Metabolic Flux
Distribution Prediction

The search for fluxes important for flux distribution prediction was conducted by (1) se-
lecting any flux and its value, (2) using the selected flux value (±10%) as a query, extracting
samples that met the conditions from the generated samples, (3) performing steps (1)–(2)
exhaustively for all fluxes and their values, (4) ranking the fluxes based on the average number
of samples hit, and (5) considering the fluxes with the highest ranking as important fluxes for
the prediction of flux distribution. In the search for important fluxes, since it was difficult to
measure intracellular fluxes with high precision, the fluxes taken up from and discharged into
the culture medium, which were relatively easy to measure, were targeted here.

On the other hand, the number of fluxes needed to predict flux distribution was
estimated from the flux sampling results. Since the number of metabolic fluxes in metabolic
models such as the GSM was very large, grouping by correlation among fluxes was used to
narrow the number. The samples (flux distributions) obtained by flux sampling were used to
determine the correlation coefficient for each flux pair for all fluxes in the metabolic model,
and the fluxes were grouped using an absolute value of 0.95 as the threshold value. Using
these results, the following procedure was used to estimate the number of fluxes needed to
predict the flux distribution. (1) Randomly select one flux from each group obtained from
the grouping based on the correlation coefficient. (2) Randomly select one solution from the
samples (flux distributions) obtained by flux sampling. (3) Using those values as a query in
random order, the solutions were narrowed down from the samples step by step. (4) This
was performed for all samples to obtain the minimum number of fluxes required to narrow
the solution down to one. (5) (1)–(4) were also performed for 800 different flux combinations
(permutations). (6) To estimate the number of fluxes needed to predict the flux distribution,
the mean and median of the minimum number of fluxes required to narrow down to one
solution in all cases performed were calculated. (7) Fluxes were sorted in descending order
by mean and median, and those values were rounded down to the nearest whole number
and considered as the number of fluxes needed to predict the flux distribution.

2.5. Validation of Important Flux

Since it was difficult to measure many intracellular fluxes experimentally, we used the results
of 13C-based metabolic flux analysis (MFA) for validation. 13C-MFA was the method of choice
for detailed inference of intracellular metabolic fluxes in cells or organisms under quasi-steady-
state conditions [25]. The carbon source was selected as glucose, and the Zhao and Shimizu [5]
literature was used for validation as one of the references from which the acetic acid production
flux and the flux values predicted to be important in the previous section could be obtained.

First, values were obtained from the literature for the fluxes considered important
for predicting the flux distribution. We selected flux distributions, whose flux values
were within ±10% of the literature values, from flux sampling results. The selected flux
distributions were compared with the major flux distributions of 13C-MFA, and the samples
were evaluated for validity by the mean absolute percent error of those flux values.
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2.6. Computer Code and Software

In this research, all simulation and calculation were run on a server with CPU Xeon
Gold 6136 (3GHz) ×2, and Memory 512GB. Also, COBRA Toolbox v3,33 (https://github.
com/opencobra/cobratoolbox.git (accessed on 4 October 2021)), MATLAB© 2018b (The
MathWorks Inc., Natick, MA, USA), COBRApy v0.22.1 (https://github.com/opencobra/
cobrapy (accessed on 19 January 2022)), GLPK v5.0 (Gnu Linear Programming Kit) were
used. Scripts (computer codes) were used for flux balance analysis, flux variability analysis,
production envelope, flux sampling, sampling analysis, and are available at github (https:
//github.com/yukuriya3/fluxsampling_for_pred (accessed on 23 April 2023)).

3. Results
3.1. Creating Constraints for Flux Sampling

When flux sampling was performed with OptGP under default conditions, the vari-
ation in the sample values obtained was biased toward a narrow range of fluxes for the
phenotypically important substrates, products, and growth, and did not cover the sample
values obtained by the experiment (Figure 2a,b). Therefore, 1000 patterns of flux values
were generated by the method of the M and M section to provide sufficient variation in
those three flux values. The obtained values for the three fluxes were widely distributed
within the range of possible values, indicating that they covered the experimentally ob-
tained flux values (Figure 2c,d). The flux values thus generated were used as a seed
(constraint) to perform flux sampling.
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Figure 2. The possible ranges of the three fluxes for substrate, product, and growth and the 1000 pat-
terns of seed (constraints) generated for the samples and flux sampling generated by the default
OptGP. The metabolic model used was iJO1366 for E. coli. The panel (a,b) shows the results obtained
by flux sampling with OptGP under default conditions (open circles) and the samples obtained by
the experiment (cross), and the panel (c,d) shows the 1000 patterns of seeds (constraints) for the
three fluxes generated for the flux sampling. The panel (a,c) shows the specific glucose uptake flux
and the specific growth rate, and the panel (b,d) shows the specific growth rate and the specific
acetic acid production rate. The solid lines and axes indicate the range of possible fluxes, the open
circles indicated the seeds (constraints) generated for flux sampling, and the crosses indicate samples
obtained from the literatures of the experiment.
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3.2. Flux Sampling

Flux sampling was sequentially performed using OptGP with the 1000-pattern con-
straint conditions generated above to ensure variation in the three phenotypically important
fluxes. To investigate the effect of using the constraints generated above, the specific uptake
flux of glucose as a carbon source was normalized to 100, and the results of sampling by
OptGP using the constraints and the default conditions were compared by visualizing them
on a two-dimensional plane using dimensional compression by MDS (Figure 3). MDS is
a method of placing similar objects closer to each other and different objects farther apart.
Therefore, the results suggested that the OptGP sample using sequential use of the generated
constraints, which plotted results over a wider range, was a more diverse sample.
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Figure 3. Comparison of sampling results of OptGP (optgp and alpha) using sequential constraint
conditions and OptGP (optgp only) using default conditions on E. coli iJO1366. Blue circles and
orange squares indicate the results of OptGP with sequential use of 1000 constraint patterns and
OptGP with default conditions, respectively.

3.3. Exploration and Evaluation of Fluxes and Combinations of Fluxes Important for Flux
Distribution Prediction

Arbitrary fluxes and their values were used to select fluxes that are important for flux
distribution prediction. The resulting top fluxes selected were fluxes EX_fe2_e, EX_fe3_e,
EX_co2_e, EX_o2_e, and EX_nh4 _e (Table 1).
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Table 1. Important fluxes for prediction of metabolic flux distribution.

Rank Flux Name Group ID Flux ID Sol. Num. (Ave.) 1 Sol. Num. (Med.) 2

1 EX_fe2_e 11 127 1.3685 1
2 EX_fe3_e 11 128 1.3763 1
3 EX_h_e 11 185 1.3768 1
4 EX_h2o_e 11 187 1.742 2
5 EX_o2_e 11 252 2.4766 2
6 EX_co2_e 30 85 11.355 10
7 EX_nh4_e 2 244 33.095 32
8 EX_glc__D_e 457 164 40.319 40
9 EX_ac_e 452 36 49.47 40

10 EX_pi_e 2 263 364.97 337
1 Sol. Num. (ave.): averaged solution number. 2 Sol. Num. (med.): median of solution number.

The GSM iJO1366 model for E. coli yielded 457 groups by grouping, using the absolute
value of the correlation coefficient. The fluxes constituting each group are shown in
Supplementary Materials Table S1. We used these to investigate the mean and median
of the minimum number of fluxes required to narrow down any one solution from the
samples (flux distributions) for the order of application of 800 different group fluxes, and
found them to be approximately 7.20 and 6.0, respectively.

3.4. Validation of Important Flux

The results of metabolic flux analysis with 13C obtained from the literature [5] were
used to validate the fluxes important for the prediction of the flux distribution obtained
from the flux sampling results.

Among the fluxes selected as important fluxes as described above, CO2 emissions
were selected as a flux that could be obtained from 13C-MFA results, and its value was
extracted. Next, samples were extracted from the flux sampling results (10 samples) that fell
within a range of ±10% of that flux value with an assumed measurement error. Then, from
these samples, we selected the five solutions with the lowest mean absolute percentage
error (MAPE) (Table 2). The obtained solution candidates were compared with the flux
values of the central carbon metabolism (glycolytic pathway, pentose phosphate pathway,
and TCA cycle) by 13C-MFA (Figure 4). In Figure 4, the leftmost bar shows the results
from 13C-MFA and the other five bars show the results of samples extracted by the above
procedure from the flux sampling results. The results obtained from flux sampling were
smaller than those from 13C-MFA for glucose uptake flux by PTS (GLCptspp) and glycolytic
start flux (PGI). Conversely, the results obtained from flux sampling were higher than those
from 13C-MFA for the starting flux of PPP (G6PDH2r). On the other hand, for transaldolase
of PPP, the sign of the flux values obtained from 13C-MFA and flux sampling were different.
Furthermore, the flux value for succinate dehydrogenase in the TCA cycle was much higher
for the results obtained from flux sampling than for 13C-MFA.

Table 2. Top 5 samples with the smallest mean absolute percentage error relative to 13C-MFA.

Sample ID Sample4002 Sample4724 Sample4729 Sample16724 Sample16736

MAPE 1 83.8828 54.1644 57.1455 77.5504 88.2746
1 MAPE: mean absolute percentage error.
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Figure 4. Comparison of flux values for the central carbon metabolic system obtained by flux
sampling and 13C-MFA. From the top, the figure compares the fluxes of the glycolytic system, the
pentose phosphate pathway, and the TCA cycle. Literature values for the 13C-MFA of the pentose
phosphate pathway flux GND were missing because no explicit values were found in the literature.

4. Discussion

Flux sampling was performed using acetic acid production from glucose using E. coli
GSM iJO1366 as a case study.

For flux sampling, 1000 patterns of constraints were generated that ensured sufficient
variability for phenotypically important substrate, product, and growth-related fluxes and
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were used for sampling by OptGP. Normalization of the results by specific glucose uptake
flux and visualization by MDS suggested an improvement to obtain a wider and more
diverse sample (Figure 3). On the other hand, it was difficult to accurately estimate the
volume of the solution space or the volume of the sampled space [26,27]. Therefore, it
was unclear how much of the entire solution space was sampled and what was needed to
improve the sampling.

Using the flux values in the sample obtained by the modified OptGP to search for
and extract solutions from the entire sample allowed us to evaluate and extract fluxes
(variables) that were important for estimating the flux distribution based on the number
of solutions obtained. Apart from the fluxes of water, protons, and the fluxes of glucose,
growth, and acetic acid, which were used as constraints, the fluxes of iron, oxygen, carbon
dioxide, ammonia, and inorganic phosphate were the most important fluxes. For these
fluxes, they were relatively easy to measure and were generally included in the culture on
minimal media. Therefore, although the study was conducted only for E. coli, if these fluxes
could also be obtained from flux sampling results for a wide range of micro-organisms,
it was expected that they might be fluxes that should be commonly measured during the
culture of many micro-organisms. The results of this study also suggested that fluxes
related to iron would be particularly useful in predicting flux distribution. Biologically,
iron uptake affected E. coli growth [28,29], while iron metabolism and homeostasis were
strictly regulated [30]. E. coli GSM iJO1366 contained iron-related fluxes, such as uptake
and efflux of divalent and trivalent iron ions, biomass synthesis, iron-sulfur clusters, and
multiple redox reactions. The fluxes related to iron were found to be important fluxes in
this study, partly because the possible range of these fluxes was relatively larger than the
other fluxes. However, whether this was due to the formation of futile cycles in the GSM or
a lack of regulatory information, it was considered to require a more detailed investigation.

On the other hand, as mentioned in Section 2.4, to estimate the number of measurement
variables needed to approximately predict the metabolic flux distribution indicative of
the metabolic state of the cell, we investigated the minimum number of fluxes needed to
narrow the solution to one within the obtained sample. The results suggested that seven or
eight fluxes were generally sufficient to estimate the flux distribution when combining flux
values from different groups, based on groupings conducted based on an absolute value
of correlation coefficients. Since these fluxes included data obtained by the analysis of the
culture medium supernatant and gas analyses, combining variables that were relatively
easy to measure would be sufficient to estimate the flux distribution.

Due to the difficulty of measuring flux values, we used the results of 13C-MFA to
validate the fluxes that were important in predicting the obtained flux distributions. Flux
distributions with values close to those from the flux sampling results were extracted. The
obtained flux distributions were then compared with the 13C-MFA results. The resulting
flux distribution had a mean absolute percentage error of approximately 54% from the
closest flux distribution. This was because the fluxes of transaldolase in the pentose
phosphate pathway and of succinate dehydrogenase in the TCA cycle differed significantly
from the 13C-MFA results. In particular, the fluxes of succinate dehydrogenase, which
differed greatly between the two, were thought to form futile cycles with other fluxes in
GSM. Therefore, if the fluxes of succinate dehydrogenase were excluded, the difference
between 13C-MFA and the results extracted from the flux sampling would be greatly
reduced. Considering the difference between 13C-MFA in the glucose uptake flux, which
was the starting point of carbon metabolism, and those in the flux sampling results, it was
thought that the two central carbon metabolism fluxes were quite close. Therefore, this
result suggested that the fluxes important in predicting the flux distribution obtained from
the flux sampling results were valid.

OptGP flux sampling was performed under different constraints with sufficient varia-
tion to include experimentally obtained flux values for phenotypically important substrate,
product, and growth fluxes. As a result, flux sampling could be carried out in a wider
range than OptGP without additional constraints. In addition, although this study was
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limited to acetic acid production from glucose in E. coli, these results suggested that the
analysis of the result obtained from flux sampling by OptGP with additional constraints
could provide information about the important variables, their numbers, and combinations
to predict flux distribution. This meant that, instead of performing the time-consuming
and labor-intensive task of obtaining tens or hundreds of items of omics data every time
the host, culture condition, or target product changed, we could predict and narrow down
the variables to be measured and their numbers in advance based on simulation using
GSM. In addition, by reducing the number of variables to be measured, a more accurate
measurement of them could be expected. Thus, the method presented in this study was
considered very useful in reducing the cost of experimental work on a simulation basis.

In the future, we will plan to combine the method presented in this study with
reduced cost, which corresponds to the sensitivity analysis of FBA using GSM, to improve
the method and to verify its versatility in GSMs of various micro-organisms, and investigate
flux sampling under nutrient-rich culture conditions with a larger solution space.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10060636/s1, Table S1: List of fluxes grouped
based on correlation coefficients.
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