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Abstract: Electrocardiograms (ECGs) provide crucial information for evaluating a patient’s cardio-
vascular health; however, they are not always easily accessible. Photoplethysmography (PPG), a
technology commonly used in wearable devices such as smartwatches, has shown promise for con-
structing ECGs. Several methods have been proposed for ECG reconstruction using PPG signals, but
some require signal alignment during the training phase, which is not feasible in real-life settings
where ECG signals are not collected at the same time as PPG signals. To address this challenge, we
introduce PPG2ECGps, an end-to-end, patient-specific deep-learning neural network utilizing the
W-Net architecture. This novel approach enables direct ECG signal reconstruction from PPG signals,
eliminating the need for signal alignment. Our experiments show that the proposed model achieves
mean values of 0.977 mV for Pearson’s correlation coefficient, 0.037 mV for the root mean square error,
and 0.010 mV for the normalized dynamic time-warped distance when comparing reconstructed
ECGs to reference ECGs from a dataset of 500 records. As PPG signals are more accessible than ECG
signals, our proposed model has significant potential to improve patient monitoring and diagnosis in
healthcare settings via wearable devices.

Keywords: electrocardiogram construction; remote monitoring; digital health; AI in healthcare;
photoplethysmography

1. Introduction

Electrocardiograms (ECGs) are widely used to diagnose many cardiovascular dis-
eases. The continuous monitoring of ECGs is becoming increasingly important in personal
healthcare as the world’s population increases and ages. An ECG detects the heart’s elec-
trophysiological activity through electrodes placed on the skin, providing information
about the cardiovascular system. However, measuring the ECG with standard 12-lead
ECG equipment limits the patient’s activities, which makes it inconvenient. Moreover,
placing multiple electrodes at different locations can cause skin irritation and discomfort
during the ECG recording. Photoplethysmography (PPG), another signal that reflects the
cardiovascular system’s state, has attracted widespread attention in the last 10 years due
to its advantages of easy acquisition, small sensor sizes, and non-invasiveness. PPG is
an optically acquired signal that can be used to detect changes in blood volume in the
microvascular beds of tissues. The duration, amplitude, and morphological features of
the PPG waveform can be translated into physiological parameters, such as oxygen sat-
uration [1], blood pressure [2], and cardiac output [3], among others. Wearable devices
equipped with PPG sensors, such as wristbands and finger probes [4,5], are commonly
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used. These PPG-based devices are generally smaller, less expensive, more comfortable,
and easier to use than ECG devices. Additionally, patients can use them in their daily lives
with minimal expertise. However, although PPGs are frequently used for healthcare moni-
toring, ECGs remain the standard and fundamental measurements for medical diagnoses,
with a wealth of supporting literature and research. Clinicians still rely on ECGs rather
than PPGs for diagnoses in clinical settings. Therefore, if PPGs can be used to reconstruct
ECGs, it would be possible to take advantage of the easy access afforded by PPGs and use
the rich available knowledge for ECGs to diagnose the condition.

The reconstruction of ECG signals using PPGs is feasible. From a physiological
perspective, an ECG signal is a collection of electrophysiological cardiac motion signals,
while PPGs reflect cardiac mechanical motions. The electrophysiological activity and
mechanical movement of the heart are linked through excitation–contraction coupling [6].
Signal analysis studies have shown that PPG and ECG signals are highly correlated in
cycle duration [7]. For example, arrhythmia can be detected in PPG when it appears in
the ECG [8,9]. Moreover, the ECG parameters can be estimated by the PPG features [10].
The heart and the entire cardiovascular system can be simplified as black boxes. The ECG
signal is used as the input of this black box and the PPG signal is used as the output. In this
case, using the PPG to reconstruct the ECG can be seen as the inverse problem of finding
the transfer function of this black box.

Figure 1 shows a pair of synchronized ECG and PPG signals. The R peak is the main
morphology feature in the ECG waveform [11,12]. The onset and systolic peaks are the
two main features of the PPG [13,14]. An expanded discussion of PPG features can be
found here [15]. For the ith cycle, the R wave in the ECG represents the depolarization of
the ventricle, causing the ventricle to contract and the heart to eject blood. It takes a while
for the blood to be transmitted to the site where the PPG is detected (usually fingertips,
wrists, and earlobes) [16]. Therefore, the PPG’s onset and the systolic wave’s peak occur
later than the ECG’s R wave. The time interval between the R wave of the ECG and the
onset of the PPG is referred to as the pulse arrival time (PAT) [17]. The PAT is within 2 s
and varies based on the detection site of the PPG, blood pressure, etc. Therefore, when
reconstructing the ECG, it is necessary to establish the PAT and the relationship between
the PPG and the ECG waveforms.

Figure 1. A synchronized ECG and PPG signal. Ri in ECG refers to the ith R peak. Oi and Si refer to
the ith onset and systolic peak in the PPG signal, respectively.
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Several studies have attempted to reconstruct ECG signals from PPG signals using
various techniques. Two studies employed the DCT method [18] and cross-domain joint
dictionary learning [19] to reconstruct ECG signals beat-by-beat. These methods involved
aligning the onset in the PPG with the R peak in the ECG to remove the PAT. Then,
the aligned ECG and PPG signals were segmented into cycles, and a mapping from the
pulse wave pulse to the ECG cycle was established. The ECG signal was reconstructed
from the PPG based on this mapping. The Bi-LSTM model [20] used in our previous study
generated the ECG segment-by-segment without requiring cycle segmentation; however, it
did require an alignment step. Nevertheless, these techniques demanded an alignment step
in signal preprocessing, which involves the requirement of the ECG as a reference to align
PPG signals, making it impractical since the primary objective of the ECG reconstruction
from the PPG is to avoid the necessity of the ECG. Furthermore, while the RR intervals
in the ECG were highly correlated with the onset-to-onset interval in the PPG [7], they
were not the same, and certain diseases could make the RR interval differ from the systolic
peak-to-systolic peak interval [21]. Three studies [22–24] using deep neural networks to
reconstruct ECGs from PPGs did not require alignment steps in preprocessing. Two studies
focused on the heart rate destination without emphasizing the quality of the ECG waveform,
and one study [23] was not a subject-specific model. Therefore, this paper aims to develop
a subject-specific model that can reconstruct ECG signals that are highly similar to real
ECG signals, without the need for calculating or adjusting for the PAT.

2. Materials and Methods

This section describes the dataset used, the preprocessing of the ECG and PPG signals,
the deep neural network architecture, and the model performance evaluation. Figure 2
shows the flowchart of the proposed method.

Figure 2. Flowchart of the proposed method. The synchronized ECG and PPG signals are segmented
into segments with 1024 samples. The first 80% of segments are used for training, and the last 20%
are used for the test. The output of the learned model involves segments with 1024 ECG samples,
the stitch step is used to stitch a segment to generate an ECG signal.

It is important to note that all of the codes were implemented in Python 3.9, and the
neural network was implemented based on the TensorFlow 2.8.0 end-to-end open-source
platform for machine learning. NVIDIA GeForce RTX 3060 Ti and Intel Core i7-11700 @
2.50 GHz were the hardware used to run the model.
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2.1. Dataset

The present study utilized the cuffless blood pressure estimation dataset [25], which
was compiled by Kachuee et al. from the MIMIC II database [26]. This dataset comprises a
total of 12,000 records with varying durations, wherein each record includes photoplethys-
mogram (PPG), arterial blood pressure (ABP), and lead II electrocardiogram (ECG) signals
sampled at a rate of 125 Hz. The current investigation included only the first 500 records in
the dataset with signals exceeding 8 min in length, wherein solely PPG and lead II ECG
signals were analyzed. It remains unclear if the 500 recordings were acquired from different
subjects, yet each recording was treated as a unique subject in this study.

2.2. Preprocessing

The raw signals were formed of pairs of long-term synchronized ECG and PPG signals.
The ECG and PPG signals were segmented with 1024 samples (equivalent to 8.192 s based
on the sampling frequency) and a stride size of 256 samples, which means that there was an
overlap of 768 samples between every 2 consecutive segments. A segment was discarded
if the final segment was less than 1024 samples. The dataset used in our study contains
records of varying lengths, which can affect the number of signal segments present in each
record. It is noteworthy that all recordings exceeded 8 min in length but were not of equal
duration. In order to address this variation, a uniform criterion was applied to define the
training and test sets. In particular, the first 80% of each recording was used for training,
whereas the remaining 20% of each recording was used for testing.

2.3. Model Architecture

The proposed algorithm’s name, PPG2ECGps, is reflective of its focus on using PPG
signals to reconstruct ECG signals, with the ‘ps’ suffix indicating its patient-specific na-
ture. The architecture of the PPG2ECGps algorithm is illustrated in Figure 3. A similar
neural network was used to reconstruct an arterial blood pressure signal from PPG [27].
In Figure 3, the terms ‘Conv’, ‘Pooling’, and ‘Upsampling’ denote a one-dimensional (1D)
convolution layer, a max-pooling layer, and upsampling by 2 in the time direction, respec-
tively. ‘LeakyReLU’ refers to the activation function of the corresponding convolution layer.
‘BN’ denotes a 1D batch normalization layer. The slope of the ‘LeakyReLU’ activation is set
to 0.1.

Figure 3. Architecture of the proposed neural network. The ‘Conv’, ‘Pooling’, and ‘Upsampling’
denote a one-dimensional convolution layer, a max-pooling layer, and upsampling in the time
direction by 2, respectively. ‘LeakyReLU’ refers to the activation function of the corresponding
convolution layer. ‘BN’ denotes a 1D batch normalization layer.
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The proposed W-Net was composed of two U-blocks. The output of the first U-block
was concatenated with the input of the whole architecture to become the input of the
second U-block. The U-block was inspired by the wave U-Net [28]. The wave U-Net is a
full convolution neural network; it was first used in audio source separation. Moreover,
its variants have been used to reconstruct ABP signals from the PPG [29]. In the proposed
W-Net, the convolution layers are followed by batch normalization and the ‘LeakyReLU’
activation function. The filter size of the convolution layer is set to 15. The last convolution
layer of W-Net is directly activated by ‘LeakyReLU’, and the filter size is set to 1. In studies
on image analysis, the method composed of two U-blocks was proven to perform better
than the method using one U-block [30,31].

2.4. Stitching the Reconstructed ECG Segments

The output of the neural network comprises 8.192 s (1024 samples) of reconstructed
ECG segments, which need to be stitched together to form a continuous ECG recording.
This stitching is performed in a loop fashion, where the stitched ECG signal “S3” is obtained
as a result of stitching the first and second segments, “S1” and “S2”, respectively. As there
is a 75% overlap (768 samples) between the two consecutive segments, the last 768 samples
of “S1” are discarded to obtain the final stitched ECG segment as a result of combining S1
and S2.

2.5. Training Options

The neural network used an Adam optimizer. To ensure that the neural network
achieves optimal performance without overfitting, it is important to set a stopping criterion
when training the model. In our study, we set the maximum number of training epochs to
500 and used a batch size of 128 pairs of segments.

Finding the right balance between the training speed and model performance is crucial.
To achieve this, we propose a simple yet effective method: starting with a high learning rate
to expedite training and gradually reducing it to enhance performance. Research has shown
that this technique, known as learning rate attenuation, can improve the performance of
popular neural networks [32,33]. In our study, we set the initial learning rate to 0.001 and
then decayed it by 0.1 every 800 steps during training. This approach helped us achieve
a better balance between the training speed and model performance, resulting in more
accurate and efficient results. The loss function used in this study is defined as follows:

Loss = mal + mse + (1− |r|), (1)

where 
mal = max1≤i≤l (|ECGre f (i)− ECGrec(i)|),
mse = 1

l ∑l
i=1 (ECGre f (i)− ECGrec(i))2,

r = ∑l
i=1(ECGre f (i)−ECGre f )∑l

i=1(ECGrec(i)−ECGrec)√
∑l

i=1(ECGre f (i)−ECGre f )2
√

∑l
i=1(ECGrec(i)−ECGrec)2

,
(2)

note that mal, mse, and r refer to maximal absolute loss (MAL), mean squared error, and
Pearson’s correlation coefficient (r) [34], respectively. ECGre f (i) and ECGrec(i) are the ith
sample points of the reference ECG and reconstructed ECG, respectively. The variables
l, ECGre f , and ECGrec are the length of the test ECG signal, as well as the averages of the
sample value of the reference ECG and the reconstruction ECG, respectively.

In the loss function, mse and r restrict the consistency between the reconstructed
ECG value and the reference ECG waveform, respectively. Moreover, r is usually used to
measure the linear correlation between signals, and its value is in the range of [−1, 1]. An
r value of ±1 indicates the strongest correlation, while 0 indicates the weakest correlation.
Furthermore, mse and r ensure global similarity. However, the duration of the R wave is
short, and the values of the sampling points in it change rapidly. Thus, the mse and r have
limitations in this event. In this case, the MAL was introduced to ensure that the R wave of
the reconstructed ECG matches that of the reference ECG.
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2.6. Performance Evaluation

Three measures were used to evaluate the performance of the reference ECG sig-
nal and the reconstructed ECG signal in the proposed model: root mean squared error
(RMSE), Pearson’s correlation coefficient (r), and the normalized dynamic time warping
(DTW) distance.

Root mean square error (RMSE): In machine learning, RMSE is commonly used to
measure the model’s estimated and observed values. The formula of RMSE is as follows:

RMSE =

√√√√1
l

l

∑
i=1

(ECGre f (i)− ECGrec(i))2. (3)

Normalized dynamic time warping distance. DTW can measure the similarity be-
tween two time series with potentially different velocities [35]. Our previous study [20]
found that there may be a phase error (several samples) between the reconstructed ECG
and the reference ECG. Therefore, in the present study, we introduce the DTW distance to
evaluate the similarity between the reconstructed and reference ECGs.

The steps to calculate the DTW are as follows:

• Calculate the Euclidean distance between every sample from the reconstructed ECG
and every sample from the reference ECG. For the ith sample of reconstructed ECG
and the jth sample of the reference ECG, the Euclidean distance is defined as follows:

dij =
√
(ECGre f (i)− ECGrec(j))2 + (i− j)2, (4)

where i and j are the indices of the samples of the reference ECG and reconstructed
ECG, respectively. Suppose that the number of samples of the reference ECG signal is
N. This step will create an N × N matrix A.

• Look for paths in matrix A that start at d11 and end at dNN . For any point on the path,
the next point can only be one of its right, upper, or upper-right corners. Calculate the
sum of the distance along the paths. The minimum sum along the paths is the DTW
distance, and this path is defined as the warping path.

The smaller the DTW distance, the more similar the reference and reconstructed ECG.
However, the DTW distance increases with the length of the reference and reconstructed
ECG. To better evaluate the similarity of the two time series, the DTW distance was
normalized in this study by dividing the DTW distance by the sum of the length of the
reference and reconstructed ECG.

The formula is as follows:

d̄ =
d11 + · · ·+ dNN

2N
, (5)

where N is the length of the reference ECG signal, and the subscript of d is consistent with
the warping path.

3. Results

A neural network can be considered as a black box that takes the input through a series
of transformations and generates the output. Feature visualization transforms the features
learned by the neural network into information that can be understood. Figure 4 shows
some of the features learned by the proposed W-Net. For example, (1) and (11) are the input
and output, respectively. As seen in (2), (3), and (4), the W-Net learns the time domain
features of the PPG waveforms, such as systolic and diastolic peaks, as reported in [13].
Then, as the PPG signal was pooling, W-Net paid more attention to the inter-period features.
Similarly, by comparing (8), (9), and (10), the feature map shows additional time-domain
features of the ECG signal as the signal is upsampled. For (5), (6), and (7), it is not easy to
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understand which features are extracted. However, it can be seen that these features appear
periodically. This reflects the high correlation between PPG and ECG in terms of beats.

Figure 4. Maps of learned features of the proposed W-Net architecture. Graphs (1) and (11) are the
input and the output, respectively. Graphs (2)–(10) show the first 24 of all of the learned features in
the corresponding feature maps.

Figure 5 shows a segment of the reconstructed ECG waveform. Figure 5a shows the
PPG, which is the input to the model. Figure 5b shows the reconstructed and reference
ECGs. As seen, the reconstructed ECG is very similar to the reference ECG, with no phase
errors and little difference in values. For the reconstructed ECG and the reference ECG,
Pearson’s r reached 0.988, while the RMSE was only 0.016 mV.

Figure 6 shows the DTW warping path of the reconstructed ECG and the reference
ECG in the same segment, as shown in Figure 5. The DTW warping path provides another
view to evaluate the similarities between the reconstructed ECG and reference ECG. The
warping path is nearly a straight line. A straighter warping path means less warping
is required to map the reconstructed ECG and reference ECG; this means there is more
similarity between these two signals. The warping path looks similar to a straight line in
Figure 6. The normalized DTW distance between the reconstructed ECG and reference
ECG is 0.004 mV.

In our previous study [20], we found that there may be a small phase error between
the reconstructed ECG and the reference ECG, and this phase error affects the results in
Pearson’s correlation coefficient and RMSE. Therefore, we introduced cross-correlation
to determine the time delay between the reconstructed and reference ECGs. Then, these
two signals were aligned by delaying the earliest one. This step can remove the effects of
phase errors. To discuss the effects of the phase errors, this paper presents two experiments
that were performed. In Experiment I, the three measures were directly used on the
reconstructed ECG and reference ECG. In Experiment II, the reconstructed ECG and
the reference ECG were first aligned based on cross-correlation, and then the model’s
performance was evaluated. The results are shown in Table 1. No significant difference
was found between the two experimental results. Consequently, the ECG reconstructed
using this model is essentially free of phase errors. Moreover, in Experiment I, Pearson’s
r and RMSE were, on average, 0.977 and 0.037 mV, respectively. Thus, the reconstructed
ECGs are highly correlated with the reference ECGs.
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Figure 5. Demonstration of the reconstruction of the ECG waveform; ‘r’ and ‘RMSE’ stand for
Pearson’s correlation coefficient and the relative mean squared error, respectively. (a) The PPG used
to reconstruct the ECG. (b) Comparison of the reference ECG and the reconstructed ECG.

Figure 6. A segment of the optimal DTW warping path for the reference ECG and reconstructed ECG.
The d̄ stands for the normalized DTW distance.
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Table 1. Comparison of the PPG2ECGps algorithm’s performance, with and without alignment of
the reconstructed ECG with the reference ECG.

Align ECGrec with ECGref RMSE (mV) r d̄ (mV)

Experiments I No 0.037 ± 0.028 0.977 ± 0.029 0.010 ± 0.004

Experiments II Yes 0.037 ± 0.027 0.978 ± 0.026 0.010 ± 0.004

4. Discussion

We propose the PPG2ECGps, which is a method that uses the W-Net neural network
architecture to reconstruct ECG signals from PPG signals. A comparison of the proposed
model with existing methods is shown in Table 2. The main difference between the
proposed model and existing methods is that the proposed model does not need to align
the PPG signal with the ECG signal.

Table 2. Evaluation of the subject-specific PPG2ECGps algorithm against other existing algorithms in
the literature for reconstructing ECG signals from PPG signals. Note: NR stands for not reported.
RMSE, r, and d̄ stand for the root mean squared error, Pearson’s correlation coefficient, and the
normalized dynamic time warping distance, respectively.

Method Data Used Alignment Required
in Preprocessing

Segment
Length RMSE (mV) r d̄ (mV)

DCT Model [18]
TBME-RR [36]: 42 Records

MIMIC III [37]: 103 Records
Self-collected: 2 Records

Yes Beat NR
0.984
0.940
0.904

NR

XDJDL model [19] MIMIC III [37]: 33 Records Yes Beat NR 0.88 NR

Bi-LSTM model [20] MIMIC III [37]: 100 Records Yes

1 s
2 s
3 s
4 s

0.063
0.068
0.063
0.059

0.893
0.874
0.891
0.904

NR

This study (PPG2ECGps) Cuffless [25]: 500 Records No 8.192 s 0.037 0.977 0.010

These signals are not in alignment because there is a delay in the time from when the
blood is transmitted from the heart to the site where the PPG is detected (usually fingertips,
wrists, and earlobes) [16]. Therefore, the onset of the PPG and the peak of the systolic wave
occurs later than the R wave of the ECG. To eliminate the PATs, existing methods align the
PPG and ECG signals. The alignment step requires extracting certain handcrafted features
(such as the R waves in ECG and the systolic peaks and onsets in PPG).

Although handcrafted feature extraction algorithms have been used to extract im-
portant features from ECG signals, they can introduce errors that negatively impact the
performance of the overall model. To address this issue, we propose a new W-Net neural
network architecture based on convolutional neural networks (CNNs) that can automate
the feature extraction process, leading to better results [38]. Our approach uses PPG
signals as they are, without any adjustment or counting for the PAT. Additionally, our
method is subject-specific, meaning that the neural network can learn the unique char-
acteristics of each subject during the training phase, leading to even more accurate and
personalized results.

In comparison with our previous study on reconstructing arterial blood pressure
signals [27], this study modified the activation function of the last convolution layer from
Tanh to ‘LeakyReLU’. This modification allows the neural network to produce signals with
values greater than 1. In clinical settings, the amplitude of the R wave in a normal ECG
signal may exceed 1 mV [39]. The use of ‘LeakyReLU’ as the activation function eliminates
the need to normalize the reconstructed ECG signal to the range [−1, 1], thereby improving
the model’s robustness.
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Note that when choosing activation functions for deep neural networks [40–42], some
commonly used functions, such as “sigmoid” are not suitable due to slow convergence and
the problem of gradient disappearance. Other functions, such as “Tanh”, converge faster
but still suffer from gradient disappearance. The “ReLU” activation function is known for
performing best without unsupervised pre-training, but its derivative is always 0 when the
input is less than 0, which can cause gradient backpropagation problems and result in some
neurons being shut down permanently. As an improved version of ReLU, “LeakyReLU”
overcomes this problem by allowing for smaller non-zero gradients, thereby improving the
overall performance of the model.

It was found that without aligning the ECG with the PPG, the average value of
Pearson’s r for 500 records was 0.977. This result demonstrates that the performance of
the proposed W-Net model is second only to the performance of the DCT model using
the TBME database. However, the data used in the DCT model are different from this
study, and the results cannot be directly compared. Moreover, this study used 500 records,
which is far more than the number of data used in the DCT model. Table 1 also shows
that the phase error between the reconstructed ECG and the reference ECG is small. Better
performance can be obtained by learning the PATs by the model itself rather than removing
PATs in the preprocessing stage.

This study has some limitations.

1. Variations in PAT signals: The model proposed in this study is subject-specific, mean-
ing that it captures the PAT of a specific individual during the training phase. Con-
sequently, applying the model directly to multiple subjects presents a significant
challenge due to variations in PATs between individuals, making the problem differ-
ent and requiring the development of an inter-subject model.

2. Variability in PPG signals: PPG signals are susceptible to variability due to factors
such as skin pigmentation, motion artifacts, and changes in blood volume. This
variability can affect the accuracy of the reconstructed ECG signal.

3. Limited availability of training data: The availability of subject-specific training data
for PPG-based ECG reconstruction is limited. This can make it difficult to train an
accurate model that can generalize well to new subjects.

To address these challenges, the following recommendations can be made:

1. Data augmentation: Using data augmentation techniques can help mitigate the vari-
ability in PPG signals. Techniques such as adding noise, jittering, and randomiz-
ing the signal’s amplitude and frequency can increase the model’s robustness to
signal variability.

2. Transfer learning: Transfer learning can help overcome the limited availability of
training data by leveraging pre-trained models on similar tasks. For example, a pre-
trained model on PPG-based heart rate estimation can be fine-tuned on the ECG
reconstruction task.

3. Model optimization: Optimizing the model architecture and hyperparameters can
reduce the computational requirements of the end-to-end model. Techniques such
as pruning, quantization, and compression can reduce the model’s size and improve
its efficiency.

4. Validation on large and diverse datasets: To ensure the model can generalize well
to new subjects, it is crucial to validate its performance on a wide range of diverse
datasets. This validation process can help uncover any biases in the model and
ultimately improve its overall performance.

5. Deployment considerations: Considerations such as hardware requirements, power
consumption, and real-time performance should be taken into account when deploy-
ing the model in real-world applications. For example, deploying the model on a
mobile device with limited resources may require additional optimization techniques.
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5. Conclusions

In conclusion, the PPG2ECGps algorithm, which is based on the W-Net architecture
and is designed to be patient-specific, has shown promising results in the reconstruction of
electrocardiogram (ECG) signals from photoplethysmography (PPG). The model’s ability
to learn PAT information in long signal segments eliminates the phase error that is typically
introduced during the preprocessing phase of aligning ECGs and PPGs based on feature
points. The experimental results validate the effectiveness of the proposed model in
reconstructing ECG signals that are highly similar to the reference ECG signals, with a
small phase error.

Moving forward, the proposed model’s applicability can be further enhanced by
generalizing it to multiple subjects. This will enable the model to be used in a wider range of
settings, making it more practical and useful in real-world applications. Overall, this paper
presents a promising approach to reconstructing ECG signals using PPGs, with the potential
to significantly improve patient monitoring and diagnosis in the healthcare industry.
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