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Abstract: One problem in the quantitative assessment of biomechanical impairments in Parkinson’s
disease patients is the need for scalable and adaptable computing systems. This work presents
a computational method that can be used for motor evaluations of pronation-supination hand
movements, as described in item 3.6 of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS).
The presented method can quickly adapt to new expert knowledge and includes new features
that use a self-supervised training approach. The work uses wearable sensors for biomechanical
measurements. We tested a machine-learning model on a dataset of 228 records with 20 indicators
from 57 PD patients and eight healthy control subjects. The test dataset’s experimental results show
that the method’s precision rates for the pronation and supination classification task achieved up to
89% accuracy, and the F1-scores were higher than 88% in most categories. The scores present a root
mean squared error of 0.28 when compared to expert clinician scores. The paper provides detailed
results for pronation-supination hand movement evaluations using a new analysis method when
compared to the other methods mentioned in the literature. Furthermore, the proposal consists of a
scalable and adaptable model that includes expert knowledge and affectations not covered in the
MDS-UPDRS for a more in-depth evaluation.

Keywords: artificial intelligence; machine learning; wearable sensors; Parkinson’s disease; biomechanical
behavior; engineering application; medicine

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that predominantly affects
dopamine-producing neurons, with symptoms that develop slowly over the years. For ex-
ample, tremors, bradykinesia, limb rigidity, gait and balance problems, and other unrelated
symptoms to movements, such as depression and cognitive impairment, can be present [1].
Currently, all therapies used for PD improve the symptoms without slowing or halting
disease progression.

One of the most widely accepted clinical rating scales for PD progression is the
“Unified Parkinson’s Disease Rating Scale” from the Movement Disorder Society (MDS-
UPDRS) [2]. The MDS-UPDRS has been used in different works [3–6] as a guideline to
develop several computational tools to objectively assess the progression of PD motor
symptoms. Some motor affectations that are used to determine the severity of the disease
are gait, tremors, and bradykinesia, as presented in [7–11]. Although, these do not include
an analysis of the pronation-supination hand movements.
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Several artificial intelligence methods have assessed chronic diseases [12], such as PD
and diabetes. In the case of PD, in the work presented by [13], an automatic non-invasive
method is used to identify Parkinson’s-related gait. The previously mentioned work
uses a combination of wavelet analysis and support vector machines (SVMs), reporting a
classification accuracy of 90.32%.

Other works present different neural network architectures to assess motor symp-
toms, such as convolutional neural networks (CNNs) for classifying the severity of PD
patients [4,14,15]. The first and second studies present 85% and 95% accuracy, respectively.
However, they depend on the convolutional filters of CNNs for feature extraction and
use methods like handwritten dynamics, which clinical experts find difficult to interpret
most of the time. Meanwhile, in the third study, classification performance improved from
77.54% to 86.88% after a data augmentation process.

In [16], motor, nonmotor, and imaging features were extracted using unsupervised and
supervised methods. However, this work explicitly investigates optimal feature selection
for the robust identification of PD subtypes. Other studies, such as [17], developed a
sex-specific and age-dependent classification method to diagnose Parkinson’s disease using
the online handwriting of patients with PD with an accuracy of 83.75% for females and
79.55% for an old-age classifier.

The MDS-UPDRS [2] presents instructions for assessing pronation and supination
hand movements (item 3.6). Each hand is evaluated separately. The patient must extend
the arm out in front of his/her body with their palms facing down, then turn the palm
up and down alternately 10 times as fast and as fully as possible. The exercise evaluation
includes speed, amplitude, hesitations, halts, and decrementing amplitude. The movement
assessments are Normal if there are no problems, and Slight, when any of the following
behaviors occur: (a) the regular rhythm is broken with one or two interruptions or hesi-
tations; (b) slight slowing; (c) amplitude decrements are observed close to the end of the
sequence. Mild is used if any of the following occur: (a) three to five interruptions during
the movements; (b) mild slowing; (c) amplitude decrements are observed halfway into the
sequence. Moderate is used (a) when there are more than five interruptions during the
movement or at least one longer arrest (freeze), (b) moderate slowing, and (c) amplitude
decrements are observed starting after the first supination-pronation sequence. Severe is
used if the patient cannot or can only barely perform the task due to slowness, interruptions,
or decrements.

Nevertheless, the patients can present affectations not evaluated by the UPDRS, such
as a wobble during the hand movements and the speed change rate during different stages
of the exercise. These affections are very difficult to assess visually, and it is even more
complex to monitor their evolutions in regular patient consultations. In this sense, in [5],
12 characteristics related to the above behavior were extracted, and a feature selection
was applied.

Machine learning has been used for tremor severity quantification in Parkinson’s dis-
ease and upper limb motor preclinical assessment and diagnosis using voice features [4,9,18].
However, pronation-supination hand movements have not been evaluated.

In [19,20], fuzzy inference models were used to assess pronation-supination hand
movements based on the MDS-UPDRS. These works calculated biomechanical indicators
from accelerometers, gyroscopes, and magnetometer signals. The indicators were quanti-
fied through other feature engineering methods to represent several motor impairments
considering more than 350 measurements from 57 PD patients and 10 healthy control
subjects. The modeling of the expert’s knowledge through fuzzy logic has proved to be
successful as they provide a score that is easy to interpret by the expert clinicians. In [20],
two different fuzzy inference models were combined with a decision-making process for a
complete assessment.

As mentioned, fuzzy inference models present the advantage of decreasing ambi-
guity and interpretability regarding people of different backgrounds [21], in particular,
for deciding when medical specialists should be involved in the design and validation
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of computerized expert systems. However, when many indicators exist, creating fuzzy
systems (membership functions and fuzzy rules) presents significant complexity. Scalability
is an inconvenience in this model type. If the criteria to evaluate the PD patients change,
the membership functions and the fuzzy rules must be redesigned.

In [22], several parameters from upper limb motion were extracted, including prona-
tion and supination hand movements. Even though some of the presented parameters are
mentioned in the MDS-UPDRS, they only classify healthy control subjects and patients
with PD.

The current proposal addresses the scalability and adaptability issue with a self-
supervised training approach, maintaining the result’s interpretability by expert clinicians.
In this sense, our use case focuses on the motor impairments of patients, given that these
affectations can be objectively measured. The proposed method generates latent space
representations in an unsupervised manner; this addresses the scalability issue as new
biomechanical features may appear over time. Another advantage is that the method can
easily adapt to the recent expert’s evaluation criteria by relabeling the original observations
without retraining the model using a lazy learning method.

The method consists of three modules. The first module is an auto-encoder, a type of
neural network with an encoder-decoder architecture. This neural network can efficiently
compress data into a low dimension (latent space representations) and find complex
relationships in the data. In order to achieve this, the encoder transforms the input (high-
dimensional data) to a lower dimension (latent space), and then the decoder can reconstruct
the same inputs [23–25]. The second module consists of the labeling of these latent space
representations. In order to accomplish this, experts give a score to the original observations
of each patient according to the MDS-UPDRS guidelines [2]. These scores, which are
considered so that the expert’s knowledge can be integrated, can be easily adjusted by
re-evaluating the observations. In the third module, a final evaluation is given for new
patients by considering the distance between the computed latent space representations
and the new query point.

This paper includes a Materials and Methods section with a summary of the biome-
chanical indicators and the detailed design of the unsupervised and supervised stages. The
Results section offers the obtained scores, and subsequently, the Discussion and Conclu-
sions follow.

2. Materials and Methods

A summary of the biomechanical indicators used in this work is presented in this
section. The dataset consists of 228 pronation-supination hand movement records from
57 PD patients and eight healthy control subjects (some patients have more than one mea-
surement in a span from 1 to 6 months, Table 1) [19]. Each record consists of measurements
acquired by inertial measurement units (IMU) while the patient performed pronation and
supination hand movements. Two previously calibrated units were placed on the dorsal
side of both hands [19]. Data acquisition was carried out via virtual instrumentation soft-
ware, while self-supervised model implementation was performed with the help of the
Keras, Sci-kit-Learn [26], and Python packages.

Table 1. PD patients’ summary.

Characteristics PD Patients Healthy Patients

Age Range 48–83 years 23–63 years
Range of Years with a PD diagnosis 1–20 years -

Age Average 67.4 years 31.28 years
Age Standard Deviation 9.3 years 14.1 years

Male Subjects 34 5
Female Subjects 23 3
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As depicted in Figure 1, each measurement was acquired wirelessly by a computer
connected to the IMU, recording movements on the x, y, and z-axis. Each IMU consists
of an accelerometer, a gyroscope, and a magnetometer [19,20]. The measurements were
acquired at a rate of 50 samples per second; this allowed an appropriate discretization of
the continuous signals [27].
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Figure 1. Biomechanical indicators extraction in two previously published works by our team.

Over the years, an increasing number of biomechanical features have been proposed to
describe motor impairments. According to the MDS-UPDRS and expert clinicians, several
elements must be considered to rate pronation-supination hand movements, like amplitude,
speed, hesitations, halts, and decrementing amplitudes.

Our team calculated eight indicators to evaluate motor impairments that are included
in the MDS-UPDRS [19]. Their calculations are based on the hand movement behavior,
illustrated graphically in Figure 2. For example, the mean and standard deviation of
amplitude and speed are in Figure 2a,b. The decrements in amplitude during the three
exercise stages are shown in Figure 2c (Start, Half, and End), and the halts and hesitations
are illustrated in Figure 2d. Details of how these biomechanical indicators were computed
are deeply explained in [19].

Figure 2. Cont.
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Figure 2. Illustration to obtain the biomechanical features that follow MDS-UPDRS guidelines (L1–8):
(a) mean and standard deviation of amplitude ( L1–2). (b) Mean and standard deviation of speed
(L 3–4). (c) Decrements in amplitude during three exercise stages (L 6–8). (d) Halts and hesitations
(L 5). Time is seconds, and other measurement units, are shown in Table 2.

Table 2. Description of biomechanical features computed in the pronation and supination sequence.
Sexagesimal degree (◦).

Key Description Units
Amplitude related features

L1 Mean amplitude ◦
L2 Amplitude’s standard deviation ◦
L6 Amplitude decrements in the first stage of the sequence ◦
L7 Amplitude decrements in the second stage of the sequence ◦
L8 Amplitude decrements in the last stage of the sequence ◦
L11 Median amplitude ◦
L12 The interquartile range of amplitude ◦

Velocity related features
L3 Mean velocity ◦/s
L4 Velocity’s standard deviation ◦/s
L13 Median velocity ◦/s
L14 The interquartile range of velocity ◦/s
L15 Rate of velocity decrement in the first stage of the sequence -
L16 Rate of velocity decrement in the second stage of the sequence -
L17 Rate of velocity decrement in the last stage of the sequence -
L18 The slope of velocity decrement in the first stage of the sequence -
L19 The slope of velocity decrement in the second stage of the sequence -
L20 The slope of velocity decrement in the last stage of the sequence -

Anomalies during movement’s sequence
L5 Halts & hesitations −
L9 Unsteady oscillation in the x, y, and z axes cm
L10 Unsteady oscillation in the x and y axes cm
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In [20], an extended method evaluates the pronation and supination hand movements
with additional indicators; Table 2 presents 20 indicators organized based on the character-
istics of amplitude, velocity, and anomalies during the movement sequence (L1–20). The
12 new indicators, with respect to [19], were created to evaluate the motor impairments
not included in the MDS-UPDRS guidelines. For example, some visible affections, such
as a wobble in the upper limbs, can be described as an unsteady oscillation during hand
movements (Figure 3a), which frequently increases as the exercise time elapses. The ideas
exchanged between specialists during the PD patients’ motor assessments supported this
contribution. Some patients present behaviors that are not mentioned in the literature. In
this sense, the variation in each axis pointing direction was quantified into two different
features following an algorithm based on quaternions [28,29] and by using the triaxial
dynamic acceleration and vector calculation [11]. The median of the amplitude and velocity
and their interquartile ranges were computed to avoid the effect of possible outliers during
these exercises. Additionally, the indicators that quantify speed decrements for the three
different exercise stages (Figure 3b) were obtained. The calculation details of these new
12 biomechanical indicators are deeply explained in [20].
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Figure 3. Illustration of the behavior of pronation and supination hand movements regarding
biomechanical characteristics not included in the MDS-UPDRS guidelines: L9: unsteady oscillation
in the x, y & z axes; L10: unsteady oscillation in the x and y axes; L11: median amplitude; L12:
interquartile range of amplitude; L13: median velocity; L14: interquartile range of velocity; L15–17:
rate of velocity decrement in the sequence’s first, second and last stage, respectively; L18–20: the slope
of velocity decrement in the sequence’s first, second and last stages, respectively (calculation details
in [20]). Time is seconds, and other measurement units are in Table 2. (a) An unsteady oscillation
during hand movements (b) The quantify speed decrements for the three different ex-ercise stages.

The new proposal creates a self-supervised adaptive model encompassing supervised
and unsupervised learning methods. The task of this model is to learn good represen-
tations in the latent space derived from the original biomechanical features. These new
representations resulted from transforming the 20 initial biomechanical indicators depicted



Bioengineering 2023, 10, 588 7 of 25

in Table 2, i.e., a dimensionality reduction in the original dataset. Subsequently, a lazy
learning algorithm gave a score based on the MDS-UPDRS guidelines.

The proposed method was divided into three core modules: the first consisted of
a neural network to learn efficient data representations from the original biomechanical
indicators. The second module included integrating the experts’ knowledge as part of the
assessment of each PD patient. The last module corresponded to a supervised approach
whereby patients were evaluated on a discrete and continuous scale following the MDS-
UPDRS guidelines.

This method was also divided into two stages: Training (Figure 4a) and deployment
(Figure 4b). Training refers to finding the model’s parameters, and deployment refers to
using the method in a clinical environment. The training phase transforms each patient
into the latent space based on their motor impairments. Expert clinicians then label
each observation (patient performing a pronation-supination motor examination exercise)
following the MDS-UPDRS guidelines.
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For expert clinicians to provide their assessment (labels), they watched previously
recorded sessions of each patient performing the pronation and supination hand move-
ments. All the evaluations were carried out following the MDS-UPDRS guidelines. The
results were clusters of labeled patients in the latent space, as shown in Figure 4a. Details
of the interaction between Module 1 and Module 2 are given in Sections 2.1 and 2.2.

A tabular summary of expert clinicians’ scores is depicted in Table 3. Overall, the
expert assessments had an agreement of 70–74%. Therefore, we can tell that each expert
clinician tends to give a similar score for the pronation and supination movements.
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Table 3. Cross-validation scores of three expert clinicians [20].

Expert 1 Expert 2 Expert 3
Expert 1 1 0.72 0.7
Expert 2 0.72 1 0.74
Expert 3 0.7 0.74 1

Table 2 presents the 20 biomechanical indicators used to assess pronation and supina-
tion hand movements. They are organized based on characteristics of amplitude, velocity,
and anomalies during the movement sequence.

An overview of the training phase in the proposed method is depicted in Figure 4a. In
this method, the biomechanical features L1–20 are used as inputs to enable the auto-encoder
to learn efficient data representations in an unsupervised manner (Module 1). In Module 2,
the examiners label each original observation; the expert’s knowledge is included following
the MDS-UPDRS guidelines. Finally, in Module 3, a query point (new patient) in the latent
space is used as input for a distance-based algorithm (K-nearest-neighbor (KNN) and
K-nearest neighbors regression (KNNR)) to obtain a discrete and continuous evaluation,
respectively, based on the severity of each patient in a deployment phase. KNN is based on
the initial ideas of Evelyn Fix and Joseph Hodges [30].

As shown in Figure 4b, a new patient undergoes a feature extraction process for the
acquired raw signals during the pronation-supination hand movements. After that, the
extracted features go through the trained auto-encoder to generate their representation in
the latent space. Lastly, KNN and KNNR are used to determine a discrete and a continuous
score based on the closest neighbors in the latent space.

The three modules mentioned above were implemented in Python using open-source
platforms for machine learning. All the supplementary materials (data, code, and models)
are available upon reasonable request to the authors.

2.1. Module 1: Patient Representations in Latent Space (Based on Biomechanical Features)

Auto-encoders represent a neural network that aims to compress the input into a lower
dimension (latent space) and reconstruct the output from this latent space. For example,
they are used for different applications [31,32].

Based on an auto-encoder, Module 1 automatically generates a representation of each
observation in the latent space. The 20 biomechanical features (L1–20) are used to feed the
auto-encoder, as shown in Figure 4a.

An auto-encoder topology is always composed of two parts. In our case, the first part
(encoder or recognition network) converts the input to a latent representation, as depicted
in Figure 5. In this work, this part consists of an input layer l composed of 20 biomechanical
indicators ( l ∈ Rm, m = 20) and a hidden layer, h, of size n, where n < m. The hidden
layer with fewer neurons forces the network to learn a compact representation of the
original inputs. These hidden neuron outputs (representing the embedding or location
of each patient in the latent space) can be interpreted as complex nonlinear combinations
of the original features. Although the latent representations are learned automatically by
the encoder without any supervision by humans, they are extracted from the established
biomechanical features L1–20. The use of the auto-encoder allows for finding those complex
relationships automatically.



Bioengineering 2023, 10, 588 9 of 25

Bioengineering 2023, 10, 588 9 of 26 
 

Module 2, the examiners label each original observation; the expert’s knowledge is in-
cluded following the MDS-UPDRS guidelines. Finally, in Module 3, a query point (new 
patient) in the latent space is used as input for a distance-based algorithm (K-nearest-
neighbor (KNN) and K-nearest neighbors regression (KNNR)) to obtain a discrete and 
continuous evaluation, respectively, based on the severity of each patient in a deployment 
phase. KNN is based on the initial ideas of Evelyn Fix and Joseph Hodges [30].  

As shown in Figure 4b, a new patient undergoes a feature extraction process for the 
acquired raw signals during the pronation-supination hand movements. After that, the 
extracted features go through the trained auto-encoder to generate their representation in 
the latent space. Lastly, KNN and KNNR are used to determine a discrete and a continu-
ous score based on the closest neighbors in the latent space.  

The three modules mentioned above were implemented in Python using open-source 
platforms for machine learning. All the supplementary materials (data, code, and models) 
are available upon reasonable request to the authors. 

2.1. Module 1: Patient Representations in Latent Space (Based on Biomechanical Features) 
Auto-encoders represent a neural network that aims to compress the input into a 

lower dimension (latent space) and reconstruct the output from this latent space. For ex-
ample, they are used for different applications [31,32].  

Based on an auto-encoder, Module 1 automatically generates a representation of each 
observation in the latent space. The 20 biomechanical features (𝐿 ) are used to feed the 
auto-encoder, as shown in Figure 4a. 

An auto-encoder topology is always composed of two parts. In our case, the first part 
(encoder or recognition network) converts the input to a latent representation, as depicted 
in Figure 5. In this work, this part consists of an input layer 𝑙 composed of 20 biomechan-
ical indicators (𝑙 ∈  ℝ , 𝑚 = 20) and a hidden layer, ℎ, of size 𝑛, where 𝑛 < 𝑚. The hid-
den layer with fewer neurons forces the network to learn a compact representation of the 
original inputs. These hidden neuron outputs (representing the embedding or location of 
each patient in the latent space) can be interpreted as complex nonlinear combinations of 
the original features. Although the latent representations are learned automatically by the 
encoder without any supervision by humans, they are extracted from the established bio-
mechanical features 𝐿 . The use of the auto-encoder allows for finding those complex 
relationships automatically. 

 
Figure 5. Auto-encoder architecture. 

The output of this hidden layer is the latent space representation and is defined as:  𝑓: 𝑙 ∈  ℝ ⟼ ℎ ∈  ℝ  (1)

where ℎ ≔  𝑓 (𝑙) = 𝜙 𝜃 𝑙 + 𝑏 , 𝑗 = 1, 2, … , 𝑛  (2)

Figure 5. Auto-encoder architecture.

The output of this hidden layer is the latent space representation and is defined as:

f : l ∈ Rm 7−→ h ∈ Rn (1)

where
hj := f j(l) = φe

(
θT

j l + bj

)
, j = 1, 2, . . . , n (2)

where

φe: is the activation function;
θT

j : is the weights vector;

l: is the input vector.

The second part of the auto-encoder converts the internal representations to the
network’s outputs. In this work, this part consisted of using the hidden layer outputs, h,
as inputs to the output layer, l̂, which then created the reconstructions, L̂i, of the original
inputs, as seen in Figure 5. The decoder can be defined as

g : h ∈ Rn 7−→ l̂ ∈ Rm (3)

where
gk(h) = φd

(
θ′

T
k h + bk

)
, k = 1, 2, . . . , m (4)

being:

φd : the activation function.
θ′Tk : the weights vector.
h: the latent representations vector.

This functionality of the auto-encoders is also used to determine auto-encoder perfor-
mance, i.e., the biomechanical features used as inputs for the encoder Li should be very
similar to the reconstructions L̂i generated by the decoder.

As an initial approximation, the auto-encoder was organized into two parts, as men-
tioned before. The encoder and the decoder are regular sequential models with a single
dense layer each. In total, three layers were used in the neural network architecture. The
task of training is to estimate the weights Θ := [θ1, . . . , θn] and Θ′ :=

[
θ′1, . . . , θ′m

]
; these

parameters are estimated, so the reconstruction error e = Li − L̂i is minimal.
Initially, all layers used the relu (rectified linear unit) activation function, as it is

a common standard with neural networks. Additionally, the mean squared error and
binary cross-entropy loss functions were tested initially. Auto-encoder optimization and its
hyperparameter tuning are explained in Section 2.4.

A comparison with a popular approach for data transformation was contemplated
as another approximation to determine an acceptable auto-encoder architecture. It is well
known that the principal component analysis (PCA) can be compared to auto-encoders
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when their neurons have linear activation functions [33]. PCA, also commonly used
for dimensionality reduction, offers a simple approach to determine a smaller number
of components needed to reconstruct the input without losing too much information.
This approach selects the number of principal components that explain some predefined
percentage of the variance, usually between 90 and 95% [34].

In this sense, the variance of each component was computed, and the first ten principal
components added up to 94% of the total variance, which gives a notion of the architecture
needed for the auto-encoder. However, as mentioned before, PCA only performs linear
transformations. In contrast, auto-encoders have the versatility to perform nonlinear
transformations, which will help with more complex data like the biomechanical indicators
of this work.

2.2. Module 2: Clinical Knowledge Representation in the Latent Space

Module 2 was used to integrate the experts’ knowledge, as depicted in Figure 4a). Two
paths were followed (see Figure 6) to obtain a labeled representation of each patient in the
latent space.
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The first one starts with acquiring the raw signals (biomechanical signal), followed
by the feature extraction process (feature engineering) presented by [19,20]. Once the
features were extracted, their representations in the latent space were generated, as stated
in Section 2.1.

In the second path of Figure 6, expert clinicians evaluated recorded videos of each
patient’s pronation-supination movements. Scores by the expert clinicians were given
following the MDS-UPDRS guidelines (Rating Mode). Subsequently, the assessment (Rating
Mode) of each patient was mapped to the latent space representation hj={1,...,10} generated
by the encoder. This resulted in labeled representations of each patient in the latent space
(Labeled latent space).

For the evaluation, three expert clinicians participated in the motor assessment of pa-
tients with D. Each expert gave a score according to their judgment. In order to incorporate
their scores into the unlabeled latent space, the mode of the three scores was computed and
mapped to each latent space representation.

It is important to mention that the expert’s knowledge integrated into this method
can always be changed. This means that if a medical institution wants to use its criteria



Bioengineering 2023, 10, 588 11 of 25

for the assessment, the experts only need to re-evaluate each PD patient, which can be
easily accomplished as all motor explorations are recorded. Consequently, the method
can continuously adapt to new expert criteria without redesigning the neural network
architecture.

In the same way, if medical institutions do not want to change the criteria for assessing
the severity of patients for any reason. The proposed method can always be used given
that the expert knowledge currently used is from three expert examiners endorsed by the
MDS-UPDRS, which gives the benefit of standard criteria for evaluation.

2.3. Module 3: Pronation and Supination Assessment

For our use case, KNN was selected due to its advantages. The KNN algorithm is
considered a lazy learning algorithm; this means that it has no explicit training step, and all
the work happens during prediction with a time complexity of O(kn). This is particularly
helpful because since there is no explicit training step, as we keep adding new data to the
dataset, the prediction is adjusted without retraining a new model, which helps with the
adaptability and scalability of our work.

The goal of module 3 was obtaining a discrete and continuous evaluation in a clinical
environment, as depicted in Figure 4b. In order to achieve this, a query point (new patient)
in the latent space is used as input for the distance-based learning algorithm KNN and
KNNR. Using the labeled latent space representations hj as inputs, a discrete and continuous
evaluation for a new patient can be determined.

For the discrete evaluation, the KNN algorithm [35] was used in a classifier configu-
ration, and the target is the mode of all the experts’ assessments computed in Section 2.2.
New experts can add knowledge without modifying the auto-encoder to generate new
latent space representations. To determine the class of a new query point q (new patient),
KNN calculated the distance between the labeled data points and q via Equation (5).

d(q, p) =

√
n

∑
i=1

(qi − pi)
2 (5)

where

d(q, p) : is the Euclidean distance between data points;
qi : is the query point (new patient);
pi: labeled data points in latent space representation.

The results for the KNN as a classifier are depicted in Table 4. Recall or Sensitivity is
the number of true positives divided by the total number of actual instances of the class.
Recall is a performance metric that measures the ability of a model to correctly identify
all relevant instances of a class. It is calculated by dividing the number of true positives
(correctly identified instances of the class) by the total number of actual instances of the
class [26]; in our case, PD patients whose severity stage was correctly identified by our
model, including the false negatives (instances incorrectly classified as not belonging to the
specific disease stage).

Table 4. KNN metrics report.

Category Precision Recall F1-Score
0 0.8 0.62 0.7
1 0.73 0.92 0.81
2 0.5 0.17 0.25KNN

3 0.5 0.67 0.57

Precision is the number of true positives divided by the number of instances identified
as belonging to the class.
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The F1 score is a measure that combines Precision and Recall into a single score. The
harmonic mean of Precision and Recall ranges from 0 to 1, with higher values indicating
better performance. It is calculated as 2 ∗ (Precision ∗ Recall)/(Precision + Recall).

Categories 0 and 1 present a regular performance for a normal and a slight stage of the
disease. Mild and moderate (2 and 3) have poor performance. The reason for these poor
results is the low number of observations of these categories, leading the model to give
more weight to those with higher observations. Further model tuning is later addressed in
Section 2.4.

KNN can be used in cases where the data labels are continuous rather than discrete
variables; the KNNR configuration [36,37] is used for these circumstances. In our case,
the work presented by [20], a continuous score was computed by a decision-making
process. In KNNR, the distance from q to the k-nearest data points was computed again by
Equation (5). After that, the arithmetic mean of the measured distances was calculated and
used as a prediction.

After obtaining the predictions of the test set, they were compared to the results
presented in [20] using the determination coefficient (R2) of Equation (6) and the mean
squared error (MSE) of Equation (7). Table 5 depicts the results of the two metrics. Both
metrics present acceptable results, with MSE being a small number and R2 close to one.

R2 = 1− ssres

sstot
(6)

where

ssres : is the sum of squares of residual errors;
sstot : is the total sum of the errors.

MSE
(

L, L̂
)
=

1
n

n

∑
i=0

(yi − ŷi)
2 (7)

where

n : is the number of elements;
yi : represents the predictions of KNNR;
ŷi : represents the values of the decision-making process.

Table 5. KNNR metrics report.

MSE R2

KNNR 0.05 0.86

2.4. Module Optimization and Hyperparameter Tuning

Several methods were used to optimize the auto-encoder and the assessment estima-
tion, from over-sampling the original observations to hyperparameter tuning via trying
different combinations, which are addressed in the following subsections.

2.4.1. Dataset Over-Sampling

The studied dataset consisted of 228 records with 20 different biomechanical indi-
cators and the scores of three expert clinicians, following the MDS-UPDRS guidelines.
However, an imbalance problem in our dataset was present, as is commonly presented in
real-life scenarios.

Considering the mode of the three expert ratings, the proportion of category 1 (slight
stage of the disease) was the biggest one, with more than half of the entire measurements,
followed by category 0, which represents the patients with minimal motor affectations
or control subjects. The following categories 2 and 3 represented patients with moderate
and severe motor symptoms and represented around a fifth of the total measurements, as
shown in Table 4.
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As the literature states, class-imbalanced data leads to bad prediction models, and
most machine learning methods tend to perform poorly in minority class examples [36,38].
In this sense, one of the most common methods used to address this issue is the synthetic
minority oversampling technique (SMOTE) [36].

This oversampling method was used to create synthetic data points of all the biome-
chanical indicators L1–20 for categories 0 (normal), 2 (mild), and 3 (moderate) in the original
dataset; the original and resulting proportions are depicted in Table 6. After the oversam-
pling method, 480 records were used in the dataset.

Table 6. Proportions of categories before and after oversampling.

Category Before Smote After Smote
0 27% 25%
1 53% 25%
2 13% 25%
3 7% 25%

SMOTE was preferred over other oversampling techniques, such as random oversam-
pling, due to the advantage that the new data generated preserve the original data distribution
of each feature, as depicted in Figure 7, where the distributions of the mean velocity and
median velocity are shown in blue and the resampled features in orange for patients in
stages 2 and 3 of the disease.
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SMOTE synthetically generates new instances between existing instances. Specifically,
a random example from a minority category is first chosen. Then the k of the nearest
neighbors is found. Finally, a randomly selected neighbor is chosen, and a synthetic
example is created at a randomly selected point between the two points. This is important
because overfitting is avoided, and the data are still valid for the training purposes of the
auto-encoder, which will be later addressed in this section.

2.4.2. Hyperparameter Tuning and the Auto-Encoder

In order to adjust the parameters that are not directly learned within the neural
network training, an exhaustive search generated candidates from a grid of parameters
(grid-search) [39,40]. This grid consisted of different values for each parameter, such as
epochs, learning rate, and loss function. In order to fit the model to the dataset, all the
possible combinations of our grid were evaluated, and the best combination was chosen
according to a specific metric: in our case, accuracy.

After performing the grid-search method and evaluating the auto-encoder outputs,
the chosen hyperparameters during the training phase of the auto-encoder were the mean
squared error as the loss function, learning rate α = 0.0001, and training for 2000 epochs.
The hidden layer neurons used a rectified linear unit activation function to generate the
latent space encodings. The output layer neurons used a hyperbolic tangent activation
function, given that some reconstructions could present values between −1 and 1.

A stratified cross-validation of the 20 original scaled features was implemented to
obtain the training and a test subset (with a ratio of 80:20, respectively). Afterward, the
auto-encoder training was carried out using only the training subset, leaving the test subset
out of the training phase.

In our case, in order to have more certainty that the auto-encoder architecture had
learned adequate latent space representations, the test subset, which was never seen by the
auto-encoder during its training phase, was used as input for the encoder. The encoder
then returned, as an output, latent space representations Ck={1,...,10} that were later used
to feed the decoder to generate the reconstructions L̂k={1,...,20}. To be more concise, the
metrics R2 and MSE were used to compare the decoder reconstructions L̂k={1,...,20} against
the original encoder inputs Lk={1,...,20}. Comparing the inputs against the outputs is a way
to ensure that the auto-encoder was trained properly. This means that the coefficient of
determination, R2, via Equation (4) of each biomechanical indicator, Li, should be close to
1, as the reconstructions computed by the decoder should have a high level of correlation
with the inputs used in the encoder. The mean square error via Equation (7) should be close
to 0 as the difference between the inputs and reconstructions of the auto-encoder should be
a minimum. However, if a random permutation is applied to the latent space encodings,
Ck, the decoder will not be able to accurately reconstruct the inputs used for the encoder,
meaning that both R2 and MSE will have irregular values.

As depicted in Table 7, the first two columns correspond to the R2 and MSE values
of each feature. With a range that goes from −∞ to 1, the first column R2 is close to 1,
as is expected in most of the features, and MSE is close to 0 due to the high correlation
between the inputs and reconstructions in most cases. The next two columns, R2′ and MSE′,
correspond to the same metrics but are computed after a random permutation of the latent
space representations Ck={1,...,10}; as expected, these two metrics now indicate there is no
correlation at all between the inputs and the reconstructions of the auto-encoder.
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Table 7. R2 and MSE values of each feature comparing the original inputs vs. decoder reconstructions
after latent space representations are randomly shuffled.

Without Random Permutation Ck With Random Permutation of Ck

Feature R2 MSE R2’ MSE′

L1 0.952 0.001 −0.379 0.057
L2 0.891 0.002 −1.882 0.067
L3 0.951 0.002 −0.579 0.073
L4 0.927 0.001 −1.351 0.058
L5 0.945 0.001 −1.006 0.066
L6 0.55 0.005 −1.953 0.036
L7 0.866 0.002 −1.945 0.046
L8 0.801 0.004 −0.778 0.037
L9 0.956 0.001 −0.689 0.059

L10 0.961 0.001 −0.859 0.078
L11 0.945 0.002 −0.559 0.066
L12 0.899 0.002 −1.578 0.076
L13 0.964 0.001 −0.678 0.075
L14 0.915 0.002 −1.412 0.071
L15 0.502 0.001 −2.056 0.008
L16 0.866 0.001 −3.146 0.053
L17 0.747 0.003 −1.508 0.035
L18 0.704 0.003 −1.542 0.026
L19 0.742 0.003 −1.516 0.034
L20 0.713 0.002 −2.156 0.031

2.4.3. Distance-Based Algorithm Optimization

In this section, different adjustments made to the assessment estimation module were
considered to achieve the final evaluation; in this case, KNN, which is widely used [41,42],
was selected. This lazy learning algorithm has the advantage that it can be used for
classification and regression (KNNR) purposes. In this sense, we can still give a discrete
and continuous evaluation for each new patient.

Various KNN instances with different K values were trained to determine the optimal
K value for the nearest neighbor algorithm. Keeping track of the root mean squared error
(RMSE) for each instance, the lowest error was found at K = 4, as Figure 8 presents.
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As another optimization method, the KNN as a classifier has a variation that assigns
weights proportional to the inverse of the distance from the query point. In this variation
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of the KNN, closer neighbors of a query point will have a greater influence than further
away neighbors by Equation (8).

y′ = argmax
v

k

∑
i=1

wi ∗ I(v = yi) (8)

where

y′ : is the predicted class of the query point;
v: represents the class labels;
wi : is the weight computed by Equation (9).

wi =
1

d
(

xq, xi
)2 (9)

where

xq : is the new query point;
xi : is the existing point.

For the discrete evaluation, the results of different combinations are depicted in Table 8,
where the base KNN, without any previous optimization methods, presented an overall
accuracy of 0.72. Precision and recall of categories 2 and 3, which correspond to mild and
moderate stages of the disease, showed bad scores. In this sense, the reference considered
was a regular KNN without oversampling the 20 original features, which presented an
overall accuracy of 72% and poor results in the smaller classes regarding precision and
recall. This was expected due to the original dataset imbalance.

After performing the different optimization methods discussed in the previous sec-
tions, the performance increased. By using the oversampled data, the trained auto-encoder
using the chosen hyperparameters and the weighted variation of the KNN, there was
a considerable increase in the results. Table 8 shows that overall accuracy increased by
0.17, reaching 0.89. Precision and recall also improved in each category, particularly for
categories 2 and 3.

Another possible configuration of the KNN is the K-Nearest Neighbors Regression
(KNNR). This variation is commonly used in cases where the data labels are continuous
rather than discrete variables and are computed using Equation (10). A simple KNNR uses
uniform weights: each point in the local neighborhood attributes the same importance
to all neighbors [43]. However, KNNR can assign weights proportional to the inverse of
the distance as in the classification. This means that nearby points contribute more to the
regression than distant points.

y′ = ∑n
i=1(wi ∗ xi)

∑n
i=1 wi

(10)

where

y′ : is the predicted value of the query point;
xi : is the latent space representation;
wi : is the weight computed by Equation (9).

In this sense, Table 9 depicts the metrics of the mean squared error (MSE) and R2 of
KNNR using the test set. Good scores for both MSE and R2 were obtained. This confirms
that the latent space encodings generated by the encoder were good representations of the
original data.
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Table 8. KNN classifier results.

Category Precision Recall F1-Score Overall
Accuracy

0 0.8 0.62 0.7
1 0.73 0.92 0.81
2 0.5 0.17 0.25KNN

3 0.5 0.67 0.57

0.72

0 0.78 0.54 0.64
1 0.69 0.83 0.75
2 0.25 0.17 0.2

Original data

KNN-
Weighted

3 0.5 0.67 0.57

0.65

0 0.7 0.96 0.81
1 0.92 0.48 0.63
2 0.88 0.92 0.9KNN

3 0.92 1 0.96

0.84

0 0.77 0.96 0.85
1 0.93 0.52 0.67
2 0.85 0.96 0.9

Original dataset
(20 features)

Oversampled
data

KNN-
Weighted

3 0.92 1 0.96

0.86

0 0.77 0.77 0.77
1 0.78 0.88 0.82
2 0.67 0.33 0.44KNN

3 0.67 0.67 0.67

0.76

0 0.75 0.69 0.72
1 0.74 0.83 0.78
2 0.33 0.17 0.22

Original data

KNN-
Weighted

3 0.5 0.67 0.57

0.7

0 0.73 1 0.84
1 0.88 0.56 0.68
2 0.92 0.92 0.92KNN

3 1 1 1

0.87

0 0.82 0.96 0.88
1 0.89 0.64 0.74
2 0.85 0.96 0.9

Latent Space
(10 dimensions)

Oversampled
data

KNN-
Weighted

3 1 1 1

0.89

Table 9. KNNR results.

MSE R2

KNNR 0.19 0.84
Latent space encodings

KNNR weighted 0.14 0.88

3. Results

Patients can present affectations not evaluated by the UPDRS, such as wobble during
the hand movements and the speed change rate during the different stages of an exercise
(see Figure 3). These affections are very difficult to assess visually and it is even more
complex to monitor their evolution in regular patient consultations. The pronation and
supination assessment in Parkinson’s patients, as presented in [20], evaluates motor af-
fectations not covered by the MDS-UPDRS. The referenced study used 12 new indicators
that were not considered in [19], which used eight. After a feature selection process, the
selected biomechanical features (12 new indicators initially) were used in a new model [20],
which integrated a fuzzy inference system, an analytic hierarchy process (AHP) [9], and
assessments based on MDS-UPDRS only [19].

However, this paper processes all 20 biomechanical indicators (including the 12 new
indicators) using a latent space representation to obtain the same performance reported
in [5] and other additional advantages. This work continues using the MDS-UPDRS
Guidelines, with discrete and continuous scores, evaluating extended motor affections;
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medical experts’ knowledge was integrated during system development and programming.
However, an adaptable and scalable method was proposed to reduce complexity during
potential redesign needs if new assessment guidelines appear or if other biomechanical
indicators need to be incorporated. Likewise, the computer method may be feasible for
evaluating the items of the MDS-UPDRS, such as kinetic tremors, hand tremors, leg agility,
rest tremor, and gait, among others.

Biomechanical evaluations of Parkinson’s patients performed by computer systems
and based on measurements have the possibility to quantify, with great accuracy, behaviors
that are impossible to detect visually, allowing for better monitoring of the evolution of
patients. Under the same conditions and states of the patients, their results are repeatable
and do not depend on subjective aspects or the evaluator’s expertise. The systems presented
have been widely accepted since the medical experts’ knowledge is incorporated into their
development and programming.

For the discrete evaluation, in the work presented by the authors of [20], three expert
clinicians rated each patient’s pronation and supination movements. In order to make
an objective comparison, each expert’s ratings were considered the desired target and
compared to the other two expert’s ratings with a cross-validation method.

In this paper, after performing hyperparameter tuning and other optimization meth-
ods, the best-obtained results for the classification were obtained and are depicted in
Table 10. It can be seen that the results of the adaptive method outperformed both the
reference presented in Table 4 and the performance of the expert clinicians in Table 3.

Table 10. KNN classifier results after performing the hyper-parameter tuning and optimization.

Category Precision Recall F1-Score Overall Accuracy
Normal 0.82 0.96 0.88
Slight 0.89 0.64 0.74
Mild 0.85 0.96 0.9

Moderate 1 1 1

0.89

All the evaluations made by the expert clinicians in [20] followed the MDS-UPDRS
guidelines. In this sense, all of them were discrete values ranging from 0 to 4 (evaluations
with a value of 4 (severe) were not observed in this dataset, as this score means that the
patient could not perform any movement at all).

Another way to visualize the method’s performance is through a receiver operating
characteristics (ROC) curve, which helps to identify how well our method can distinguish
between the classes. ROC is a performance metric for classification models. It plots the true
positive rate (TPR) against the false positive rate (FPR) at different classification thresholds.
The TPR represents the percentage of positive instances correctly classified as positive, in
our case, patients with PD whose severity stage was correctly identified by our model.
In contrast, the FPR represents the percentage of negative instances incorrectly classified
as positive; in other words, it measures the ratio between the number of patients’ PD
severity stages that are mistakenly classified and the total number of actual patients’ PD
severity stages in the dataset. A model with a higher TPR and a lower FPR performs better,
achieving a higher area under the ROC curve (AUC).

As shown in Figure 9, for the multiclass problems, the ROC curves were plotted using
one class vs. the rest. In this sense, the area under the ROC curve (AUC) was calculated for
each class individually.

The closer the AUC was to 1, the better the method was at accurately distinguishing
between classes. As expected, the mild and moderate stages of the disease tended to be
easily identified due to noticeable motor affectations during pronation and supination
hand movement.
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The evaluation presented in [20] was used as the reference (AHP) to better understand
the scores computed by the KNNR. After a mapping process, a subset of the test set was
obtained and is shown in Table 11. The first column depicts patient observation. The
second column shows the score, as given by the decision-making process used in [20]. The
next column gives the continuous evaluation of the current method (KNNR). The last three
columns show the scores given by the expert clinicians during the motor assessment.

Table 11. A subset of continuous scores in the test set.

# of Patient Observation Method in [20] Current Method Expert 1 Expert 2 Expert 3
163 2.99 2.88 3 3 2
218 2.81 2.92 3 3 3
79 0.34 0.36 0 1 1
72 1.77 2.03 2 2 2

138 0.98 0.99 2 1 1
52 0.36 0.25 1 0 0

In the proposed method, as depicted in Figure 10, the KNNR continuous scores of the
test subset are represented by the orange dots, while the discrete values of the same test set
are represented by the blue line. As seen in Figure 10, the scores are very close to each other.
This validates that both evaluations were similar for the discrete (KNN) and continuous
(KNNR) conditions.

Our team’s studies have been based on the MDS-UPDRS due to its wide use and
international acceptance. The previous statement does not imply that the computer mod-
els consider those aspects not included in the MDS-UPDRS because it is a scale that is
essentially oriented toward its use by human evaluators. Likewise, medical experts have
participated in developing, validating, and verifying such results, facilitated by using
models based on human reasoning, where possible. However, the general complexity
can increase significantly in the models based on human reasoning as the input data in-
crease. Therefore, the model depicted in Figure 4a) tries to maintain the advantages of a
model based on human reasoning, labeling the gained clinical knowledge in Module 2. In
this stage, the examiners label the latent space of the j dimension based on each original
observation without reductions L1–20.
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4. Discussion

Our research team used fuzzy inference models in several previous works [3,11,19,
20,44–46] regarding biomechanical analysis in Parkinson’s patients due to their proven
efficiency and because they allow for multidisciplinary collaboration between clinicians
and engineers during their design, research, verification, and use in clinical environ-
ments. Fuzzy logic provides an inference tool to represent human reasoning procedures in
knowledge-based systems. The fuzzy logic theory offers a mathematical framework for
modeling the uncertainty of human cognitive processes, which is highly recommended in
many applications, including medical evaluations. However, when there might be changes
in the expert’s evaluation criteria and the accepted medical guidelines, the membership
functions and rules must be redesigned. Therefore, we present this machine learning
method that can quickly adapt to new evaluation criteria and modified or expanded med-
ical guidelines by relabeling the original observations (see Figure 4a) and using a lazy
learning method (see Figure 4b) without the need for a complete model redesign.

This project allows for a more expanded assessment than other works related to the
motor evaluation of pronation and supination hand movements. In [47], the J48 algorithm
was used and was found to be suitable for distinguishing between the categories (0–4) that
the MDS-UPDRS states. Our work used 20 features before a latent space transformation for
a more in-depth evaluation. These 20 features provide a greater characterization of upper
limb motor impairments, including affectations not considered by the MDS-UPDRS, like
the unsteady oscillation of pronation and supination movements.

Other works present continuous scores, such as in [48], where an index to calculate
bradykinesia (BKI) is proposed to evaluate the movement of the upper limbs. However,
this index is not strictly attached to the evaluation guidelines stated in the MDS-UPDRS for
pronation and supination hand movements.

Although pronation and supination hand movements were included in [26], only the
classification between healthy control subjects and patients with PD was made. In contrast,
our approach allows for placing each patient within a stage of Parkinson’s disease based
on the MDS-UPDRS. Likewise, a numerical indicator with two precision decimal places is
presented to quantify the progress of the disease over time and its possible correlation with
palliative treatments.

In the study presented by [49], several hand movements were measured, including
pronation-supination, to objectively quantify bradykinesia, tremors, and rigidity in patients
with PD. In contrast to our work, the parameters were calculated over small time frames,
and certain aspects, such as hesitation in the movements or a decrease in amplitude
over time, could not be included. Besides, encompassing several affectations makes it
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challenging to deepen the pronation and supination analysis. For example, the MDS-
UPDRS has four items to evaluate hand affectations: hand movements are covered in item
3.5; pronation and supination hand movements are covered in item 3.6; postural tremor
in the hands in item 3.15 [11], and kinetic tremor in the hands, which is another type of
affectation mentioned in the scale, is covered by item 3.16 [3,46].

The results presented in [20] are perhaps among the most frequently used for com-
parisons regarding the current proposal. This is because the same experimental data were
used for evaluating motor impairments in PD patients, making it suitable for comparisons
between different processing methods using the same data.

To illustrate this in detail, observations 52 and 79 correspond to patients with almost
no motor affectations during pronation and supination hand movements (Table 11). These
observations show that the three expert clinicians rated the patient as normal or as being in
a slight stage of severity. Besides the expert’s ratings, both methods (the decision-making
process [20] and the current method) rated the patient with a low score, meaning minimal
motor impairments.

Observation 138 shows a patient in a slight stage of the disease, according to most of
the expert examiners. For this case, the scores of both [20] and our method (the current
method) depict values close to 1. For patients with more severe motor impairments, such
as in observations 163 and 218, the scores for both [20] and the current method were very
close to the expert’s evaluation, which rated the patients as being in a severe stage.

A comparison between the works presented in [19,20] and the current method is
depicted in Table 12. We can see that the current proposal keeps most of the advantages,
such as discrete and continuous evaluations. This is important because the continuous
scores can give clinicians a more precise idea of each patient’s severity.

Table 12. Comparison of models presented in [19,20] vs. the current model.

Method Proposed in [19] Method Proposed in [20] Current Method
Follows MDS-UPDRS Guidelines X X X
Evaluates extended motor affectations X X
Discrete evaluation X X X
Continuous evaluation X X X
Ease of interpretability X X X
Integrates expert knowledge X X X
Adaptability X
Scalability X
Reduced complexity during design and redesign X

The other key aspects of the current proposal are its adaptability and scalability when
compared to the other methods. In this sense, if new evaluation guidelines appear, the
proposed method can quickly adapt and be retrained. Systems based on fuzzy inference
models might require redesigning the membership functions and the fuzzy rules. The
aforementioned does not diminish the importance of fuzzy inference systems, which are
very valuable in many applications and areas. For example, when the team members are
interdisciplinary researchers, both the results validations and the designs are based on
the expertise and agreement of each specialist; this is also true for developing explainable
expert systems and automatic controls, among others.

To be more explicit, Figure 11 depicts the possible paths one should follow to adapt
the method to potential changes. In the case of adding new biomechanical indicators for a
fuzzy inference model (Figure 11a), a complete redesign of the membership functions and
their rules should be made. In contrast, in a self-supervised model (Figure 11b), only the
retraining of the auto-encoder is required to handle the new indicators.
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The same scenario applies to the fuzzy inference models (Figure 11a) when new
evaluation guidelines appear. In this case, the ranges of the original membership functions
can be severely impacted, which will result in the time-consuming task of redesigning the
membership functions and their rules.

On the contrary, for a self-supervised model (Figure 11b), the impact of new guidelines
is comparatively negligible regarding the method’s adaptability, as the only needed action
is to relabel the patient’s evaluation dataset. This will result in relabeling the latent space
representations as they are mapped from the original dataset. In our case, a lazy learning
algorithm is used for patient assessment, meaning there is no explicit training step; the
prediction is adjusted without retraining for a new model, which helps with the adaptability
and scalability of our work.

5. Conclusions

In this paper, the proposed method analyzes 20 biomechanical indicators, obtaining
very good scores when compared to those obtained in the state-of-the-art models, and
was verified by expert clinicians during a motor assessment. All this was accomplished
while following the MDS-UPDRS guidelines and incorporating the experts’ knowledge
into the method.

For a more detailed assessment of each patient, the evaluation stage gives two outputs:
a discrete and a continuous score, with a scalable and adaptable method that requires less
effort during both design (or redesign) and implementation. Both scores are still strictly
attached to the MDS-UPDRS guidelines. While the discrete score gives the severity stage of
each patient (which is what expert clinicians now do), the continuous score allows for a
more detailed evaluation and clinical follow-up of patients with PD, even if they are in the
same stage.

The proposed method can be quickly scaled and adapted when new evaluation condi-
tions appear. In this sense, it can be adapted if the guidelines used by the experts to evaluate
patients change over time, effectively relabeling the patients’ records. Regarding scalability,
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new biomechanical indicators can be incorporated into a production environment with
less effort. In this sense, a complete redesign is unnecessary; only retraining the neural
network that transforms the biomechanical indicators to their latent space representation
is required.

Finally, the proposed method was implemented and integrated into previously devel-
oped software that is already used in clinical environments, significantly reducing the time
for each clinical assessment. After acquiring the patient’s raw signals with the help of sen-
sors, they are processed by the previously developed software to extract the biomechanical
features, and the assessment is computed by the current method almost instantly, given
that the last part of the process has a computational complexity of O(kn).

Regarding research limitations, this computer method, which is based on latent space
representations of biomechanical indicators, has been proven and verified for pronation-
supination hand movements. Future research might include its development, applicability,
testing, and validation for other complex items within the MDS-UPDRS, such as 3.9: Arising
from the chair, 3.10: Gait, 3.12: Postural stability, and 3.13: Posture, among others. In this
sense, new measures are recommended to consider reasonable proportions between healthy
volunteers and PD patients, men, women, and different ages.
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