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Abstract: Multiscale techniques, namely homogenization, result in significant computational time
savings in the analysis of complex structures such as lattice structures, as in many cases it is inefficient
to model a periodic structure in full detail in its entire domain. The elastic and plastic properties of two
TPMS-based cellular structures, the gyroid, and the primitive surface are studied in this work through
numerical homogenization. The study enabled the development of material laws for the homogenized
Young’s modulus and homogenized yield stress, which correlated well with experimental data
from the literature. It is possible to use the developed material laws to run optimization analyses
and develop optimized functionally graded structures for structural applications or reduced stress
shielding in bio-applications. Thus, this work presents a study case of a functionally graded optimized
femoral stem where it was shown that the porous femoral stem built with Ti-6Al-4V can minimize
stress shielding while maintaining the necessary load-bearing capacity. It was shown that the stiffness
of cementless femoral stem implant with a graded gyroid foam presents stiffness that is comparable
to that of trabecular bone. Moreover, the maximum stress in the implant is lower than the maximum
stress in trabecular bone.

Keywords: homogenization; multiscale; biomedical application; triply periodic minimal surfaces;
mechanical properties; femoral stem

1. Introduction

Foam-like materials based on triply periodic minimal surfaces (TPMS) have a high
potential in biomedical applications. Its highly porous configuration is beneficial for cell
growth and proliferation, and thus, it becomes a valid alternative to design scaffolds
for biomedical applications, such as bone tissue growth. The modification of the cell
density allows adjusting the mechanical properties of the implant so as to avoid unwanted
phenomena such as stress shielding, which occurs when the stiffness of the implant is much
higher than the stiffness of the tissue it is replacing, as a consequence of the Wolff’s Law [1].
In comparison to other scaffold shapes, gyroid-based scaffolds present higher permeability
than other triply periodic minimal surfaces (TPMS) [2]. Additionally, TPMS-based foams
built using additive manufacturing technology have been shown to be able to achieve the
necessary mechanical properties to replace human bone [3,4].

TPMS foams are the adaptation of the surface equation into a solid. The surface
equation for different TPMS is the following, namely the gyroid (G) and the primitive (P):
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where L is the length of the unit cell. If t is equal to zero then the gyroid surface divides the
space into two equal parts.

In this work, the term TPMS foam refers to the sheet foam variation of the TPMS. The
surface may be adapted into a solid in two different manners, sheet foam or truss-like foam.
The difference between sheet foams and truss-like foams consists in how the surface is
converted to a solid. The surface divides the space into two parts, and if the space enclosed
by one of the sides of the surface is chosen, a solid network is obtained. On the other hand,
if the surface is “thickened”, a sheet network is obtained.

According to Al-Ketan et al. [5] sheet solid foams exhibit higher mechanical properties
for the same apparent density as truss-like solids. In terms of surface area, which is also
very relevant to the study of scaffold viability, sheet-like foams present higher surface
area [6], because the surface is projected twice while the truss-like foam consists only of
one repetition of the surface. It is also due to this that the gyroid sheet solid is also named
double-gyroid [7].Addionally, TPMS based foam materials have been known to improve
thermal properties such as conduction and convection [8,9].

An example of the two foams (gyroid and primitive) is shown in Figure 1.

gyroid (G) primitive (P)

Figure 1. Sheet foams based on the gyroid and primitive surface.

Lattice Materials for Tissue Engineering

Treatments for large bone defects in the future show significant potential when using
scaffold-based bone tissue engineering.

Bone implants are one of the most commonly used devices in healthcare and also
one of the riskiest, as revision surgeries are often necessary. The most common cause for
revision surgery is the loosening of the implant due to bone resorption, which occurs as a
consequence of the stress shielding phenomenon [10].

The 3D matrix known as a bone scaffold is what enables and promotes osteoinducible
cells to connect to and proliferate on its surfaces [11]. Some of the main concerns in
designing scaffold are its [11]:

1. biocompatibility;
2. biodegradability;
3. mechanical properties to bear weight during the amelioration period;
4. proper architecture in terms of porosity and pore sizes;
5. sterilibility without loss of bioactivity;
6. controlled deliverability of bioactive molecules or drugs;
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Regarding mechanical properties, one can summarize the design of the bone scaffold
into two main aspects: the stiffness of the scaffold, which must be low enough to allow for
adequate load transfer to the bone; and strength, to withstand the naturally occurring loads
in the human body. While bone presents anisotropy, there are no extremely weak directions
and therefore, it is sufficient that it matches the mechanical properties of the surrounding
bones as an average [3,4,12,13].

Another important characteristic that must be taken into account for implant design is
porosity control. Porosity, pore size and pore interconnectivity are vital for the viability
of the implant. Higher porosity facilitates the recruitment and penetration of cells from
the surrounding tissue and vascularization and thus, benefits bone ingrowth [12,14]. The
influence of pore size is not as consensual among researchers as several references determine
different pore sizes as optimal for bone ingrowth [12,15–17]. The specific surface area
of scaffold is also highly relevant, as high surface areas imply a larger area for bone
tissue ingrowth, and scaffolds with smaller pores will present higher surface area [12,18].
However, a higher surface area implies larger frictional forces, which is an obstacle to
permeability [3]. The transportation of cells, nutrients, and growth factors require blood
flood in the scaffold and thus, permeability is relevant in the design of scaffold [3,12].

In 2007, Harrysson et al. [19] mentioned in their work the possibility of using opti-
mization algorithms to develop non-stochastic porous implants to improve the properties
of the femoral stem. Since then, several works followed, with some examples of func-
tionally graded porous cementless femoral stems. In the work of Brian et al. [20], the
functional gradient was prescribed axially and radially instead of being calculated from
optimization analysis.

Based on the body-centered cubic (BCC) structure, Alkhatib and Tarlochan [21] also
developed femoral stem implants with graded density. In their work, the gradient consisted
of layers with different densities.

Functionally graded scaffolds for stress shielding minimization may be obtained using
optimization algorithms based on bone remodeling. Munteanu et al. [22], Orellana et al. [23]
used structural optimization to reduce the stiffness of the femoral stem. However, in their
work, the implant is not porous.

In the works of Pais et al. [24,25], which consisted on the development of porous
implants, it was shown that the bio-inspired algorithm combined with an experimental
material law for the gyroid infill obtained through 3D printing (FFF) [26,27] achieved
structural configuration with adequate stiffness to replace human bone.

2. Homogenization Techniques

Multiscale modeling refers to an approach in which analysis of the material is con-
ducted at one length scale but the outcomes of the analysis are referent to several properties
of the material at another length scale [28].

The use of numerical homogenization techniques allows for significant savings in
computational time. Often in composites, it is not necessary (and inefficient) to model the
entire structure of the composite. Instead, only a representative region is chosen to model
all the constituents of the composite [29]. This approach can be extended to lattice materials,
by simplifying the assumption, where the composite presents two or more phases (fiber and
matrix), and the lattice will only present one phase, being the rest a void phase. In summary,
the porous material is transformed into an equivalent solid material with homogenized
properties [30].

The mechanical properties of the obtained scaffold are given as a function of their
relative density. The relative density ρ∗ of the scaffold is given by

ρ∗ = ρ

ρm
(3)
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where ρ is the density of the lattice and ρm denotes the density of the constituent material.
Therefore, from now on, whichever property is being studied, it being stiffness or strength,
it is presented as a dependency on this parameter.

When the lattice unit cell presents cubic symmetry, which occurs for most cases
indicated in the previous section, the stiffness tensor C will only present three independent
constants, C11, C12 and C44. Therefore, the stress-strain relation can be given as:

σ11
σ22
σ33
σ12
σ23
σ13

 = C



ε11
ε22
ε33
ε12
ε23
ε13

 (4)

where σij are the components of the macroscopic stress tensor and εij are the macroscopic
strain tensor components.

2.1. Boundary Conditions

The most correct way to evaluate the mechanical properties of the lattice material by
analyzing one unit cell is through the application of periodic boundary conditions, instead
of uniform tensile or linear displacement boundary conditions. The formulations for some
possible boundary conditions are presented next.

2.1.1. Periodic Boundary Conditions

Considering a periodic RVE (Figure 2) Ω, the boundary Γ of the RVE can be decom-
posed into two parts Γ+ and Γ−. Each point x+ on Γ+ is connected to just one unique point
x− on Γ− and the normal vectors to each point are symmetrical so that n+ = −n− [29].

Γ− Γ+

x− x+
corresponding nodesn− n+

Figure 2. Periodic boundary conditions on the RVE.

The local displacement field u can be decomposed as

u(x) = û(x) + ũ(x) = u0 + H · x + ũ(x) (5)

where the macroscopic displacement gradient H is equal to the macroscopic strain ε up to
a rotation, û = u0 + H · x is the macrodisplacement that corresponds to the applied strain,
and ũ(x) is a micro-displacement. The unit cell simulations assume that in the bulk of
the material

ũ(x + a · λi · ei) = ũ(x) (6)

for any integer λi and all positions of x, and where a denotes the unit-cell length and ei
denotes the principal directions. Thus, it is assumed that the micro-displacement field
shares the periodicity of the lattice [31].
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The periodicity of micro-displacements is enforced by kinematically constraining the
difference in the displacements of paired nodes, and setting this difference as equal to the
displacement deduced from the macroscopic strain [31] so that

u
(
x+
)
− u

(
x−
)
= a ·H · n (7)

2.1.2. Linear Displacement and Uniform Traction Boundary Condition

Linear displacement boundary conditions consist of applying to the boundary of the
RVE the displacement field that would occur if the strain were uniform inside the RVE

u = 〈ε(u)〉x on Γ (8)

where ε(u) is the micro strain and x is the position vector on the boundary ∂Ω. This method
presents the advantage of having no restriction to its application except that no rigid part
must intersect the boundary [32].

Uniform traction boundary conditions consist of applying on the boundary of the RVE
the stress vector field that would occur if the stress were uniform inside the RVE

σn = 〈σ〉n on Γ (9)

where σ is the Cauchy stress tensor. Using this method, there is also no restrictions except
that no holes must intersect the boundary [32].

2.2. FE Homogenization

The finite element (FE) homogenization technique can be used in order to predict the
effective elastic, as well as the elastic-plastic properties of the material. This technique
excels at obtaining the properties of materials with complex microstructures, such as
composites [29], even though in this case the focus is on lattice materials.

Considering the RVE Ω, any micro-field f, such as stress or strain within the RVE can
have the following average functions defined

〈f〉 = 1
V

∫
Ω

f(x)dx (10)

where V is the volume of the lattice.
The effective mechanical properties do not depend on the body forces or boundary

conditions. Thus, to predict the properties of the material, the following weak-form quasi-
static equilibrium differential equation is considered

∇(σ(x)) = 0 in Ω (11)

The boundary conditions do not affect the material properties but they must satisfy
Hill’s energy law, which states that the energy on the micro-level has to be the same as the
effective energy for the homogenized material

〈σ : ε〉 = 〈σ〉 : 〈ε〉 (12)

For any point of the RVE, the constitutive model is given as

σ(x) = σ(x, ε(x)) (13)

Based on this last relationship, as well as the quasi-static equilibrium differential
equation and the boundary condition which satisfies the Hill energy principle, the stress
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σ(x) and strain ε(x) can be obtained through FE analysis and then the average values for
stress and strain can be computed through

〈σij〉 =
1
V

ne

∑
e=1

Ve

[ nq

∑
I=1

σij(yI) · J(yI) ·W(yI)

]
(14)

〈εij〉 =
1
V

ne

∑
e=1

Ve

[ nq

∑
I=1

εij(yI) · J(yI) ·W(yI)

]
(15)

where ne is the number of elements in the model, nq is the number of integration points in
the element e and W(yI) is the weight of the integration point. σij(yI) and εij(yI) are the
stress and strain respectively, evaluated at the integration point yI .

The average values, which consist of a volume average of the properties along the
material, can then be used to calculate the effective elastic stiffness tensor C and the effective
stress tensor for elastic-plastic analysis.

2.3. Mechanical Properties
Elastic Properties

The elastic constants are obtained from the following relations from the elastic con-
stants C11 and C12

E∗ = C11 −
2C2

12
C11 + C12

(16)

ν∗ =
C12

C11 + C12
(17)

G∗ = C44 '
E∗

2(1 + ν∗)
(18)

where each component of the constitutive matrix is obtained from the linear elastic analysis.
By enforcing a unit strain, the stress tensor will correspond to one line in the constitutive
matrix C.

The isotropy of the surface may be more easily perceived using Young’s modulus
surface, which is a representation of Young’s modulus in every direction. For a perfectly
isotropic material, where Young’s modulus will be the same in all directions, the surface
should have the appearance of a sphere. The isotropy of the structure is proved by the
Zener ratio AH , which allows the near equality in Equation (18). If AH is close to 1, the
structure is isotropic [33].

AH =
2C44

C11 − C12
(19)

2.4. Plastic Properties

Unlike elastic deformation, plastic deformation is irreversible when the loading is
removed. When the material reaches its yield point, the material starts displaying plastic
behavior and lower material stiffness. After reaching this point, plastic behavior may follow
several different models.

If the material is assumed to display linear strain-hardening characterized by the
tangential modulus ET . The total deformation caused by a stress increase dσ is given by

dε = dεp + dεe (20)

and so a strain-hardening parameter H′ is defined as

H′ =
dσ

dεp
(21)
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which can also be given by

H′ =
dσ

dε− dεe
=

ET
1− ET/E

(22)

which corresponds to the slope of the strain-hardening portion of the stress-strain curve [34].
In the elastic domain, the stiffness exhibited by the material will be given by

Ke =
F
δ
=

E · A
L

(23)

where F is the applied force, δ is the shown displacement, E is the Young’s modulus, A is
the cross-sectional area and L is the length. Thus, the stiffness matrix for an element is

K(e)
e =

E · A
L

[
1 −1
−1 1

]
(24)

If the material reaches its yield stress due to an increase in F, that increase dF will
generate a dδ of

dδ =
(
dεe + dεp

)
L (25)

Considering that the increase in force is given by

dF = A · dσ = A · H′ · dεp (26)

the tangential stiffness of the material will be

Kep =
dF
dδ

=
A · H′ · dεp

L
(
dσ/E + dεp

) =
E · A

L

(
− E

E + H′

)
(27)

which leads to an element stiffness of

K(e)
ep =

E · A
L

(
1− E

E + H′

)[
1 −1
−1 1

]
(28)

Finally, the equivalent yield strength of the lattice is given by the apparent stress-strain
curve, by retrieving the stress level that leads to 0.2% plastic strain. The apparent stress
(macro-stress) σ11 is obtained as

σ11 =
∑ Fl=lRVE

x
ARVE

(29)

while the apparent strain (macro-strain) is given by:

ε11 =
ul=lRVE

1
lRVE

(30)

2.5. Scaling Laws

Cellular materials are usually described by scaling laws which correlate the homoge-
nized mechanical properties to the volume fraction of the cell [35]. The volume fraction of
the cell is given by

ρ∗

ρs
=

V∗
VRVE

(31)

The homogenized Young’s modulus is given by

E∗

Es
= D1

(
ρ∗

ρs

)n
(32)
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and the homogenized yield stress is given by

σ∗

σs
= D2

(
ρ∗

ρs

)n
(33)

The n coefficient depends on whether the cell exhibits stretching-dominated or bending-
dominated behavior. The stretching/bending dominated designation is referent to the
deformation mode of cell walls. Usually, higher density foams will tend to show near
stretching-dominated behavior while at lower densities these will tend to show bending-
dominated behavior. Table 1, adapted from the review paper by [36] summarizes the n
coefficient in Equations (32) and (33), while the D1 coefficient will range between [0.1, 4]
and the D2 coefficient will range between [0.1, 1] [36].

Table 1. Exponent coefficient n in the Gibson-Ashby model for stretching-dominated (SD) and
bending-dominated (BD) structures.

SD BD

Homogenized Young’s modulus 1 2
Homogenized yield stress 1 1.5

In the literature, however, it is common to find modifications to the Gibson-Ashby
model, where none of the values shown in Table 1 are necessary. It’s also relevant to
mention that this model will change depending on the manufacturing process, material,
and geometry of the cells. For some complex materials characterized as a function of their
relative density, the fitting to the model allows determining if the structure exhibits bending
or stretching-dominated behavior.

In this work, the correlations will describe the homogenized mechanical properties
using polynomial models as shown in (34) and (35)

E∗

Es
= a1

(
ρ∗

ρs

)3
+ a2

(
ρ∗

ρs

)2
+ a3

(
ρ∗

ρs

)
+ a4 (34)

σ∗

σs
= b1

(
ρ∗

ρs

)3
+ b2

(
ρ∗

ρs

)2
+ b3

(
ρ∗

ρs

)
+ b4 (35)

3. Materials and Methods
3.1. Materials

For the homogenization analysis, each unit cell model presents a Young’s modulus
equal to 3000 MPa and a Poisson ratio equal to 0.3. For the plasticity analysis, the material
is considered to be elastic-perfectly-plastic, being that three different yield stress values
were tested, 10 MPa, 30 MPa and 50 MPa.

3.2. Models

The STL models of each surface were created in MATLAB by computing the equation
with an isolevel value t equal to zero. Each facet in the triangular mesh was projected in
its normal direction by half of the thickness value, in the positive and negative directions.
The solid model was meshed into quadratic 10-node tetrahedral elements from the STL
of the outer surface. For both the gyroid and the primitive three models were obtained,
each corresponding to a low density, medium density, and high density. Each density level
corresponds to a different wall thickness to RVE edge length ratio, as can be visualized in
Table 2.
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Table 2. Wall thickness to unit cell length ratio for each model type.

Model t/L

low density 0.05
medium density 0.15
high density 0.25

3.3. Boundary Conditions

For the elastic analysis, two different types of boundary conditions were used, namely
periodic boundary conditions and homogenization boundary conditions.

3.3.1. Periodic Boundary Conditions

The enforcement of periodic boundary conditions required the definition of paired
nodes in the faces. Each node on one face is paired with the closest node on the opposite
face. Due to the fact that both faces do not present the same number of nodes, some nodes
do not have any equation constraint associated with them. The primitive structure unit
cell does not have edges or vertices, while the gyroid structure has edges and vertices. The
nodes on the edges and vertices in the gyroid model were ignored for the enforcement of
periodic boundary conditions.

3.3.2. Homogenization Boundary Conditions

These boundary conditions, adapted from [37] were used both in the elastic and
plastic analysis. If a normal strain is applied, for example ε11, the following displacements
are imposed:

ux+
1 = ε11 ∧ ux−

1 = 0∧ uy+
2 = 0∧ uy−

2 = 0∧ uz+
3 = 0∧ uz−

3 = 0

whereas if a shear strain is applied, for example ε12, the following displacements are imposed

ux+
2 = ε12/2∧ ux−

2 = 0∧ uy+
1 = ε12/2∧ uy−

1 = 0∧ uz+
3 = 0∧ uz−

3 = 0

The application of these boundary conditions ensures that the prescribed displacement
in the top of the RVE is a unit displacement and all other components of the strain tensor
remain zero.

3.4. Bio-Inspired Remodelling Algorithm

In biomedical implants, stress shielding can be minimized as the stiffness of the
implant is optimized according to the bone stiffness [13].

The bio-inspired remodelling, taking into consideration that bone remodelling phe-
nomena acts as structural optimization [38], updates the density of the structure iteratively.
Therefore, the bio-inspired algorithm, based on [39] can be summarized according to
Figure 3.

In summary, first, the mechanical properties of a point are determined from E[MPa] =
fE
(
ρ
[
g/cm3]) so the constitutive matrix is obtained and then, linear-elastic analysis is

performed. Using scaling laws, the correlations are adjusted to the material of the implant.
Then, the critical variable is used in order to determine which points must be remodelled,
meaning, having its density increased or decreased. Points with higher stress or strain
energy density can have its density increased and points with lower stress or strain energy
density may have its density decreased. As verified in bone remodelling phenomenon
(in which unsolicited bone will decay while a stress stimulus promotes bone growth),
in tihs bio-inspired algorithm points with the highest values of the critical variable will
increase its density and the points with the lowest values of the critical variable will have
its density decreased. This density update is enforced using σ[MPa] = fσ

(
ρ
[
g/cm3]). The
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remodelling process occurs until convergence, or, until the control density defined by the
user is achieved. Figure 3 shows a schematic flowchart of the remodelling algorithm.

Get E(ρ) from material law

Linear-elastic analysis

Point subject
to remodelling?

yes

ρ(xi) from the material law (σ(ρ) )

for all integration points

ρavg =
∑Q

i=1 ρ
app
i

Q

ρavg = control
ρ or ∆ρ

∆t

yes

no

Stop remodelling

it
er

at
io

n
=

it
er

at
io

n
+1

Figure 3. Flowchart for the bio-inspired remodelling algorithm.

3.5. Stress Shielding Evaluation

Stress shielding is usually evaluated as a function of the mismatch between the stresses
in the bone and stresses in the implant [40].

SS[%] =
σbone − σimplant

σbone
× 100% (36)

In order to avoid stress shielding, the stiffness of the implant must be lower than the
stiffness of bone. Therefore, the loads transferred to the bone are higher, resulting in a
stress stimulus leading to bone growth. In order to establish a term of comparison, a model
with the geometry of the area being remodelled in the implant is modeled as bone, through
a bone remodelling algorithm [39]. The stiffness of that bone, is then compared to the
stiffness of the implant.

The stiffness of the implant is evaluated as follows:

Kz[N/mm] =
f [N]

d[mm]
(37)

where

f =
nt

∑
i=1

Ft
z (38)
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and

d =
∑ dt

z
nt

(39)

where t refers to the nodes where the load is applied and nt is the number of nodes where
the load is applied. Because at each iteration the variables are scaled to the elastic limit of
the porous material, the applied force is calculated from the stress field as:

f =
∫

BTσdΩ (40)

where B is the deformability matrix and σ is the stress tensor in Voigt notation.

4. Results and Discussion
4.1. Topology Analysis

Figure 4 shows the plot of the relative density of the cell as a function of its thickness
and unit cell length. For the same wall thickness, the gyroid presents a higher relative
density than the primitive structure.

0 0.15 0.3

0.5

1

Thickness/cell side

ρ

Gyroid Data
ρ = 2.868 · ratio ;
R2 = 0.9991

(a)

0 0.15 0.3

0.5

1

Thickness/cell side

ρ

Primitive Data
ρ = 2.348 · ratio ;
R2 = 1

(b)
Figure 4. Relative density of the gyroid (a) and primitive (b) structures as a function of its geometric
parameters: unit cell size and wall thickness.

4.2. Elastic Properties

The elastic properties of both structures can be consulted in Table 3. The gyroid
structure presents higher Young’s modulus and higher isotropy than the primitive structure.
Additionally, the use of periodic boundary conditions in the gyroid structure led to higher
Young’s modulus values than the primitive structure.

Table 3. Summary of the elastic constants and properties of the structure (H—homogenization
boundary conditions, P—periodic boundary conditions).

E* ν* C11 C12 C44 = G* AH

primitive 1 cell

low dens H 61.83179 0.405701 138.6081 94.62162 48.49176 2.204851
P 61.75457 0.405275 137.9524 94.0076 63.79892 2.903592

med dens H 327.7807 0.350119 526.3416 283.5624 198.3359 1.633879
P 326.2036 0.349605 522.6321 280.929 222.1894 1.838532

high dens H 818.1541 0.30575 1119.694 493.1158 396.8583 1.266748
P 812.4441 0.305092 1109.737 487.2183 423.5954 1.360908
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Table 3. Cont.

E* ν* C11 C12 C44 = G* AH

gyroid 1 cell

low dens H 113.7596 0.300448 153.3305 65.85327 39.45371 0.902034
P 155.2857 0.326205 226.9771 109.8868 65.58988 1.12033

med dens H 560.7722 0.278805 714.874 276.3613 232.5266 1.060524
P 608.784 0.295178 808.7353 338.6964 275.3023 1.171402

high dens H 1243.97 0.270049 1554.597 575.1302 519.8329 1.061461
P 1314.799 0.277671 1671.664 642.6045 572.3806 1.112434

E* ν* C11 C12 C44 = G* AH

gyroid 2 cells
low dens H 127.534 0.308422 175.9314 78.45974 47.83487 0.98151
med dens H 578.4656 0.283865 746.4448 295.8789 252.1427 1.11923
high dens H 1292.918 0.270515 1617.423 599.7905 555.19810 1.09116

E* ν* C11 C12 C44 = G* AH

gyroid 3 cells low dens H 142.8026 0.312171 199.2662 90.43695 57.86529 1.063414
med. dens H 622.4885 0.285833 807.1683 323.0553 274.9201 1.135768

4.3. Plastic Properties

For the gyroid, the apparent stress-strain plots are shown in Figure 5 for RVEs con-
sisting of 1, 2, and 3 unit cells on each side, while for the primitive structure, only 2 by
2 cells were tested, where the results are shown in Figure 6. It can be concluded that the
gyroid structure presents higher strength than the primitive structure. For both geometries,
it can be seen that higher-density foams exhibit hardening (near positive slope in the plastic
domain of the stress-strain curve) while medium-density foams present near perfectly
plastic behavior (near zero slopes in the plastic domain of the stress-strain curve) and lower
density foams present a yield point.

Because the aim of the plastic analysis is to obtain the elastic limit of the material, these
analyses only consisted of a maximum strain of 10%.
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Figure 5. Cont.
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Figure 5. Apparent stress-strain plots using linear displacement boundary conditions on the gyroid
model: (a) low density; (b) medium density; (c) high density.

0 5 · 10−2 0.1 0.15
0

1

2

3

4

apparent strain

ap
pa

re
nt

st
re

ss
[M

Pa
] 2 cell σy = 10

2 cell σy = 30
2 cell σy = 50

(a)
Figure 6. Cont.



Bioengineering 2023, 10, 515 14 of 21

0 5 · 10−2 0.1 0.15
0

5

10

15

20

apparent strain

ap
pa

re
nt

st
re

ss
[M

Pa
]

2 cell σy = 10
2 cell σy = 30
2 cell σy = 50

(b)

0 5 · 10−2 0.1 0.15
0

5

15

25

35

apparent strain

ap
pa

re
nt

st
re

ss
[M

Pa
]

1 cell σy = 10
1 cell σy = 30
1 cell σy = 50

(c)
Figure 6. Apparent stress-strain plots using linear displacement boundary conditions on the primitive
model: (a) low density; (b) medium density; (c) high density.

In order to develop material laws that can be used in the bio-inspired algorithm, the
apparent yield stress was obtained from the apparent stress-strain curves, resulting in the
data shown in Tables 4–6 for the gyroid structure and Table 7 for the primitive structure.

Table 4. Summary of plastic properties of the gyroid structure—low density.

Low Density

1 × 1 × 1 2 × 2 × 2 3 × 3 × 3

σy = 10 σy = 30 σy = 50 σy = 10 σy = 30 σy = 50 σy = 10 σy = 30 σy = 50

apparent σy 0.729344 2.058199 3.253642 0.801418 2.291044 3.656217 0.836503 2.401517 3.855031
apparent σy ratio 0.072934 0.068607 0.065073 0.080142 0.076368 0.073124 0.08365 0.080051 0.077101

mean ratio 0.068871 0.076545 0.080267

Table 5. Summary of plastic properties of the gyroid structure—medium density.

Medium Density

1 × 1 × 1 2 × 2 × 2 3 × 3 × 3

σy = 10 σy = 30 σy = 50 σy = 10 σy = 30 σy = 50 σy = 10 σy = 30 σy = 50

apparent σy 2.213404 7.271915 12.18746 3.059191 8.480854 13.66536 3.481273 9.110942 16.54715
apparent σy ratio 0.22134 0.242397 0.243749 0.305919 0.282695 0.273307 0.348127 0.303698 0.330943

mean ratio 0.235829 0.287307 0.327589
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Table 6. Summary of plastic properties of the gyroid structure—high density.

High Density

1 × 1 × 1 2 × 2 × 2 3 × 3 × 3

σy = 10 σy = 30 σy = 50 σy = 10 σy = 30 σy = 50 σy = 10 σy = 30 σy = 50

apparent σy 5.6391 15.43433 25.32575 6.380779 17.95709 27.64402 - - -
apparent σy ratio 0.56391 0.514478 0.506515 0.638078 0.59857 0.55288 - - -

mean ratio 0.528301 0.596509

Table 7. Summary of plastic properties of the primitive structure.

Low Density Medium Density High Density

2 × 2 × 2 2 × 2 × 2 1 × 1 × 1

σy = 10 σy = 30 σy = 50 σy = 10 σy = 30 σy = 50 σy = 10 σy = 30 σy = 50

apparent σy 0.7032 1.9971 3.1698 2.5376 7.887468 12.98112 4.718293 13.00106 19.45738
apparent σy ratio 0.07032 0.06657 0.063396 0.25376 0.262916 0.259622 0.471829 0.433369 0.389148

mean ratio 0.066762 0.258766 0.431449

5. Discussion
5.1. Material Law and Comparison to Literature Data

By adjusting the obtained points to a third degree polynomial function, the coefficients
in Equations (34) and (35) are obtained, which can be consulted in Table 8.

Table 8. Coefficients of the polynomial scaling laws relative to the Young’s modulus (ai) and yield
stress (bi) for the gyroid and primitive structures.

Gyroid Primitive Gyroid Primitive

a1 0.1018 0.1766 b1 0.5545 0.0000
a2 0.4388 0.4879 b2 0.1250 0.1259
a3 0.2405 0.1157 b3 0.4666 0.6655
a4 0.0000 0.0000 b4 0.0000 0.0000

Both structures exhibit bending-dominated behavior instead of stretching-dominated
behavior, meaning that the cell walls tend to bend instead of being compressed. Stretching-
dominated structures tend to be stiffer which can be an issue regarding the minimization
of stress shielding. This is in agreement with other studies found in the literature, such
as the work of Abueidda et al. [41] where gyroid sheet foams were modeled to fit the
Gibson-Ashby model and it was concluded from the coefficients of that model that the
structure exhibits bending-dominated behavior. Al-Ketan et al. [5] also concluded that
these sheet-like structures exhibit behavior between stretching and bending dominated.

The developed material law assumes that the material is isotropic and perfectly plastic.
From the analysis of elastic properties in Table 3 it was concluded that the primitive
structure is less isotropic than the gyroid structure.

Figure 7 shows the developed laws in comparison to the several works from experi-
mental testing in the literature. Most experimental works use models with a higher number
of unit cells than this work. It can be seen from the figures that the error in homogenized
modulus is, for most cases, low, and thus, the material law will accurately describe the
mechanical properties of gyroid foams at several densities. Moreover, this highlights the
importance of experimental testing in the validation and calibration of the material law.
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Figure 7. Comparison of the obtained scaling law with other works from the literature ([3,41–48])
and its localization regarding the bounds defined by the Gibson-Ashby model: (a) relative elastic
modulus and and (b) relative yield stress.

The geometry presented by these complex materials is almost always unattainable
through conventional manufacturing, leaving additive manufacturing as the only solution
to obtain physical parts or prototypes. However, additively manufactured parts tend to
be highly anisotropic, showing different mechanical properties in the building direction.
The developed correlations do not account for the anisotropy in the manufacturing process.
The anisotropy can be minimized by choosing a process with higher isotropy, for example,
SLM or SLS if dealing with metals or polymers respectively, instead of extrusion-based
processes, where the interlayer bonding effect highly influences the mechanical properties
of printed parts.

Additionally, the plot shows, through the shaded area the upper and lower bounds of
the Gibson-Ashby law, according to the work of Maconachie et al. [36]. The Gibson-Ashby
model, which predicts the coefficients for metallic foams, was developed based on analytical
models, extensive testing on polymeric foams, and empirical fits to experimental data
[36,49]. Finally, in order to evaluate the accuracy of the developed models in comparison to
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the literature, the mean absolute percentage error was calculated for each of the models
(Young’s modulus and yield stress for both unit cells). These values are presented in Table 9.

Table 9. Mean absolute percentage error for all developed models.

Relative Young’s Modulus Relative Yield Stress

Gyroid 23.973% 26.4787%
Primitive 63.874% 37.1244%

5.2. Study Case-Femoral Stem

In order to establish conclusions regarding the suitability of the gyroid material
implant, remodeling analysis was performed on a cementless femoral stem model. These
implants are prone to stress shielding, and therefore, the use of a porous structure can
reduce stiffness and enhances bone ingrowth [40]. Previously, it was established that the
gyroid foam is more isotropic than the primitive foam. Thus, as the remodeling model
assumes an isotropic material, the gyroid material model is used.

Implant Model

The femoral stem was modeled according to geometries found in the literature using
CAD software and then meshed into linear hexahedral elements. The final mesh has
2808 nodes and 2020 elements.

Only the proximal area of the stem implant is remodeled, the neck and taper area as
well as the distal part of the stem remains as solid material (Figure 8). The chosen base
material is Ti-6Al-4V alloy whose properties are shown in Table 10, as well as a comparison
to femoral trabecular bone, which is used later as reference. The base of the implant was
fixed while a vertical force was applied to the top of the taper. This force was set as unitary
as at each iteration of the remodeling algorithm the variables are brought to the elastic limit.

Table 10. Mechanical properties of femoral trabecular bone (as reference) and of the metallic alloy
used to manufacture bone scaffold.

Young’s Modulus [MPa] Yield Stress [MPa] Poisson Ratio

Femoral trabecular bone 5850 40 0.3
Ti-6Al-4V 110,000 850 0.3

5.3. Optimized Implant

Figure 8 shows the evolution in stiffness of the implant and average relative density
along the iterations of the remodeling algorithm. The final density distribution is also
presented at the central cross-section.

Finally, in order to evaluate the suitability of the implant, its strength must also be
enough to support the loads in the bone. Figure 9 shows that the load that leads the
trabecular to its elastic limit is lower than the load that leads the implant to its elastic limit.
The force that takes the implant to the elastic limit is 4248.78N, while the force that can be
applied to the bone while remaining below the elastic limit is 1280.85N. Thus, the implant
is also suitable in terms of strength.
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6. Conclusions

With this work it was possible to correlate the mechanical properties of two different
TPMS, the gyroid and the primitive with the apparent density. The simulations were run
considering isotropic and perfectly plastic properties of the solid material and it was verified
that this assumption works as a reasonable approximation in comparison to literature
data from experimental tests. Additionally, it was shown that the remodelling algorithm
provided an optimal configuration for a cementless femoral stem implant based on the
gyroid structure. Future directions for the study should include the experimental testing of
implant prototypes for final validation of the material law and remodelling algorithm.
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