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Abstract: Information technology has been actively utilized in the field of imaging diagnosis using ar-
tificial intelligence (AI), which provides benefits to human health. Readings of abdominal hemorrhage
lesions using AI can be utilized in situations where lesions cannot be read due to emergencies or the
absence of specialists; however, there is a lack of related research due to the difficulty in collecting and
acquiring images. In this study, we processed the abdominal computed tomography (CT) database
provided by multiple hospitals for utilization in deep learning and detected abdominal hemorrhage
lesions in real time using an AI model designed in a cascade structure using deep learning, a subfield
of AI. The AI model was used a detection model to detect lesions distributed in various sizes with
high accuracy, and a classification model that could screen out images without lesions was placed
before the detection model to solve the problem of increasing false positives owing to the input of
images without lesions in actual clinical cases. The developed method achieved 93.22% sensitivity
and 99.60% specificity.

Keywords: abdominal CT; abdominal hemorrhage; classification; detection lesion; deep learning

1. Introduction

AI is the art of creating computer systems that can perform tasks that utilize human
intelligence and is already being used in many areas of society with a high impact. Machine
learning (ML), a subfield of AI, uses computer science and statistics to learn from past
experiences or data to improve future performance, and can automatically modify or
improve algorithms to perform complex tasks without external assistance [1]. Deep learning
(DL), a subfield of ML, has superior self-learning and self-debugging capabilities compared
with traditional ML, enabling it to classify and predict with high accuracy, and is widely
used in fields such as image processing and computer vision. Currently, convolutional
neural networks (CNN), developed for improved feature extraction from large datasets,
are widely used in deep learning [2,3].

After the ImageNet [4] project and the establishment of the structure of CNN, a neural
network was designed based on the principle of how the human brain processes and
recognizes images. Research on image classification and detection of specific objects in
images has received considerable attention, and the number of studies has been increasing.
In particular, the use of DL in medical imaging is growing rapidly because objects such as
lesions and organs in medical images have complex geometries that are difficult to represent
or detect accurately using simple equations or models [5]. Therefore, image diagnosis using
AI improves the reliability of diagnosis and the utilization of medical resources according
to the accuracy of lesion detection; therefore, there is increasing interest and support from
the government, mainly from developed countries. Researchers are actively using AI
technology to detect lesions such as cancer in organs such as the lungs and breasts in
images such as CT and radiography or to detect brain aneurysms and brain tumors in
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magnetic resonance imaging (MRI) images, and highly accurate results are currently being
reported. Radiological evaluation of a disease is primarily based on visual assessment,
the interpretation of which can be augmented by advanced computerized analyses. AI is
expected to assist specialists in qualitatively interpreting diseases, including delineating
tumor volume over time, estimating biological progression, predicting clinical outcomes,
and assessing the impact of disease and treatment on adjacent organs [6].

In this study, we focused on using AI to detect abdominal hemorrhage (AH) lesions
with high urgency on abnormal CT images. Bleeding can manifest in different ways
depending on the cause and anatomical location and is a common but serious medical
emergency that requires early detection and appropriate intervention [7]. AH is defined as
intra-abdominal bleeding and is often diagnosed based on radiologic findings, as the clinical
symptoms are non-specific. In particular, due to its rapid and widespread availability, CT
imaging plays an important role in analyzing and evaluating the presence, location, and
extent of bleeding to determine the underlying cause [8]. In the field of imaging diagnosis,
there is a need for methods and systems that can assist in the diagnosis of AH by quickly
providing automatic analysis and reading information to medical staff in situations where
no radiologists are present to read CT images or in emergency situations that may pose a
serious threat to patients. Therefore, this study aimed to detect active bleeding foci and
hematomas, which are formed by blood pooling after active bleeding, with high accuracy
in abdominal CT images using DL technology.

The Abdominal CT Database (Abd-CT-DB) used in this study was collected from
Seoul National University Hospital (SNUH) and Kyungpook National University Hospital
(KNUH), both national hospitals in the Republic of Korea, where radiologists read each
image, annotated the coordinates of the AH lesion, and provided them with the image. The
CT images were saved in the Digital Imaging and Communications in Medicine (DICOM)
standard format, and the annotations that stored the coordinates of the AH lesions were
saved in the JavaScript Object Notation (JSON) format. Unlike natural images, medical
images have different lesion shapes and patterns for each patient; therefore, it is necessary
for radiologists to determine the location of the lesion by considering the specificity of
the medical image. The method of detecting the location of AH lesions was implemented
by feeding the dataset obtained by processing the Abd-CT-DB into a neural network for
training. Abd-CT-DB converts the raw data in the DICOM file into a form that can be used
in DL by visualizing the blood and soft tissue to be observed and generates a dataset by
processing each image to map the location of the lesion. The dataset contains active bleeding
and hematoma lesions of various sizes, not distinguished by type and size, and is randomly
divided into training and test sets for the training and evaluation of the DL model.

The presence of small lesions in images can decrease the detection accuracy for the
entire lesion. In this study, we designed a model that can detect AH lesions in abdominal
CT images with high accuracy by improving the structure of the neural network to facilitate
the detection of small lesions. In modern detection algorithms used for object detection,
the neural network is fed only to images containing lesions, that is, images with correct
answers, and is trained to find features and locations using regions predicted to be likely to
contain lesions. However, in actual clinical practice, images containing lesions and images
without lesions are utilized simultaneously; therefore, the detection model detects the
location of lesions in all images, regardless of whether they contain lesions. In general,
because the detection model is designed using a neural network to increase the number
of true positives, false detection of lesions in images may increase when images without
lesions are fed. To solve this problem, this study used an AI model with a cascade structure
by assembling a classification model trained to classify the presence or absence of lesions
and a detection model trained to detect lesions in images. In other words, for all input
images, regardless of the presence or absence of lesions, the classification model is first
used to classify the presence or absence of lesions before detecting lesions in each image;
then, only the images determined to contain lesions are fed into the detection model to
reduce the number of false positives.
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In the evaluation, the accuracy of detecting the location of the lesion was determined
based on the degree of overlap of the ground truth bounding box (GT-Box), which is the
area detected by the radiologist, and the predicted bounding box (P-Box), which is the area
detected by the implemented AI model according to the preset criteria. In the evaluation
results of the AI model, the sensitivity, the probability of detecting the location of AH
lesions, was approximately 0.93, and the specificity, the performance of screening images
without lesions, was approximately 0.99. Therefore, the method proposed in this study can
be used as a technical tool to provide meaningful diagnostic aid to medical staff in actual
medical emergencies.

Since the abdominal CT images fed into the AI model do not know the presence or
absence of AH lesions in clinical practice and the size distribution of lesions on images with
lesions, the sensitivity and specificity used as performance metrics for the AI model may
be reduced. In this study, we develop a detection model that detects AH lesions distributed
in various sizes with high accuracy to increase sensitivity and develop an AI model with
a cascade model structure to increase specificity to solve the problem of increasing the
probability of false detection due to feeding in images without lesions.

The remainder of this paper is organized as follows. Section 2 introduces related work,
and Section 3 describes the proposed method. Section 4 presents the evaluation results of
the proposed method, followed by a discussion in Section 5. Finally, Section 6 concludes
the paper.

2. Related Works

This section describes the research related to the proposed method to accomplish
the challenging task of medical imaging diagnostics to detect AH lesions in CT images
using DL.

The use of DL in medical image diagnosis is classified into the following: classification,
which determines the presence or absence of a lesion in a medical image; detection, which
detects the location of a lesion; and segmentation, which detects the shape of a lesion. The AI
model developed in this study uses classification and detection together. The classification
field is dominated by convolutional neural networks (CNNs) and derived networks [9].
An effective way to use CNNs for medical image classification is to use transfer learning
to fine-tune CNN models pretrained on natural image datasets [10]. The study in [11],
which showed the results before and after applying transfer learning to classify liver lesions
in CT images, showed that, by applying transfer learning, the classification accuracy of
AlexNet [12] improved from 78.23% to 82.94% and the classification accuracy of ResNet [13]
improved from 83.67% to 91.22%. The results show that the application of transfer learning
can improve the performance of the model, and the deepening of the network makes the
image features extracted by the CNN model more detailed; thus, the classification accuracy
of ResNet for medical images is considerably higher than that of AlexNet and ImageNet.
There have also been studies on unsupervised learning for medical image enhancement
using generative adversarial networks (GANs) [14] to classify lesions [15].

In the field of detection, RetinaNet [16], a one-stage detector used to solve the im-
balance problem in which the background contains many regions containing objects, and
Faster-RCNN [17], a two-stage detector that additionally utilizes a network to extract can-
didate regions, have shown excellent performance and are widely used in lesion detection
research. A study [18] comparing the performance of RetinaNet with previous state-of-
the-art one-stage detectors, Deconvolutional Single Shot Detector (DSSD) [19] and Faster
R-CNN, showed results of 39.1 (RetinaNet) vs. 33.2 (DSSD) vs. 36.8 (Faster R-CNN), with
RetinaNet achieving the highest mAP. In addition, many studies have combined multiple
DL models, such as a study [20] that combined RetinaNet, an anchor-based detector, and
VFNet [21] and FoveaBox [22] models, which are anchor-free detectors, achieving 91.69%
sensitivity by detecting lesions in images provided by the DeepLesion [23] archive contain-
ing 32,000 CT images released by the NIH Clinical Center. A study on liver lesion detection
using faster R-CNN based on an optimized squeeze net [24] achieved an AP of 63.81% on
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images provided by DeepLesion, showing a performance improvement of more than 20%
over the baseline squeeze net.

In particular, the detection of small lesions that are difficult to detect and a reduction
in false positives, which are incorrect detection results, are areas of active research in the
field of image diagnosis. The abdominal hemorrhage dataset used in this study is a mixture
of active bleeding and hematoma, which is a condition in which bleeding is in progress.
The earlier the bleeding occurs, the smaller the size of the bleeding spot, which can be
difficult to distinguish with the naked eye from other normal tissues around it. Therefore,
detecting small lesions with active bleeding or hematomas on images has important clinical
implications. In a study on small lesion detection in medical images [25], DeepLesion
classified 32,735 bone, abdomen, mediastinum, liver, lung, kidney, soft tissue, and pelvic
lesions across the body into small (less than 10 mm), medium (10–30 mm), and large
(>30 mm) lesions. Subsequently, a deep learning model was constructed between ResNet-
50 and the Feature Pyramid Network (FPN) [26] by changing the size and aspect ratio of
the anchor and the network that applied the Attention Gate (AG) [27,28] to detect lesions
of various sizes and structures to form the RetinaNet. Compared with 3DCE in a study [29]
that demonstrated the state-of-the-art performance of DeepLesion, the sensitivity improved
from 80% to 88.35% for small lesions, from 87% to 91.73% for medium lesions, and from
84% to 93.02% for large lesions.

The study in [30], which organized a pulmonary nodule detection system for false-
positive reduction, consisted of a candidate detection phase to detect all suspicious pul-
monary nodules and a processing phase to process the extracted patches for various
candidate lesions using multiview ConvNets, showing a sensitivity of 90.1% on the Lung
Image Database Consortium (LIDC-IDRI) [31] dataset. A study [32] on the problem of
easily generating higher false positives while using an unbalanced dataset for lung nodule
detection showed that introducing a filtering step to remove irrelevant images from the
dataset can reduce false positives and increase the accuracy by more than 98%. The study
in [33] proposed a 3D-CNN framework to extract more features by encoding richer spatial
information compared with 2D to reduce false positives in automatic pulmonary nodule
detection and obtained a sensitivity of 94.4% in the false-positive reduction track of the
LUNA 16 Challenge using the LIDC dataset.

Hemorrhage detection has been studied in the fields of intracerebral hemorrhage
and retinal fundus. A study on the detection of intracerebral hemorrhage [34] used deep
learning segmentation for more accurate detection of the hematoma volume. In the field
of retinal fundus using the DIARETDB1 database, a public database used for diabetic
retinopathy detection, research [35] presented an automatic hemorrhage detection method
based on two-dimensional Gaussian fitting and obtained 100% sensitivity, 82% specificity,
and 95.42% accuracy using 219 retinal fundus images. The study in [36] used a scale-based
method to segment blood vessels from hemorrhages and finally used gamma correction
and thresholding methods to detect hemorrhages, achieving 87% sensitivity, 84% specificity,
and 89% accuracy. However, most studies on the abdomen aim to localize and segment
organs, mainly the liver, kidneys, bladder, and pancreas, whereas MRI is used for prostate
analysis, and CT is predominantly used for all other organs [37].

Because previous studies on AH lesion detection using DL are currently difficult to
find, it was not possible to directly compare and evaluate their contributions, and it was
found that there may be various problems related to lesion detection using DL; for example,
the detection performance may vary depending on the size of the lesion or the problem
caused by an increase in false positives. Therefore, we propose a method to solve the
problems presented in the following section.

3. Methods

In this study, we processed Abd-CT-DB data to generate a dataset consisting of data
suitable for use in DL, developed a neural network for a detection model that detects AH
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lesions of various sizes with high accuracy, and developed an AI model with a structure
that places a classification model before detection to reduce false positives.

3.1. Creation of the Dataset

The processing of the Abd-CT-DB involves cleaning and structuring data from annota-
tion files and raw DICOM files with errors in meta-information or problems in representing
the geometry of lesions to create a dataset, as illustrated in Figure 1.
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3.1.1. Processing of Annotation and CT Images

Because there were cases in which there were problems with the information in the
annotation file, such as errors in the coordinate information provided or the absence of
a corresponding DICOM file, the coordinates of the lesion location were extracted only
for images with accurate information to avoid a mismatch between the annotation and
DICOM files. The images with extracted coordinates were divided into abnormal datasets
consisting of abnormal slices with lesions and normal datasets consisting of normal slices
without lesions; the coordinate extraction process was omitted because the annotation file
was not provided for the normal dataset.

For the DICOM files, we utilized the header attribute information of each image to
apply the rescaling method to place the luminance values in the same region and the
windowing method to extract only the luminance values within the region of interest,
except for images with errors, for images with widths and heights of 512 × 512 pixels.
The Hounsfield unit (HU) [38] represents the degree of attenuation in the transmission of
X-rays for a given image and is universally used in CT scans to represent CT figures in a
standardized and convenient form [39]. CT images are expressed relative to other areas,
with the attenuation of water being zero, and each pixel typically has a luminance value in
the range of 12 bits (4096 levels). Rescaling is the process of placing images in the same
luminance region using Equation (1), where the rescale slope represents the slope of the
pixel values for each image, and the rescale intercept represents the offset and includes
a negative sign. For example, an image with a luminance range of 0 to 4095 would be
rescaled to a range from −2048 to 2047 because the rescale slope is set to 1 and the rescale
intercept is set to −1024. However, the image in the range from −2048 to 2047 is unchanged
because the rescale intercept is 0, so the two images have the same luminance region.

real image = rescale slope × saved image + rescale intercept (1)

Windowing is a method used to highlight specific tissues in an image, such as X-ray
or CT images, by setting a range of tissues in the region of interest for observation using
the window center and width properties, which are expressed differently depending on
the setting. In the images used in the study, soft tissue and blood regions are represented
as the regions of interest; in the dataset used, the window center has a value between 30
and 80, and the window width, which represents the HU range of the region of interest,
has a value between 400 and 450.

The processed images were normalized so that each pixel was linearly stretched by
fitting a value between 0 and 1, and stored as a 512 × 512 pixel NumPy format array. The
location of the lesion (green box) and structures, such as various organs in the abdomen are
more visually distinct (red arrows) compared with the pre-processed images in Figure 2.
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3.1.2. Materials

The Abd-CT-DB contains data from 515 patients (SNUH:360, KNUH:155) and was
approved by the Institutional Review Board (IRB). Table 1 shows the dataset constructed
by processing Abd-CT-DB. The datasets of the two hospitals were merged and used for DL
training and evaluation. All coordinate information extracted from JSON was randomly
shuffled and saved as a single annotation file, which was divided into a training set and a
test set at a ratio of 9:1, along with the corresponding NumPy files, and stored on a disk.

Table 1. The final dataset composed after processing of Abd-CT-DB.

Dataset
Abnormal Slices Normal Slices

Train Test Total (%) Train Test Total (%)

Merged (Used) 6762 752 7514 (100) 6762 752 7514 (100)
SNUH 3800 415 4215 (56.1) 3800 415 4215 (56.1)
KNUH 2962 337 3299 (43.9) 2962 337 3299 (43.9)

Table 2 shows the distribution of lesions in each dataset by size. All lesions were
<160 × 160 pixels in size. In this study, lesions with a size of 40 × 40 pixels or less were
defined as small lesions. The SNUH dataset was mostly composed of small lesions, whereas
the KNUH dataset had the opposite composition. The merged dataset had an appropriate
mix and distribution of lesion sizes. Therefore, it was organized to detect lesions of all sizes
without distinguishing between them.

Table 2. Distribution of lesion sizes in a dataset.

Dataset
Lesion Size (≤)

20 × 20 30 × 30 40 × 40 60 × 60 80 × 80 160 × 160

Merged (%) 2230 (21.58) 4164 (40.28) 5633 (54.49) 7829 (75.73) 8975 (86.82) 10,338 (100)
SNUH (%) 2213 (42.86) 3926 (76.04) 4721 (91.44) 5114 (99.05) 5150 (99.75) 5163 (100)
KNUH (%) 17 (0.33) 238 (4.60) 912 (17.62) 2715 (52.46) 3825 (73.91) 5175 (100)

3.2. Development of the AI Model Using Deep Learning

The AI model is designed as a cascade model structure with an AH classifier, a
classification model, and an AH detector, a detection model that detects the location of the
lesion by feeding the merged dataset in Table 1 to classify the presence or absence of the
lesion in advance, as shown in Figure 3. After describing how to develop a detection model
for AH lesions, this section describes the deployment of the model for lesion classification.

3.2.1. The AH Detector to Improve Small Lesion Detection Performance

To improve the detection accuracy for small lesions, the researchers developed a neural
network and adjusted the parameters of the anchor box to fit the dataset.
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The neural network designed to recognize the lesion patterns in the detection model
was composed of ResNet-152 with a bottom-up pathway and an FPN with a top-down
pathway, as shown in Figure 4. The FPN is separated by the layer specified by the CNN to
generate a feature map, and the closer it is to the input layer, the higher the resolution that
retains the feature information, such as edges and curves of the image, and the farther it is
from the input layer, the less it loses the features that can be inferred through texture or
parts of the object. The detection of small objects using DL is a challenging task in computer
vision, which requires sufficiently high-resolution images to recognize small objects [40].
The neural network developed in this study adds a C2 layer to the convolutional network
and a P2 layer to the pyramid network to increase the resolution of small lesions by
changing the number of utilized layers to four levels between C2 and C5, and six levels
between P2 and P7. For reference, the baseline RetinaNet consisted of three levels between
C3 and C5 and five levels between P3 and P7.
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An anchor box is used in detectors such as RetinaNet to detect the location of
objects during training, using predefined areas, aspect ratios, and scale parameters for each
feature map, and the GT-Box and Intersection of Union (IoU) [41] to classify lesions and
backgrounds as positive and negative anchors, respectively. Positive anchors are utilized
for both classification and box regression training to predict both the detected coordinates
and class for a specific lesion, whereas negative anchors are utilized only for classification
because they do not contain information about the lesion but only about the background.
The two subnetworks that perform classification and bounding box regression have the
same structure but use different parameters; therefore, they do not share information with
each other. The anchor area is the area of the anchor box in each feature map, and the aspect
ratios define the shape of the anchor box. The scales were calculated from the areas of
each feature map and used to create anchor boxes of different sizes, which should be used
according to the size of the lesion, as higher resolution detects smaller lesions using smaller
anchor boxes. The baseline RetinaNet anchors used the default areas {32, 64, 128, 256, 512},
aspect ratios {1:2, 1:1, and 2:1}, and scales {1, 1.26, 1.59} for P3 to P7. However, if the
parameters are not properly tuned to the size of the lesions to be detected, the bias may
be detrimental to learning and may need to be adjusted to match the characteristics of the
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training dataset, such as a large number of small lesions or, conversely, a large number of
large lesions in a particular dataset [42].

Because the dataset used in our study had lesions of different sizes, we adjusted
the parameters to improve the detection accuracy for smaller lesions. The area of each
feature map is {16, 32, 64, 128}, corresponding to P2–P5. The aspect ratios were obtained by
distributing the ratios of all lesions in the dataset to each area range of 20 × 20 or less and
40 × 40 or less, and obtaining the area range of the lesion with the most distributed ratios,
{1, 1.81, 2.75}, and {2.75:1, 1.81:1, 1, 1:1.81, 1:2.75}. For the scales, we divided the area of all
lesions in the dataset by the area of each feature map and used {0.4, 0.55, 0.70} between
[0.2, 1.3], which is the range of the mean values of the distribution for the extent to which
an anchor box can cover a lesion in each feature map.

3.2.2. Placement of the AH Classifier to Reduce False Positives in AI Models

Detection models are typically designed to detect images with lesions; however, in
real-world clinical practice, images with lesions and images without lesions may be fed
in, thereby increasing the number of false positives. Figure 5 illustrates an example of
the single-model method with the configuration shown in Figure 5a, where the dataset is
directly fed into the developed AH detector, and the cascade model method with the con-
figuration shown in Figure 5b, where the AH classifier designed with the CNN architecture
with the ResNet-152 structure is deployed before detection. The structure of the cascade
model method reduces the number of false positives compared with the single-model
method, and the results of both models are used together to maintain the number of images
initially fed. Therefore, this study solved the problem of increasing false-positive results by
pre-positioning the AH classifier for screening normal images. The experimental process
and results using the real dataset are described in the next section.
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(a) single model; (b) cascade model.

4. Experiment and Results

This section describes the training method of the AI model, numerical results of
calculating the detection accuracy, and visualization results of outputting the GT-Box and
P-Box on the actual detected images. The training and evaluation were performed in an
environment consisting of the hardware and software listed in Table 3.

Table 3. The experimental environments of hardware and software for deep learning.

Hardware Software

CPU IBM Power 9 3.8 GHz 16 cores 2 ways OS Ubuntu 18.04LTS
GPU nVidia Tesla V100 3t2 GiB CUDA (driver) 10.2 (440.64)
RAM 631GiB Python 3.7.7
DISK SSD 4TB PyTorch 1.3.1
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4.1. Training of Models in AI Model

The detection and classification models were trained using the same training pa-
rameters by setting the following parameters: size, 4; optimizer, Adam; and learning
rate, 1 × 10−5. Transfer learning was used to overcome the lack of data. The detection
model was developed by applying the improvement method to the baseline RetinaNet [43],
where the lesion detection accuracy was not improved. The classification model using
CNN was trained for 1000 epochs, and no problems such as overfitting occurred during the
learning process, as shown in Figure 6a,b. The detection model uses a supervised learning
method that uses the annotation results of radiologists as correct answers, whereas the
classification model uses abnormal and normal classes as correct answers.
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Figure 6. Training loss in each epoch: (a) detection models; (b) classification models.

After training each model, the best-performing model was selected from the final
confusion matrix consisting of true-positive (TP), false-positive (FP), true-negative (TN),
and false-negative (FN) slice groups and was used as the lesion detection model AH
detector and classification model AH classifier. The AH detector is the model generated at
the 75th epoch (red arrow) in Figure 7a, which contains the highest number of TPs, and
the AH classifier is the model generated at the 535th epoch (red arrow) in Figure 7b, which
contains the lowest number of FPs and FNs.
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4.2. Evluation Method

The detection of lesions using the trained model was evaluated using the confidence
and IoU scores to determine performance. The confidence score indicates the probability
of the presence of a lesion, which is used to first remove the overlap of many bounding
boxes created around the location of the lesion and determines the use of the region based
on whether a threshold is met. The IoU is a numerical representation of the intersection
of the GT-Box annotated by the radiologist and the P-Box predicted by the model and is
calculated by dividing the intersection of the two boxes by the sum of the two boxes, as
shown in Equation (2).

IoU =
area of intersection

area of union
(2)

Table 4 shows a representation of the detection conditions and confusion matrix for
images with lesions fed into the AH detector. TP_D is a group of slices in which a lesion is
detected because the confidence and IoU scores are greater than the threshold, FP_D is a
group of slices in which the confidence score is greater than the threshold but the IoU score
is less than the threshold, and FN_D is a group of slices in which the confidence score is
less than the threshold and the lesion is incorrectly judged as a normal image. However,
the TN used for normal images without lesions could not be represented in the confusion
matrix of the AH detector. In this study, the threshold value of the confidence score was
greater than 0.5 and the IoU threshold value was greater than or equal to 0.4.

Table 4. The confusion matrix for the AH detector.

Slice Group Detection Condition

TP (TP_D) Success Confidence score > 0.5 and IoU score >= 0.4
FP (FP_D) Fail The number of total slices—TP—FN
FN (FN_D) Fail Confidence score <= 0.5

Table 5 shows the confusion matrix for the predicted result (Predict) based on images
with and without lesions (Target) fed into the AH classifier.

Table 5. The confusion matrix for the AH classifier.

Slice Group Target Predict Classification Result

TP (TP_C) abnormal abnormal correct
FP (FP_C) normal abnormal incorrect

TN (TN_C) normal normal correct
FN (FN_C) abnormal normal incorrect

4.3. Evaluation Result

Because the trained AI model has a cascade structure consisting of an AH classifier
and an AH detector, the step-by-step flow of inputs and outputs according to the placement
of each model, as well as the change in the number of slice groups derived as a result, are
shown in Figure 8.

The AH classifier was fed the abnormal and normal test sets together to classify the
presence or absence of lesions before detection, and the TP_C slice group classified as
having lesions was fed into the AH detector to detect lesions. In the final confusion matrix
representing the final result, TP is the number of TP_D slice groups in which lesions were
detected by the AH detector, and TN is the number of TN_C slice groups classified as
normal images by the AH classifier, indicating the classification performance for normal
slices. FP and FN are the results of the two models added to maintain the number of slices
in the initial test set without missing slices.

Sensitivity (true-positive rate, TPR) is the proportion of true positives correctly identi-
fied by the test, and specificity (true-negative rate, TNR) is the proportion of true negatives
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correctly identified by the test [44,45]. Sensitivity, which indicates the probability of abnor-
mal slices with lesions, was calculated using Equation (3), and specificity, which indicates
the probability of normal slices without lesions, was calculated using Equation (4).

TPR =
number of the true positives

total number of abnormal slice that has the lesion
× 100% (3)

TNR =
number of the true negatives

total number of normal slice that has no the lesion
× 100% (4)
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The evaluation results for the AI model are shown in Tables 5 and 6, which compare
the improvement in detection accuracy and reduction in false positives. The TPR of the AH
detector for images with lesions improved compared with that of the baseline model, as
shown in Table 6.

Table 6. Comparison between detection models to observe an increase in sensitivity and TP.

Model TP FP FN Total TPR (%)

Baseline 550 9 193 752 73.10
AH detector 702 20 30 752 93.40

Table 7 compares the results of the AI model and AH detector for images with and
without lesions and shows that the AI model with the AH classifier placed before detection
improved the specificity and reduced the number of FPs compared with the AH detector.
In the evaluation results of the AI model, the sensitivity, the probability of detecting the
location of AH lesions, was 93.22%, and the specificity, the performance of screening normal
images, was 99.60%. Therefore, the AI model developed in the study showed a statistically
significant increase in both sensitivity and specificity in the experimental results for images
with and without AH lesions, suggesting that it can be used in clinical applications to
increase the probability of detecting AH lesions.

Table 7. Comparison between a single model and a model with a cascade structure to observe an
increase in specificity and a decrease in FP.

Model TP FP TN FN Total TPR (%) TNR (%)

AH detector 702 119 653 30 1504 93.40 86.84
AI model (cascade) 701 23 749 31 1504 93.22 99.60
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Figure 9 shows a visual representation of the results of lesion detection using the AH
detector. Each image used for detection contains at least one GT-Box (green rectangle),
which is the correct region. A P-Box (red rectangle), which is the detected region, is
displayed according to the number of lesions detected and is not displayed when detection
fails. The green text in the upper left corner of each image shows the index number of the
GT-Box, index number of the detected P-box, and information about the IoU score. For
example, Figure 9a shows that, for one GT-Box with a GT-Box index number of 0 (GT-0),
two P-Box index numbers (Detect–{0, 1}) were generated with IoU scores of 76.8% and
42.8%. In addition, as shown in Figure 9c, out of the four GT-boxes with GT box index
numbers GT–{0, 1, 2, 3}, only GT–{1, 3} was successfully detected, resulting in P-boxes with
IoU scores of 69.8% and 79.6%, respectively.
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Figure 9. Example images of the AH-lesion detected using the AH detector. Green boxes indicate
GT-Box, and red boxes indicate P-Box. Green text is GT-Box index, P-Box index, and IoU score:
(a) single GT-Box and detected two P-Box; (b) two GT-Box and detected each single and two P-Box;
(c) four GT-Box: detected two P-Box and missed two P-Box; (d) single GT-Box: detected single P-Box;
(e) two GT-Box: detected two P-Box; (f) three GT-Box: detected three P-Box.

5. Discussion

DL models have a high probability of achieving good results when sufficient quality
data are available. However, most medical data are restricted by national or hospital policies
regarding the utilization of patient information. Currently, research on the detection of AH
lesions using AI technology is difficult because of the lack of effective related studies.

The main contributions of this paper are summarized as follows: The AI model
developed in this study improves both sensitivity and specificity by designing a detection
model to detect AH lesions distributed in various sizes with high accuracy and by deploying
a classification model that can screen out images without lesions before detection to solve
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the problem of increasing the probability of false detection due to the feeding of images
without lesions. In this study, we conducted an experiment to determine the effects of
the methods applied to the development of an AI model on the increase in sensitivity
and specificity. First, the AH detector achieved a sensitivity of 93.22% by changing the
anchor parameters in the baseline model and by changing the number of utilized layers in
the neural network to improve the detection accuracy for small-sized lesions. Therefore,
the applied method was not significantly affected by the distribution of small lesions and
could detect lesions in images with high accuracy. However, because the AH detector
is designed to detect lesions in images with lesions, the number of false positives may
increase in clinical cases where normal images are fed. The AI model, which is a cascade
model structure, obtained an FP of 23 and a specificity of 96.60%, reducing the FP by 76
and increasing the specificity by 12.76% compared with a single model using only an AH
detector. Therefore, the method of screening images without lesions to solve the problem
of increasing the probability of false positives reduces the number of false positives for the
input of images without lesions effectively.

The IoU is an important numerical value that quantifies the degree of overlap between
the GT-Box and P-Box during the detection and evaluation of anchor boxes when training a
detection model, and the relationship between the IoU score and threshold is an important
factor in performance evaluation because the smaller the set IoU threshold value, the
more P-boxes are removed. The IoU threshold value is usually 0.5 for both training and
evaluation to determine detection. However, in this study, the threshold was set to 0.4 for
evaluation to obtain more detection results, and the mid-stage experiment performed with
the threshold set to 0.5, in the same environment, still showed a high performance with
a sensitivity of 91.60%. The images in Figure 9, which show the results of visual reading,
seem to be at a sufficient level to generate information, such as a critical value report (CVR),
to assist in reading, even when the IoU score is detected at a value below 40%. Unless
the area that detected the lesion is a completely different spot, it is more useful for the
assistant system to show as many detections as possible to aid in the reading. Imaging
diagnostics must be viewed from the perspective of the radiologist who actually operates
and reads the images, and not just from the perspective of the engineer who focuses on the
numbers. Medical decisions made by radiologists can be life-or-death decisions for patients;
therefore, it is important to provide patients with sufficient cues when in doubt. Therefore,
the IoU threshold is a matter for medical decision makers to set based on their own
contextual judgments.

The utility of AI technology in clinical practice may require many resources to prove.
Therefore, even if it is available after a long validation process, it is still expected to be
used as a tool for redundant judgment. Imaging diagnosis using AI can only achieve good
results with the active participation of radiologists with a high ability to read lesions, and
AI models trained with data biased by the size and shape of lesions cannot perform well.
Therefore, because the dataset used in this study did not represent all possible sizes and
shapes of AH lesions, it is necessary to build a database that detects lesions of various sizes
and shapes with the participation of as many radiologists as possible before it can be used
in clinical practice.

6. Conclusions

DL technology, which is primarily used in image processing, is used to extract mean-
ingful features from input images and to use them in neural networks. In the field of image
diagnosis using DL technology, the question of liability can be an important issue in the
event of a medical accident, so it is still mostly used as an aid to diagnosis. However, owing
to the utility of rapid and accurate detection in emergency situations, image diagnosis
methods using DL and their performance are required. In particular, there is a need for a
system that automatically analyzes medical images when there are no radiologists to read
the images or in emergency situations and that quickly provides readings to the medical
staff to assist in diagnosis.
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In this study, we developed an AI model to detect abdominal hemorrhagic lesions
using CT. The AI model consisted of two models to detect AH lesions, and IRB-approved
datasets from multiple national general hospitals in Korea were used for training and
evaluation. The presence and size distribution of lesions is one of the most important
factors in image analysis. In clinical applications where images are used that do not
take into account the presence of lesions and their size distribution, AI models may have
difficulty accurately recognizing lesions, resulting in a decrease in sensitivity and specificity
due to an increase in the probability of not detecting lesions or false positives. In this study,
a detection model was first developed to detect small lesions with high accuracy to increase
sensitivity and an AI model with a cascade structure was designed to reduce false positives
when inputting images without lesions. The developed AI model was designed to improve
detection performance by changing the number of layers of the neural network in the
detection model and anchor parameters optimized for the dataset used in the study and to
reduce false positives by deploying a classification model to screen images without lesions
before detection. The detection model increased sensitivity to AH lesions distributed in
various sizes compared with the baseline model, and the AI model with a cascade structure
increased specificity and reduced false positives compared with the single model structure.

Therefore, the developed method effectively detected abdominal bleeding of various
lesion sizes with a sensitivity of 93.22%, which is the probability of detecting the location of
the lesion, and a specificity of 99.60%, which is the performance of selecting images without
lesions. However, a direct performance comparison could not be made because we could
not find relevant studies on detecting the same type of lesions using AI technology. As a
result, this study is expected to help researchers in the field of imaging diagnosis using AI
technology to detect AH lesions, which lack relevant studies.

In future research, we will study medical image processing methods to improve ac-
curacy by extracting feature points or preserving boundaries of lesions in images to improve
detection accuracy for small lesions and to research how to improve deep
learning algorithms.
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