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Abstract: Context: Badminton is a unilateral sport that involves repetitive jumping, lunging and quick
changes of direction with the lower limb, thus, plantar pressure profiles and foot postural profiles are
critical to maintaining balance and coordination. Objective: The purpose of this study was to explore
the characteristics of static and dynamic plantar pressure profiles with rearfoot posture in elite and
recreational badminton players as well as assess the transitional changes of plantar loads between
static and dynamic states. Methods: A cross-sectional survey was conducted among 65 college-level
elite male badminton players (mean age: 20.2 ± 1.2 years; mean height: 177.4 ± 4.6 cm; mean weight:
72.6 ± 4.6 kg) and 68 recreational badminton players of the same gender (mean age: 19.9 ± 0.8 years;
mean height: 170.3 ± 3.9 cm; mean weight: 67.7 ± 3.2 kg). The JC Mat was used to evaluate the
arch index (AI), plantar pressure distribution (PPD), centers of gravity, and the characteristics of the
footprint. Static foot posture was determined by examining the rearfoot alignment. Results: Both
groups’ AI fell within the normal range. The static plantar loads of the elite group were distributed at
the bipedal lateral part of longitudinal arches and heels (p < 0.01), while the right foot experienced
higher centers of gravity (p < 0.05). The elite group’s static rearfoot postural alignment exhibited a
higher degree of rearfoot varus than the recreational group (p < 0.05). In addition, the elite group’s
dynamic plantar loads were mainly exerted at the medial and lateral metatarsals of both feet (p < 0.05).
During the transition state, the recreational group’s plantar loads were mainly shifted to the bipedal
lateral part of metatarsals and heels (p < 0.05), whereas the elite group’s bipedal lateral longitudinal
arches as well as the medial and lateral heels experienced a reduction in plantar loads (p < 0.01).
Conclusion: For elite badminton players, the findings revealed a possible connection among the static
supinated foot, centers of gravity tending towards the right foot, and increased forefoot plantar loads
in the dynamic state. The finding merits further exploration of the possible links between transitional
changes in plantar pressure distribution in both states and related foot injuries resulting from intense
competition and regular training in badminton.

Keywords: badminton; arch index (AI); plantar pressure distributions (PPDs); centers of gravity;
rearfoot postural alignment; supinated foot

1. Introduction

Badminton players often have frequent jumps, lunges, and quick changes of direction
during competitions or regular training, which makes their feet and lower limbs need
to repeatedly bear the vertical ground reaction force equivalent to 2.1 to 2.5 times their
body weight [1–3]. Therefore, badminton injuries are more common than in other sports,
accounting for about 1–5% of all sports injuries [4,5]. In particular, it is prone to overuse and
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fatigue pain in the feet and lower extremities [3]. As maintaining balance in badminton is
one of the important factors to prevent injury [6], thus, lower extremity asymmetry should
be anticipated and considered when planning injury prevention strategies in badminton [7].

With regards to the symptoms caused by performing repeated foot movements in
these exercises, the cuboid syndrome most commonly affects runners, tennis and basketball
players, and ballet dancers [8,9]. The common feature of these sports is that the changes
of direction are rapid and the athlete needs to exert a great deal of force through their
feet [9]. As a result, the cuboid joint and its surrounding attachments are thus placed under
additional strain. Repeated pressure exerted on the cuboid joint may lead to a loosening of
the support, causing cuboid joint dislocation or displacement [9].

The arch structure of the foot acts as a shock absorber for the human body to buffer the
pressure on the plantar of the foot during running or jumping [10]. The medial longitudinal
arch (MLA) is one of the foot arches which provides sufficient elastic and twisting forces
to absorb the ground reaction forces, thereby weakening impact, preventing injury, and
delaying fatigue [11]. The changes in MLA structure may alter the biomechanics of the
lower extremity, resulting in altered plantar pressure in people with podiatrics or other
articular pathologies of the lower extremities [12–14]. Thus, atypical foot shape or repetitive
plantar loading are often associated with lower extremity and foot injuries, particularly
those caused by running [15]. In addition, recent studies have found that changes in the
structure of the MLA and the rearfoot valgus angle serve as reliable predictors of midfoot
and rearfoot pressure-time integrals as well as the rearfoot posture in healthy runners [16].
The fact is well known that the arch index (AI) from footprints has been widely accepted as
a reliable and relatively accurate method for determining MLA and arch height [17–20]. A
static posture of the MLA is also a reliable method for evaluating dynamic foot function
to determine whether a patient has foot-specific pathologies [21–23] or lower extremity
dysfunction that might increase the risk of injury [24–26].

Plantar pressure measurements can be used to assess plantar loading, podiatric fea-
tures, gait behavior, and rehabilitation conditions in subjects during walking and run-
ning [27–29]. Characterizing plantar pressure distribution may contribute to preventing
lower extremity injuries [30] and understanding how the feet and ankles experience weight
bearing and weight transfer during gait [31]. Parameters gained from the footprint can
provide insight into the spatial relationships among multi-segments of the foot and its fine
structure and functions [32], and these can be used in the detection, prevention, treatment,
and rehabilitation of podiatric foot deformity recurrence [33,34]. As a result, measuring the
plantar pressure profile is helpful in studying the biomechanics of the foot [35].

Several previous studies have explored foot pressure profiles and lower limb pain
profiles in specific elite athletes based on static and dynamic plantar pressure measure-
ments [36–39]. On this basis, in view of the fact that badminton is characterized by rapid
displacement and instantaneous changes of direction, the features of static and dynamic
plantar pressure profiles as well as the transitional changes between static and dynamic
states are worth further exploration. Based on these arguments, the study aimed to explore
the correlations among the arch index, plantar pressure distribution, centers of gravity
balance, and rearfoot postural alignment of both feet in college-level elite badminton
players during static stance and walking. It was hypothesized that badminton players
exhibit unique foot pressure distribution and foot posture that may be related to the rapid
displacement of footwork and balance maintenance of centers of gravity as compared to
recreational badminton players.

2. Materials and Methods
2.1. Participants

This study is a cross-sectional survey of college-level elite badminton players con-
ducted during their non-competition period. Participants in the study were 133 male
college and university students recruited during their studies, and they were further di-
vided into two groups: 65 elite badminton players (referred to as the elite group) and
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68 recreational badminton players (referred to as the recreational group). Those eligible par-
ticipants for inclusion in the elite group should be qualified first-class badminton athletes
who had experienced competitions and training for more than five consecutive years at the
Taiwan University Badminton Super Cup Competition, College Individual Championship
Badminton Competition, and Badminton Division Championship of the National Intercolle-
giate Athletic Games in Taiwan. The recruitment of the elite badminton players experienced
an approximately 20% dropout rate (65/81) attributed to (1) their attendance rates and
(2) certificates of previous fractures and surgeries from hospitals. Exercise schedules for
these elite badminton players included basic movements and aerobic exercises between
10 A.M. and 12 A.M. Training times for weights and tactical exercises were scheduled
between 2 P.M. to 4 P.M. Regular sprinting for 1 to 2 h was scheduled every 2 to 4 days
a week.

As controls in this study, 68 eligible recreational badminton players were selected
from 88 participants who had played badminton at least twice a week at badminton courts
or sports fields within the past 6 months and also had at least 3 years of recreational
badminton experience. Approximately 23% of recreational participants were dropped from
the recruitment process mainly based on the following factors: (1) their attendance rates;
(2) having professionally trained or competed in another sport; (3) certificates of previous
fractures and surgeries from hospitals. For both groups, each participant in the present
study was confirmed to hold the racket with the dominant right hand. Participants were
excluded if they had previously undergone lower-limb surgery, lower-limb dislocations, or
fractures in the preceding six months. In addition, other lower extremity musculoskeletal
diseases, including leg length discrepancies, foot calcaneal spurs, skeletal rheumatoid
arthritis, and lower extremity neuropathies were also listed as elimination conditions. These
exclusion conditions mentioned above are mainly confirmed to be derived from the medical
certificate report provided by each participant, or the individual-related sports or training
injury records provided by coaches and athletic trainers at their school. Furthermore,
considering that several studies have demonstrated in the past that body weight affects
arch and plantar pressure characteristics, particularly the association between obesity and
flat feet in adults and children [20,40–42], body weight may be a factor affecting the arch and
shape characteristics of the foot. Therefore, the study recorded basic physical characteristics
(e.g., age, height, weight, body mass index (BMI)) as well as the training experiences of all
participants. To qualify for participation, participants had to have a BMI between 18.5 and
24, and those outside this range were also excluded. An overview of the basic demographic
characteristics of the participants is shown in Table 1, which demonstrates that the height,
mass, BMI, and badminton training experiences of both groups are statistically significant
differences after being tested by a two-group student-t test at 95% confidence level. During
the course of this study, all research protocols were carried out in accordance with the
ethical standards of the research ethics committee and with the Declaration of Helsinki.

Table 1. Basic demographic characteristics of the participants.

Characteristic Recreational Group (n = 68) Elite Group (n = 65)

Age (years) 19.9 ± 0.8 20.2 ± 1.2
Height (cm) 170.3 ± 3.9 177.4 ± 4.6 *
Mass (kg) 67.7 ± 3.2 72.6 ± 4.6 **

BMI (kg/m2) 23.3 ± 0.4 23.1 ± 0.7 **
Badminton Training experience (years) 3.1 ± 0.7 5.9 ± 1.1 **

Abbreviation: BMI, body mass index (calculated as the weight in kilograms divided by the square of the height in
meters). Note: Values are given as mean ± SD. * p < 0.05, ** p < 0.01 (student-t test, 2-tails).

2.2. Instruments and Equipment

The JC Mat optical plantar pressure analyser coupled with the FPDS-Pro program
(JC Mat, View Grand International Co Ltd., New Taipei City, Taiwan) was applied to
measure the parameters of bipedal arch index (AI) and plantar pressure distribution (PPD)
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as well as the centers of gravity balance of research participants [43]. The device has
been proven to be repeatable and reproducible in experiments from previous studies
on expert athletes’ AI value and PPD performance during static standing and dynamic
walking [36,37]. The relevant characteristics and conditions of use of this equipment are
based on the following factors: (1) each side of the sensing area (32 cm × 17 cm) is designed
with 13,600 sensors for measuring fine plantar pressure; (2) sensitive pressure sensors with
large sensing areas can mark and present a delicate plantar pressure profile with dense
round dots; (3) both the spatial and temporal colour plantar footprints and real barefoot
images can be recorded simultaneously; (4) arch index, toe angle, the pressure distribution
of footprints, and centers of gravity balance can be measured immediately; (5) plantar
pressure distribution and footprint images correspond with isostatic weight calibration
throughout the sensing platform.

2.3. Plantar Pressure Assessment

To coincide with the athletes’ training courses, each experiment time was scheduled
before their specialty training between 7 A.M. and 9 A.M. on the same day. Before the
experiment, each participant was surveyed to record their demographic characteristics.
Next, participants were asked to obey the following steps in order to obtain data on static
footprints by completing brief upright standing trials: (1) Take off their shoes and socks
first and roll their trousers above the knees. (2) Stand barefoot on the sensing range and
measurement area above the JC Mat and maintain a natural posture with the feet shoulder-
width apart. (3) Maintain a calm and relaxed body posture with arms naturally hung down
and looking directly into the front experimenter’s eyes. (4) Hold a relaxed position while
maintaining a balanced posture until the JC Mat detects no significant change in plantar
pressure measurements. Once the participant completes step 4 of the protocol, the JC Mat
automatically records the preliminary results of plantar pressure distribution from their
static footprint.

During the dynamic plantar pressure measurement procedure, participants were first
asked to practice walking barefoot along a four-meter-long walkway with a built-in JC Mat
at their own steady and comfortable pace [44–46], walking to the end with a natural gait
and then turning back to the starting point. Upon entering the experiment, each participant
will perform three rounds of back and forth walk trials on the walkway at their own steady
and comfortable pace until the dynamic plantar pressure of each foot is correctly captured
at least three times, i.e., each foot is fully stepped on the sensing pad of the JC Mat marked
with the sensor range and measurement area. Meanwhile, the built-in FPDS-Pro program
in the JC Mat will collect preliminary data regarding dynamic plantar pressure and the gait
travel lines of each foot. The PPDs from the total contact of footprints during the midstance
phase of walking were then analyzed and identified by researchers. Three analyses of each
participant’s feet were performed in the process, and the average of the three results was
used to determine the dynamic plantar pressure distribution.

2.4. Plantar Pressure Data Analysis

The analysis software (FPDS-Pro-V2 software, View Grand International Co, Ltd.,
New Taipei City, Taiwan) built into JC Mat can be used to calculate pressure detection data
and display colour plantar footprints and real barefoot images of the static and dynamic
states. Once all measurement experiments had been completed, the researcher used the
analysis software to create the first vertical line between the base of the second toe and the
central base of the heel in the footprint image. Meanwhile, the program then automatically
generates four horizontal tangents between the front and rear of the footprint excluding the
toes. Next, three equal-part regions (i.e., regions A, B, and C) and six equal-part subregions
(i.e., subregions 1, 2, 3, 4, 5, and 6) were thus automatically derived from the tangents in
the footprint image [36]. Footprint regions of A, B, and C are referred to as the forefoot,
midfoot, and rearfoot regions respectively. From the three regions, the six subregions
were further divided sequentially from anterolateral to posteromedial as follows: (1) the
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lateral metatarsal bone (i.e., LM), (2) the lateral longitudinal arch (i.e., LLA), (3) the lateral
heel (i.e., LH), (4) the medial metatarsal bone (i.e., MM), (5) the medial longitudinal arch
(i.e., MLA), and (6) the medial heel (i.e., MH) [36–39]. An illustration of these regions is
shown in Figure 1. The plantar pressure units from the six subregions were calculated
as a percentage of the relative load. Based on the three footprint regions, the calculation
method of the AI in this study is inherited from previous studies, all of which are based
on the AI ratio formula suggested by Cavanagh and Rodgers, that is, the ratio of the area
of the middle third of the footprint to the area of the complete footprint except the toes,
as follows: AI = B/(A + B + C) [19,36–39]. According to Cavanagh and Rodgers’ defined
principles, a normal arch is defined as an AI value between 0.21 and 0.26. A high arch is
defined as an AI below 0.21. A flat arch is defined as an AI value greater than 0.26.
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group and the (b) elite group. Illustration (c) is the color footprint image and the corresponding foot
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2.5. Rearfoot Postural Assessment

Assessment of rearfoot postural alignment for each participant was conducted follow-
ing plantar pressure measurement. Participants in this procedure were first instructed to
stand stably on a platform that was 30 cm high, then maintain a natural posture and keep
their feet about 12–15 cm apart. Meanwhile, a digital camera was used to capture an image
of the rearfoot postural alignment of each participant (with a minimum screen resolution
of 96-ppi and 754 pixels). Based on Ribeiro et al.’s literature [22], the method involving
determining the static angle of the rearfoot is as follows: ensure that each participant’s
feet are standing on a platform with a horizontal line and locate three anatomical points
from bottom to top along the posterior surface of the legs: (1) the first point is marked at
the center of the calcaneal tuberosity; (2) the second point is marked above the calcaneal
center; and (3) the third point is marked at the center of the lower third of the calf. The
Biomech 2019 posture analysis program (Loran Engineering SrL, EmiliaRomagna, Italy)



Bioengineering 2023, 10, 498 6 of 13

in the computer will automatically generate two intersection lines from the three-point
connections. The first solid line was created from the calcaneal center to the center of
the lower third of the calf, thus representing the first standard straight line of the lower
extremity. The second dotted line, referred to as the flip angle line, was drawn from the
center of the calcaneal tuberosity to the calcaneal center. Through the software, the frontal
alignment of a digital image was calculated to determine the static rearfoot alignment. As a
result of the intersection of the straight lines and the dotted line, the angle between 0◦ and
5◦ is defined as a normal foot, <0◦ is a varus foot, and >5◦ is a valgus foot [47].

2.6. Statistical Analysis

The parameters of demographic characteristics and training experiences of all par-
ticipants were described by descriptive statistics. In this study, all numerical data were
presented as mean ± standard deviation (SD). The AI values and the PPD values for the
three regions of the forefoot, midfoot, and rearfoot as well as the PPD values for the six
subregions of both groups were compared by independent samples t-test. All statistical
significances for this study were defined at p < 0.05 (marked with *) and at p < 0.01 (marked
with **). Statistical analysis was performed using the SPSS software package (IBM SPSS
Statistics 21.0, Somers, New York, NY, USA) for this study.

3. Results and Discussion
3.1. Arch Index

The results of arch index analysis found no significant differences between the two
groups. (Table 2). Therefore, the study showed that the arch indexes of both groups were
within the normal range, and each had its symmetry.

Table 2. Bipedal arch indices of elite and recreational badminton players.

Recreational Group (n = 68) Elite Group (n = 65) p-Value

Left foot 0.21 ± 0.06 0.20 ± 0.07 0.057
Right foot 0.21 ± 0.05 0.20 ± 0.06 0.116

The static bipedal arch indices of both groups are represented as mean ± SD. Statistical significance of p-values
was determined by the independent sample t-test.

3.2. Three Regional Plantar Pressure Distributions under Static and Dynamic States

A percentage of the relative load was used to represent plantar pressure distributions.
In this study, the elite group experienced greater midfoot loads and lower rearfoot loads
during the static stance compared to the recreational group (p < 0.01). While during the
walking midstance phase, the results showed that the relative loads of the elite group were
mainly shifted to the bipedal forefoot region and relatively reduced on the rearfoot region
(p < 0.01). Comparing the changes between the static stance and the walking midstance
phase in each group, the relative loads of the recreational group were mainly distributed to
the right forefoot region (p < 0.01). The relative loads of the elite group were significantly
shifted to the bipedal forefoot region (p < 0.05), while decreased on the midfoot and rearfoot
regions (p < 0.01) (Table 3).

Table 3. Bipedal plantar pressure distributions of the three regions under static and dynamic states.

Region Recreational Group (n = 68) Elite Group (n = 65)

Static standing
Left foot

Forefoot (%) 21.37 ± 2.69 21.57 ± 2.34
Midfoot (%) 11.50 ± 10.62 12.27 ± 11.52 b

Rearfoot (%) 17.13 ± 4.31 16.16 ± 8.10 b
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Table 3. Cont.

Region Recreational Group (n = 68) Elite Group (n = 65)

Right foot
Forefoot (%) 21.69 ± 2.81 21.57 ± 2.90
Midfoot (%) 11.59 ± 10.16 12.17 ± 11.47 b

Rearfoot (%) 16.73 ± 5.46 16.26 ± 8.21 b

Midstance phase of walking
Left foot

Forefoot (%) 21.96 ± 2.44 26.80 ± 4.41 b,c

Midfoot (%) 11.03 ± 9.96 9.74 ± 9.57 d

Rearfoot (%) 17.01 ± 4.25 13.43 ± 7.43 b,d

Right foot
Forefoot (%) 22.19 ± 5.03 d 25.30 ± 7.18 b,d

Midfoot (%) 11.23 ± 10.62 10.63 ± 10.58 d

Rearfoot (%) 16.86 ± 5.90 14.07 ± 7.70 b,d

Bipedal plantar pressure distributions of the three regions under both states are represented as mean ± SD.
Statistical significances of p-values were determined by the independent sample t-test. b p < 0.01, defined as
statistically significant differences between both groups. c p < 0.05, d p < 0.01, defined as statistically significant
differences between the static stance and the walking midstance phase in each group.

3.3. Six Subregional Plantar Pressure Distributions under Static and Dynamic States

The detailed six subregional relative loads were derived from the three plantar regions.
When the participants of the elite group were standing statically, the relative loads on the
plantar were distributed symmetrically at the bipedal lateral part of longitudinal arches
and heels (p < 0.01), while the loads were found to be lower at the bipedal medial heels
(p < 0.01). Such results seem to echo the previous literature that a supinated foot posture in
which plantar pressure is mostly concentrated on the lateral part of the foot may contribute
to reducing contact time with the ground during running [48]. The study of Hasegawa
et al. also mentioned that the greater the degree of heel inversion of the runner, the shorter
the time the foot is in contact with the ground [48]. Runners with conditions of shorter
ground contact times and higher frequency of foot inversion are considered to contribute
to increasing the efficiency of running [48]. Furthermore, the supinated foot posture has
also been associated with the anatomy of cuboid syndrome. Both conditions of the foot are
also frequently seen in certain athletes, including runners, basketball players, and tennis
players [8]. Sports like these involve large forces through the foot or quick movements in
which players change directions rapidly. This, in turn, may cause more stress on the joints
and capsules around the cuboid bone as a result of overtightening the surrounding muscles
and ligaments. As a result of repetitive forces exerted on the cuboid bone, the attached
joints or ligaments may be damaged and torn, allowing the cuboid bone to dislocate or
dislodge [9].

As for the results of the walking midstance phase, the elite group’s relative loads were
significantly shifted from the lateral foot to the entire forefoot region, such as the bipedal
medial and lateral metatarsal bones (p < 0.05). The results, to a certain extent, reflected the
fact that the human body is typically accustomed to striking with the forefoot when running
barefoot [49]. However, in case studies of athletes’ gait behavior, Guettler et al. mentioned
that in athletes performing various basketball footwork, such as simulated lay-up tasks,
instant one-foot landing, side-to-side shuffle dribbles, and maximum effort sprint, the fifth
metatarsal experienced a higher plantar load [50]. In similar movements such as lay-up
landing and shuttle run, Yu et al. asserted that specialized basketball footwork resulted
in greater peak forces and higher plantar loads exerted on the fifth metatarsal bone [51].
Williams et al. went further and documented that athletes typically have higher peak forces
observed below the second and third metatarsals after an intensive endurance exercise [52].
However, it has been found that forefoot strikes in various sports disciplines can reduce
vertical and knee loads in athletes during competition [49].
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Based on the results of comparisons of the static stance and walking midstance phases
in each group, the recreational group’s relative loads were changed and distributed at
the bipedal lateral part of metatarsals and heels (p < 0.05). In addition, it was found that
the relative loads at the bipedal lateral longitudinal arches, as well as the medial and
lateral heels, were significantly lower in the elite group (p < 0.01) (Table 4). In terms of
the recreational group, however, the results seem to confirm previous research showing
that when badminton players lunge forward, plantar pressure is mainly exerted on the
heel and lateral foot [3,53]. Likewise, the study noted that athletes’ metatarsal heads and
lateral heels as well as the lateral part of the foot were often the regions that make the
most contact with the ground in different footwork [53]. A similar study was conducted on
basketball discipline by Chua et al., who noted that a high plantar load is often applied
not only to the heel during take-off steps, but also to the forefoot and rearfoot areas upon
landing as well [54]. Furthermore, athletic behaviors involve frequent sprints and rapid
changes of direction, such as in basketball and tennis players, where the foot tends toward
a supinated position [8]. As for the changes in the plantar pressure distribution of the elite
group from static to dynamic, similar findings are rare in the other literature, and were only
found to be comparable to those observed in a study conducted by Bisiaux and Moretto,
which noted that runners had significantly lower medial heel peak pressures and relative
impulses 30 min after fatigue running [55].

Table 4. Bipedal plantar pressure distributions of the six subregions under static and dynamic states.

Six Subregions
Static Standing Midstance Phase of Walking

Left Foot Right Foot Left Foot Right Foot

Recreational group (n = 68)
Lateral Metatarsal bone (LM) 22.01 ± 2.80 22.05 ± 2.81 23.32 ± 1.65 d 22.95 ± 5.18 c

Lateral Longitudinal Arch (LLA) 21.67 ± 4.14 21.58 ± 1.86 20.58 ± 4.63 21.00 ± 5.74 d

Lateral Heel (LH) 20.61 ± 1.80 20.69 ± 3.97 20.68 ± 4.56 d 20.71 ± 5.51 c

Medial Metatarsal bone (MM) 20.74 ± 2.44 21.33 ± 2.78 20.80 ± 1.77 21.42 ± 4.79
Medial Longitudinal Arch (MLA) 1.32 ± 0.41 1.60 ± 1.38 1.29 ± 0.40 1.45 ± 0.36

Medial Heel (MH) 13.66 ± 3.13 12.77 ± 3.55 13.23 ± 2.77 12.94 ± 3.00

Elite group (n = 65)
Lateral Metatarsal bone (LM) 20.62 ± 2.42 21.31 ± 2.61 26.40 ± 2.26 a 26.28 ± 7.17 a

Lateral Longitudinal Arch (LLA) 23.58 ± 2.84 b 23.42 ± 2.87 b 18.63 ± 4.89 d 20.28 ± 6.02 d

Lateral Heel (LH) 23.85 ± 2.54 b 24.01 ± 2.57 b 19.87 ± 5.00 d 20.36 ± 5.84 d

Medial Metatarsal bone (MM) 22.51 ± 1.82 21.84 ± 3.17 27.19 ± 2.51 a 24.33 ± 7.11 b

Medial Longitudinal Arch (MLA) 0.97 ± 0.33 0.93 ± 0.32 0.85 ± 0.32 0.98 ± 0.34
Medial Heel (MH) 8.47 ± 2.36 b 8.50 ± 2.65 b 7.00 ± 1.44 b,d 7.79 ± 2.29 d

Bipedal plantar pressure distributions of the six subregions under both states are represented as a percentage of
relative load and the values are expressed as mean ± SD. Statistical significances of p-values were determined
by the independent sample t-test. a p < 0.05, b p < 0.01, defined as statistically significant differences between
both groups. c p < 0.05, d p < 0.01, defined as statistically significant differences between the static stance and the
walking midstance phase in each group.

3.4. Centers of Gravity Balance

Participants’ centers of gravity distributions were described as a percentage of gravity.
As compared to the recreational group, the elite group’s centers of gravity were exerted
more on the right foot (p < 0.05) and lower on the left foot (p < 0.05) when standing in the
static position (Table 5). The findings echo those from the study by Petrinović et al. which
found that badminton players had statistically significant differences in the morphology of
their upper leg circumferences and forearms on both sides of their bodies [56]. Nadzalan
et al. also mentioned that there is an asymmetric kinematic balance between the dominant
and non-dominant limbs in the badminton lunge [57]. On the other hand, Hu et al. argue
that the forward lunge task results in reduced plantar loads distributed to the great toe of the
athlete’s dominant leg compared to the left and right maximal forward lunge task [3]. These
findings can therefore be attributed to the fact that badminton is a unilateral sport, where
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the players’ dominant limbs often move more accurately and faster than the opposite limbs,
they are thus prone to an imbalance between the left and right sides of their bodies [58].
Consequently, the dominant limb of badminton players results in a heavier distribution of
centers of gravity on the corresponding side of their foot.

Table 5. Centers of gravity balance assessment under static standing in elite badminton players.

Recreational Group (n = 68) Elite Group (n = 65)

Left foot 50.83 ± 5.25 47.08 ± 9.41 *
Right foot 49.17 ± 5.25 52.92 ± 9.41 *

The statistics of the percentage of bipedal centers of gravity are expressed as mean ± SD. Statistical significance of
p-values was determined by the independent sample t-test. * p < 0.05, defined as statistically significant differences
between both groups.

3.5. Rearfoot Postural Alignment

According to the results of rearfoot postural alignment, it was found that the bipedal
rearfoot angles of both groups fell within the normal range. Nonetheless, the elite group
had significantly lower values for static rearfoot postural alignment on both feet than the
recreational group (p < 0.05) (Table 6). In research on similar exercise behaviours, Klem
et al. found that increased rearfoot pronation during cutting maneuvers often results in
injuries among basketball players [59]. Czerniecki argued that the special requirements of
the athletes are related to the tension and tropism of the muscles: as we know, the triceps
surae is responsible for the rearfoot inversion and supination of the foot and providing
stiffness to the tarsal joints during lower limb movements [60].

Table 6. Assessment of static rearfoot postural alignment in elite badminton players.

Recreational Group (n = 68) Elite Group (n = 65)

Left foot 4.04 ± 2.03 1.13 ± 0.64 *
Right foot 4.57 ± 3.15 1.02 ± 0.53 *

The statistics of static rearfoot postural alignment are represented as an angle (◦) and the values are expressed
as mean ± SD. Statistical significance of p-values was determined by the independent sample t-test. * p < 0.05,
defined as statistically significant differences between both groups.

3.6. Static Footprint Characteristics

The footprint images were determined by averaging the results of the six subregional
PPDs in static and dynamic states within each homogenized representative subject. The
static footprint characteristics of the elite group illustrated that the greater pressure profiles
were mainly distributed at the bipedal lateral longitudinal arches (Figure 1).

The study not only investigated the characteristics of static and dynamic plantar
pressure profiles with rearfoot postural profiles in Taiwanese college badminton players but
also assessed the transitional changes between static and dynamic states. In addition, this
study is expected to provide information on the changes in plantar pressure distribution that
recreational badminton players may experience when they become elite athletes through
repeated training or competition. The findings of the present study showed that the elite
badminton players experienced a bipedal supinated foot and exerted more centers of
gravity on the right foot during static standing, and increased forefoot loading in dynamic
states. During the transition state, the relative loads of the recreational group shifted to
the bipedal lateral part of the plantar, while the relative loads of the elite group decreased
significantly along the bipedal lateral longitudinal arches and the entire heels of the foot.

In this study, the limitations may be attributed to a limited analysis of plantar loading
patterns in 65 elite males and 68 same-gender badminton players aged 19 to 22 years from
Taiwanese colleges or universities. In addition, the physical condition of the recruited
participants selected for the study only considered that they should meet the normal range
of BMI recommended by the World Health Organization (WHO). Other body composition
parameters, such as body fat mass, skeletal muscle mass, percent body fat, lower extremity
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(or appendicular) lean body mass, etc., were not evaluated and surveyed in this study.
Based on these factors, however, it may cause some difficulties in interpreting the results of
this study and inevitably limit the possibilities for generalization. Furthermore, the study
only included participants who held the racket with their dominant right hand, and the
issue of whether the participant had a dominant/non-dominant leg was not considered
within the research. Therefore, further studies not only need to rely on a considerable
sample size to examine whether badminton players have dominant legs, but also consider
using an accelerometer to determine the impact of dominant legs on the distribution of
plantar pressure and external intensity of lower limbs during training and competition [61].
The results of this study preliminarily examine the features of static and dynamic plantar
pressure profiles as well as the transitional changes between static and dynamic states
in Taiwanese college elite and recreational badminton players. The study differs from
previous studies in that it incorporates the consideration of centers of gravity balance and
the changes in rearfoot postural alignment. As a result of this study, the characteristics
of plantar pressure profiles and the footprints of elite badminton players can be used
in the development and design of badminton boots or related sports orthotic insoles,
which are expected to cushion the uneven distribution of plantar loads, improve shoe
comfortability, and reduce the risk of sports-related injuries suffered by badminton players.
With respect to the imbalance of centers of gravity in elite badminton players, the lunge
squat exercises have been considered to be effective rehabilitation training for improving
static and dynamic joint balance [62].

4. Conclusions

The college-level elite badminton players in this study were classified as having
normal arches. The static plantar pressure profiles showed that bipedal plantar loads were
symmetrically distributed at the lateral part of longitudinal arches and heels, coupled with
more exerted centers of gravity on the right foot and a greater degree of rearfoot varus on
both feet. During the walking midstance phase, their plantar loads were mainly shifted to
the medial and lateral metatarsals of the entire forefoot. From the transitional changes of
the plantar loads in the recreational group, it was found that the plantar loads were mainly
shifted to the lateral part of the metatarsals and heels of both feet. While in the elite group,
the plantar loads were notably reduced at the bipedal lateral longitudinal arches as well as
the medial and lateral heels. This study not only highlights the changes in plantar pressure
distribution that amateur athletes may experience when they become elite athletes through
repeated training or competition but also reflects the appearance of static and dynamic
plantar pressure distributions in the daily life of elite badminton players. Additionally, the
possible links between transitional changes in plantar pressure distribution in both states
and related foot injuries deserve further investigation.
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