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Abstract: Long-term home monitoring of people living with epilepsy cannot be achieved using the
standard full-scalp electroencephalography (EEG) coupled with video. Wearable seizure detection
devices, such as behind-the-ear EEG (bte-EEG), offer an unobtrusive method for ambulatory follow-
up of this population. Combining bte-EEG with electrocardiography (ECG) can enhance automated
seizure detection performance. However, such frameworks produce high false alarm rates, making
visual review necessary. This study aimed to evaluate a semi-automated multimodal wearable seizure
detection framework using bte-EEG and ECG. Using the SeizeIT1 dataset of 42 patients with focal
epilepsy, an automated multimodal seizure detection algorithm was used to produce seizure alarms.
Two reviewers evaluated the algorithm’s detections twice: (1) using only bte-EEG data and (2) using
bte-EEG, ECG, and heart rate signals. The readers achieved a mean sensitivity of 59.1% in the bte-EEG
visual experiment, with a false detection rate of 6.5 false detections per day. Adding ECG resulted
in a higher mean sensitivity (62.2%) and a largely reduced false detection rate (mean of 2.4 false
detections per day), as well as an increased inter-rater agreement. The multimodal framework allows
for efficient review time, making it beneficial for both clinicians and patients.
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1. Introduction

Epilepsy is one of the most common neurological diseases, affecting approximately
50 million people worldwide [1]. Anti-seizure medications are the first treatment option;
however, up to 30% of patients can have refractory epilepsy and require other treatment
approaches, such as neurostimulation, ketogenic diet, or surgical procedures [2,3]. For peo-
ple living with epilepsy, seizure unpredictability increases the risk death and significantly
affects their quality of life [4,5]. Conversely, caregivers aim to decrease those risks and
improve patients’ health through an expeditious diagnosis and appropriate treatment. Nev-
ertheless, there is a limited list of diagnostic tools when considering long-term follow-up
and monitoring treatment response in clinical trials or outpatient scenarios. Current seizure
detections and counts are based on expensive in-hospital video-electroencephalography
(vEEG), short-term (video) EEG monitoring at home, or seizure diaries, the latter being the
primary tool [6,7]. The major disadvantage of seizure diaries is their low sensitivity. For
instance, a study of patients with focal epilepsy showed that they reported less than 50% of
seizures while admitted for vEEG monitoring [8]. Therefore, accurate seizure detection and
counting are crucial during follow-up outside specialized environments [9].

For a long time, machine learning (ML) methods have been deployed to analyze
full-scalp EEG data and develop classifiers in order to detect seizures [10]. Researchers
have investigated different types of methodologies, such as feature-based [11–14] and
deep learning [15–19] methods. More recently, wearable seizure detection devices have
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been used to detect focal seizures in a hospital environment using ML methodologies.
Vandecasteele et al. developed an automated seizure detection algorithm based on behind-
the-ear EEG (bte-EEG) [20], achieving sensitivities of 64.1%, with 2.8 false detections per
24 h. This work was developed on a large and continuous dataset containing recordings of
patients with focal epilepsy, mostly originating from the temporal lobe. The results achieved
by the algorithm were comparable to visual inspection of the bte-EEG by neurologists,
reaching a detection sensitivity of 65.7%. In a more recent work, a multimodal (bte-
EEG plus electrocardiography (ECG)) seizure detection framework was proposed for
improving the classification performance of seizures in the same dataset [21]. It is known
that focal seizures can affect the autonomic nervous system, in particular, the cardiovascular
system [22,23]. Therefore, ECG can be used to detect seizures in a subgroup of patients
with ictal tachycardia [24]. In [21], the authors implemented a late integration technique for
fusing the classification output of a bte-EEG-based algorithm with a single-lead ECG-based
seizure detector, to maximize the sensitivity. The addition of ECG data resulted in an
increase of 13% in sensitivity (from 79% to 92%). However, the false alarm rate increased
from 1 to 1.85 false detections per hour. Despite the high number of false detections, it is of
value to implement such framework into clinical practice.

Since annotation and review of EEG takes a long time, it is unfeasible for clinicians
to go through the large amounts of data generated when patients are monitored with
the wearable devices outside the hospital for several weeks. The use of such automated
algorithms for detecting seizures can significantly reduce the amount of data neurologists
have to review and consequently provide more significant insights on the progression
of the disease compared with the traditional seizure diaries. This framework involves
the use of the algorithm as a decision–support system where experts review the possible
seizure alarms automatically extracted from the wearable data. The usability of a hybrid
automated–visual epileptic patient monitoring was previously studied in patients with
absence epilepsy [25]. Here, it was shown that there was a clear benefit in using the hybrid
approach, where the classification F1-score of this method was higher (0.87) than visual
annotation of the wearable data (0.73) and self-reported documentation (0.15). Additionally,
the review time was lower when using the automated annotations for 24 h of bte-EEG
recordings (from 1–2 h without versus 5–10 min with automated annotations).

This Phase 1 study, according to the proposed standards for testing seizure detection
devices [26], investigates the usability of a multimodal bte-EEG and ECG-based seizure de-
tection algorithm. The main goal is to evaluate the automated decision–support system for
visual focal seizure recognition during review. Additionally, we investigate whether ECG
and heart rate data affect the readers’ decision when reviewing the automated annotations
generated by the algorithm.

By applying this semi-automated approach, we show that it is possible to significantly
reduce the review time of the wearable EEG data compared with the traditional annotation
method. Additionally, we present evidence of the improvement in classification perfor-
mance when adding ECG and heart rate to the visual inspection while maintaining the
short review time compared with annotating only wearable EEG.

2. Materials and Methods
2.1. Dataset

The present study was performed on the SeizeIT1 dataset. The data were collected
between 23 January 2017, and 26 October 2018, during which 82 patients with refractory
focal epilepsy were monitored at the University Hospital Leuven (UZL), Leuven, Belgium.
Patients were measured using the 10–20 EEG system, a single-lead ECG placed on the
chest and using simultaneous video recording. Four additional Ag/AgCl electrodes were
attached behind the ear, on the mastoid bone [20]. Of these patients, only 42 were included
in this work. Patients were excluded from the analysis if they had no focal seizure occur-
rences, data were unreadable (due to strong artifacts), or the wearable modalities were
not included in the measurements. For this study, we selected 221 seizures, which were
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captured during 5284 h of recording. From the seizures recorded, 173 seizures (78.3%) were
focal impaired awareness (FIA), 27 (12.2%) were focal aware (FA), 1 (0.5%) was focal to
bilateral tonic–clonic (F-BTC), and 20 (9.0%) had unclear classification. Regarding the local-
ization of the seizures recorded, 134 were temporal seizures, 27 fronto-temporal, 15 frontal,
9 occipito-temporal, 2 fronto-parietal, 2 parietal, and 32 had an unclear localization source.
The dataset was annotated by a certified epileptologist (W.V.P.) on the basis of the video and
25-channel scalp-EEG data. From all seizures, 176 (80%) had ictal changes in the full-scalp
EEG. From the selected patients, 6 had no ictal tachycardia, 23 had ictal tachycardia, defined
as an increase in heart rate of at least 20 beats per minute (BPM), and 13 had an increase
in heart rate less than 20 BPM. More details regarding the dataset used can be found in
Table 1. The ethical committee of UZL and KU Leuven approved the study, and all patients
signed an informed consent form for their participation.

Table 1. Overview of the dataset used in the study (SeizeIT1). The table shows the number of
seizures, seizure types (FA—Focal Aware, FIA—Focal Impaired Awareness, F-BTC—Focal to Bilateral
Tonic–Clonic, or NC—Not Clear), localization (Temp—Temporal, Par—Parietal, Fronto-temp—Fronto-
temporal, Fronto-par—Fronto-parietal, Occipito-temp—Occipito-temporal, or NC—Not Clear), later-
alization (L—Left, R—Right, bi—bilateral, or NC—Not Clear), and presence of ictal tachycardia.

Patient Nr. Seizures Seizure Type Localization Lateralization Ictal Tachycardia

1 6 FIA Temp R (1) and bi (5) Yes

2 9 FIA Fronto-temp R Yes

3 2 FIA Temp R Yes

4 8 FIA Temp R Yes

5 3 FIA Temp L No

6 2 FIA Temp L Yes

7 17 NC NC NC Yes

8 2 FIA Temp R Intermediate

9 2 FA NC NC No

10 2 FIA Fronto-par R (1) and bi (1) Yes

11 5 FIA Temp L Intermediate

12 6 FIA Temp L Intermediate

13 5 FIA Temp (3) and NC (2) R (3) and NC (2) Intermediate

14 2 FIA Temp L Yes

15 2 FA (1) and FIA (1) Temp (1) and NC (1) R (1) and NC (1) No

16 2 FA Temp (1) and NC (1) R (1) and NC (1) Yes

17 3 NC NC NC Intermediate

18 6 FA NC NC No

19 3 FIA Temp L Yes

20 5 FIA Temp L (3) and R (2) Intermediate

21 15 FIA Frontal NC Yes

22 3 FIA Temp R Intermediate

23 7 FIA Temp L No

24 5 FIA Temp L Yes

25 4 FIA Temp L Yes

26 22 FA (14) and FIA (8) Temp (12) and Fronto-temp (10) L (3) and R (19) Intermediate

27 9 FIA Temp L (4), R (3), and bi (2) No
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Table 1. Cont.

Patient Nr. Seizures Seizure Type Localization Lateralization Ictal Tachycardia

28 3 FA (2) and F-BTC (1) Temp (1) and Par (2) R Yes

29 2 FIA Temp R Yes

30 3 FIA Fronto-temp L Yes

31 2 FIA Occipito-temp L Intermediate

32 6 FIA Temp R Intermediate

33 8 FIA Temp (1) and Occipito-temp (7) R Yes

34 5 FIA Fronto-temp L Intermediate

35 5 FIA Temp L Yes

36 6 FIA Temp R Yes

37 5 FIA Temp R Yes

38 2 FIA Temp L Intermediate

39 2 FIA Temp bi Intermediate

40 5 FIA Temp R Yes

41 2 FIA Temp L Yes

42 8 FIA Temp L (3), R (1), and bi (4) Yes

2.2. Automated Seizure Detection

The seizure detection framework is composed of separate classifiers for bte-EEG and
ECG data.

The bte-EEG-based algorithm is composed of a feature extraction and a classification
step. The signal is firstly segmented into 2 s windows with 1 s overlap. Subsequently, vari-
ous time and frequency domain, entropy derived, and asymmetry features are calculated
and fed onto the classifier. In total, 67 features were derived from the bte-EEG channels.
The classifier is a Support Vector Machine (SVM) with a radial basis function kernel. The
bte-EEG algorithm’s detections were post-processed in order to discard possible artifactual
segments. Here, a seizure detection was considered valid if at least 8 positive alarms were
present in 10 consecutive 2 s segments (with a 1 s overlap); thus, the minimum duration of
an automated detection is 10 s. A full detailed description of the bte-EEG-based algorithm
can be found in [20].

Similarly, the ECG-based algorithm is composed of a feature extraction and classifica-
tion modules [27]. The ECG features are extracted from the heart rate information, derived
from an ensemble of R-peak detection algorithms [24,28,29]. In contrast to the EEG-based
classifier, the ECG signal is segmented in windows of 60 s, with a 10 s overlap. Furthermore,
the seizure annotations for the ECG data were extended in time by 30 s before and after
to train the algorithm to cope with the slower ictal patterns present on the cardiac activity
measured [30]. The ECG-based algorithm produced seizure detections of at least 60 s.

The multimodal framework employs a late fusion technique with an ‘OR’ strategy [21].
Here, the classification output of each modality is integrated in a way that a seizure
detection is counted if an alarm is present in either the bte-EEG or ECG, focusing on
achieving high sensitivity. The output of the multimodal algorithm is composed of a union
of the unimodal algorithms’ detections and, in the case of an overlapping alarms, the
bte-EEG detection segment was taken. Figure 1 shows a graphical representation of the
complete multimodal framework.
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Figure 1. Graphical representation of the multimodal automated multimodal seizure detection
framework based on bte-EEG and ECG.

2.3. Semi-Automated Seizure Detection
2.3.1. Data Preparation

The bte-EEG, raw ECG, and heart rate data were collected and saved in European
Data Format (EDF) format, along with the ground-truth seizure annotations. Additionally,
all the automated seizure detections’ start and end times were included in the files. In the
case of correct detections, the ground-truth annotations were substituted by the automated
seizure detections.

2.3.2. Visual Experiment

The EEG and ECG data were visualized with BrainRT (O.S.G., Kontich, Belgium).
Two readers, one neurologist (JM) and one biomedical clinical data expert (LS), were
presented with the prepared data files, blinded to any clinical information. The readers
were instructed to inspect the seizure detections indicated in the recordings twice, with two
different visual setups:

1. Two-channel bte-EEG (Figure 2a);
2. Two-channel bte-EEG with ECG and additional graph plotting the extracted heart

rate (Figure 2b).

The two-channel EEG montage was chosen instead of the three-channel montage that
was used in previous studies [20,21] to simulate the wearable Sensor Dot from Byteflies [31],
which is in the process of validation on the second iteration of the SeizeIT project [32].
The two channels are composed of one cross-head and one ipsilateral channel, measured
on the hemisphere of the seizure onset. The bte-EEG data were processed with a 35 Hz
low-pass filter and a 0.5 Hz high-pass filter and were presented within an amplitude
scale of 70 µV/cm. The visualization window was set to 10 s, and the heart rate data
were presented within a 10 min window. Readers were allowed to scroll freely within the
recording. For each marked seizure predicted by the algorithm, the readers relabeled the
data segments as seizure, artifact, or other physiological event. In addition, they had to
record the review time.
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Figure 2. Presentation setup for the two visual experiments: (a) setup for visual annotation of the
bte-EEG data; (b) setup for visual annotation of the bte-EEG and ECG data. In (a,b), the black
time-series corresponds to the ipsilateral (top) and cross-head (bottom) bte-EEG channel. In (b), the
top red signal corresponds to the heart rate derived from ECG, and the bottom red signal shows the
raw ECG data. The heart rate data are presented in a 10 min window, and the other signals in a 10 s
window. The green vertical lines indicate the start and end of the detected seizure, and the purple
shaded area on the heart rate plot depicts the 10 s window presented in the bte-EEG and ECG plot.

2.3.3. Performance Evaluation

To evaluate the performance of the automated algorithm, the seizure detections were
compared with the ground-truth annotations from the vEEG. In case of the visual ex-
periment, the relabeled segments were compared with only the automatically generated
annotations by the algorithm.

For the algorithm and both visual experiments, 4 different metrics were calculated on
the basis of the true positives (TP), false positives (FP), and false negatives (FN):

- Sensitivity: TP/(TP + FN)
- False detection rate per 24 h (FD/24 h): 3600 × 24 × FP/Drecordings, where D is the

duration of the recordings in seconds
- Positive predictive value (PPV): TP/(TP + FP)
- F1-score: 2 × (Sensitivity × PPV)/(Sensitivity + PPV)
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For the algorithmic performance evaluation, a TP corresponds to an overlap between
the ground-truth and the seizure detection; an FP is counted when a detection does not
overlap with a true seizure annotation; and an FN is counted when the automated algorithm
does not detect a true seizure. In the case of the visual experiments, a TP indicates that the
reader was able to correctly classify a seizure detection when it overlaps with a ground-
truth seizure annotation; an FP involves classifying a detection as seizure when it does
not overlap with a ground-truth annotation; and an FN when a correct detection is not
classified as a seizure by the reader. The false negatives of the algorithm were not taken
into account for the performance metrics of the visual experiment to simulate a real-case
scenario of the semi-automated seizure detection framework.

In addition to the listed performance metrics, the inter-rater variability was assessed
by calculating the Cohen’s kappa coefficient [33] between the two raters.

3. Results

In total, there were 7975 seizure detections (including TPs (n = 230), FPs (n = 7721), and
FNs (n = 24) of the algorithm). The difference (n = 9) in the number of correct detections
and the 221 seizures recorded is due to multiple detections of the same seizure. The defined
metrics in the method section are presented in Table 2.

Table 2. Performance metrics of the readers (mean (reader 1–reader 2)) in each experimental setup
(visual analysis of only bte-EEG and bte-EEG together with ECG and heart rate data) and the
multimodal seizure detection algorithm.

Sensitivity (%) FA/24 h PPV (%) F1-Score Time to
Review/24 h

Multimodal algorithm 90.6 43.4 2.9 0.06 -
bte-EEG 59.1 (63.0–55.2) 6.5 (10.1–3.0) 13.4 (7.49–19.04) 0.2 (0.1–0.3) 8.9 min (8.4–9.5)

bte-EEG and ECG 62.2 (63.0–61.3) 2.4 (2.9–1.9) 25.7 (21.8–29.7) 0.4 (0.3–0.4) 7.6 min (7.2–8.0)

The automated seizure detection algorithm was able to detect 196 of the 221 seizures,
resulting in a high sensitivity of 90.5%. However, the false detection rate was substantially
high at approximately 43 FD/24 h. This negatively affected the PPV and the F1-score, both
at very low values.

Regarding the bte-EEG visual experiment, the readers obtained a mean detection
sensitivity of 59.1%, with 6.5 FD/24 h, a PPV of 13.4%, and an F1-score of 0.2. Adding ECG
and heart rate data to the visual detection of seizures improved the readers’ performance.
The mean sensitivity was increased to 62.2%, and the false detection rate was substantially
lower at 2.4 FD/24 h. Both readers improved the PPV and F1-score when annotating the
detections with the added ECG and heart rate data (mean of 25.7% and 0.4, respectively).
The difference in the readers’ performance between the two experimental conditions was
tested with McNemar’s test. The visual review performance was significantly better when
both bte-EEG and ECG data were presented (p-value of 0.00). In both visual setups, the
readers reported the time to review one day’s worth of data as approximately 8 min by
visualizing only the detections provided by the algorithm. There was a small decrease when
ECG data were available. The readers were also instructed to blindly annotate seizures on
a full day’s worth of one bte-EEG recording, without video or full-scalp EEG data and with
no assistance from the algorithm. The reported time to review was approximately 56 min.

The inter-rater reliability was quantified using Cohen’s kappa. From Table 3, we can
conclude that the agreement between the two readers was fair (0.21) when visualizing only
bte-EEG for validation of the seizure detections. The addition of the ECG and heart rate
data to the analysis resulted in a better agreement between the raters, increasing the kappa
coefficient to 0.48. The change in the most significant performance metrics when ECG and
heart rate data is added to the visual review is presented in Figure 3.
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Table 3. Inter-rater variability between the two readers for each experimental setup.

Inter-Rater Variability (Cohen’s Kappa)

bte-EEG 0.21
bte-EEG and ECG 0.48
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Figure 3. Diagram representing the gain in sensitivity, inter-rater agreement, and reduction of false
alarms by reviewing the data with the semi-automated multimodal framework (bte-EEG and ECG)
compared with the unimodal framework (bte-EEG). The reduction in the time to review is compared
with the reported time to review 24 h of bte-EEG recordings without automated assistance.

The readers correctly annotated 136 alarms in the first experimental setup and 143 in
the second. Figure 4 discriminates the number of detected and missed seizures by the two
readers in the two experiments for each seizure onset location in the dataset. The number
of detected seizures is higher in the bte-EEG and ECG setup for all types except frontal
and non-clear seizure onset locations. The highest number of mislabeled seizure alarms
corresponds to temporal (42 and 38) and non-clear (28 and 29) seizure localizations (in the
bte-EEG setup and bte-EEG and ECG setup, respectively).

When considering the patient’s status in terms of having ictal heart rate changes, we
can see that using ECG data improves the detection sensitivity of the responders (patients
with ictal tachycardia or an increase in heart rate of more than 20 BPM was observed).
From Figure 5a, both readers correctly annotated more seizures of responder patients
when ECG and heart rate data were present along with the bte-EEG (mean increase of
8 seizures detected). In addition, the readers achieved better sensitivity for patients who
had an intermediate tachycardia effect (increase in heart rate of less than 20 BPM) during
the seizure. Both readers mislabeled a mean of five more seizure detections in the non-
responders group when ECG data were shown. Regarding the false detections, the number
of alarms incorrectly classified as seizures by the readers decreased substantially in patients
of all statuses. Figure 5b depicts the number of FPs annotated by the readers in each
experimental setup. In the bte-EEG only experimental setup, a mean of 1177 FPs was
reported, whereas in the bte-EEG and ECG review, the readers achieved a mean of 428 false
detections. The difference in the number of FPs between experimental setups was higher in
patients who had ictal tachycardia (mean difference of 346).
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Figure 4. Number of detected (correctly annotated) and missed (mislabeled) seizures of the two
readers in the two experimental setups readers, discriminated by the location of the seizure onset
(Temp—Temporal, Fronto-temp—Fronto-temporal, Occ-temp—Occipital-temporal, Front—Frontal,
Fronto-par—Fronto-parietal, Par—Parietal, or NC—Not Clear).

Examples of correctly annotated seizures based on bte-EEG data only and on both
bte-EEG and ECG with heart rate data are visualized in Figure 2. It is possible to see
the typical ictal rhythmic pattern in the cross-lateral bte-EEG channel. In Figure 2b, the
plotted section shows a sudden increase in heart rate overlapping the seizure segment.
Figure 6 shows an example of a detected seizure of a patient with ictal tachycardia that
was annotated as a non-seizure within the first experimental setup, but correctly classified
by both readers on the second experimental setup. In this case, the seizure is not clearly
visible on the bte-EEG signal but is accompanied with a heart rate increase. An example
of patient’s seizure without tachycardia is shown in Figure 7. On the bte-EEG setup, the
readers correctly classified this particular segment as a seizure. However, when heart rate
data were presented, the readers discarded the detected segment since the heart rate did
not show a significant increase. Figure 8 depicts a false detection in both experimental
setups. The heart rate plot shows a significant increase (more than 20 BPM) simultaneously
with a presence of rhythmic artifactual oscillations in the bte-EEG signal.
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Figure 6. Example of a detected seizure segment mislabeled as a non-seizure on the bte-EEG
experimental setup but corrected on the bte-EEG and ECG and heart rate setup (change from FN to
TP). The top plot contains the heart rate data in red within a 10 min window, and the bottom contains
the bte-EEG channels (in black) and ECG data (in red) within a 10 s window. The shaded section of
the heart rate plot corresponds to the plotted area of the bottom one. The green vertical lines indicate
the automated algorithm’s time events.
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Figure 7. Example of a detected seizure segment correctly labeled by the readers on the bte-EEG
experimental setup but mislabeled on the bte-EEG and ECG and heart rate setup (change from TP to
FN). The top plot contains the heart rate data in red within a 10 min window, and the bottom contains
the bte-EEG channels (in black) and ECG data (in red) within a 10 s window. The shaded section of
the heart rate plot corresponds to the plotted area of the bottom one. The green vertical lines indicate
the automated algorithm’s time events.
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plot corresponds to the plotted area of the bottom one. The green vertical lines indicate the automated
algorithm’s time events.

4. Discussion

In this study, we investigated the usability of an automated seizure detection frame-
work based on bte-EEG and ECG as a decision–support tool for monitoring patients with
epilepsy. Focal seizures are the most prevalent seizure type, accounting for 60% of cases of
adult epilepsy [34]. Detecting focal seizures with wearable EEG setups is more challenging
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compared with generalized seizures due to the heterogeneity of EEG patterns and the fact
that some seizures become invisible on reduced montage EEGs [35]. Wearable EEG setups
are developed with the intention of causing minimal obtrusion to the patients. In this sense,
the number of electrodes used is significantly reduced, and their placement is usually on
non-standard locations of the scalp. Unlike generalized seizures, the onset location of
focal epilepsy is more challenging to capture by the wearable EEG because it is strongly
dependent on the electrode–onset distance and propagation pathways [36,37]. Despite this,
we recommended using a combination of electrodes that allow ipsilateral (based on the
onset hemisphere) and cross-head channel montages to detect focal seizures [38].

Other studies have evaluated the utility of reduced EEG montage setups for visual
seizure detection in the case of focal seizures. In [39], an EasyCap EEG system with reduced
number of channels was used, achieving 39.2% detection sensitivity where only 31% of
focal seizures recorded were correctly identified. A single-channel wearable EEG device
from Epilog [40] was evaluated in [41], where epileptologists obtained a sensitivity of 55%
for focal impaired awareness seizures.

In the first experimental setup of this work, the readers achieved similar performances
when evaluating the automatically generated seizure detections (sensitivity of 59.1%). In a
real-use case scenario, reviewing 24 h of bte-EEG with the assisted monitoring framework
allowed a 7-fold reduction in review time when compared with the estimates reported
by the annotators for blindly analyzing the same data without the algorithm’s alarms
(8 min versus 56 min, respectively). The non-assisted bte-EEG review time is similar to
reviewing full-scalp vEEG data, according to the literature [25]. Despite the number of
electrodes in the wearable EEG setup being much less than a standard full-scalp EEG setup,
readers required more attention to identify seizures in the reduced channel montage. The
false detection rate was considerably lower than the automated detection. In [20], the
authors reported a sensitivity of 65.7% for detecting focal seizures in bte-EEG. Here, the
epileptologist was presented with 10-minute-long data segments containing seizures and
background wearable EEG. Considering the setup and electrode placement, it is expected
that seizures with onset on the temporal and fronto-temporal lobes are more likely to be
captured in the wearable recordings. The dataset used in this study contained a majority of
temporal lobe seizures. However, 38 temporal lobe seizures were missed by the readers in
the multimodal setup. The main reason for missing ictal events was the presence of muscle
artifacts in the bte-EEG and low impedance from electrode movements. Extratemporal
seizures were correctly annotated, indicating the capabilities of the wearable bte-EEG
capturing ictal patterns from more distant cerebral regions. In seizures classified as having
non-clear onset localization, readers could not identify ictal patterns in the given alarms.
In these cases, the subtle ictal changes in the signal were marked as artifacts or other
physiological events. Contrary to a vEEG setup, the readers blindly annotated the bte-EEG
and ECG. Without the support of video data, the likelihood of discarding seizure alarms
when no clear ictal patterns are visible is higher.

The results show a relatively low agreement between the two raters when annotating
only the bte-EEG signals, which is reflected by the calculated 0.20 Cohen’s kappa coefficient.
This shows the high inter-rater variability when interpreting reduced montage EEG record-
ings for recognizing focal seizures. This effect is also visible in other validation studies
of wearable EEG setups for seizure detection. In [41], two neurophysiologists annotated
full-scalp and in-ear EEG recordings of patients with focal epilepsy, achieving 56% and 92%
sensitivity, respectively, on the wearable EEG.

In this study, the sensitivity achieved with the automated algorithm was much higher
than visual inspection of the wearable EEG modality. In addition to the higher presence of
muscle and other physiological artifacts on wearable EEG setups, the loss in sensitivity by
the readers is heavily affected by the standard procedures and rules for seizure detection
to which they are subjected. Within the wearable setup, the readers relied on seizure
patterns present mainly on the cross-head channel, whereas the spread of focal seizures
on full-scalp EEG measurements can be observed on multiple channels. Despite this, the
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readers were somewhat experienced in reading two-channel EEG, but the level of certainty
was significantly lower within this setup. On the other hand, the automated algorithm is
based purely on the data patterns used during the training phase. In this sense, it is logical
that its sensitivity is higher when tuned for this purpose, with the drawback of producing
a high number of false detections due to the presence of artifacts [20]. Considering the
automated algorithm as a support tool, the present study confirms its usability, as it can
achieve a detection performance close to the theoretical boundary of gold-standard visual
seizure assessment.

The use of ECG data was shown to be beneficial for validating the automated seizure
detections. When raw ECG and heart rate signals were presented together with bte-EEG
data, the detection performance of each reader increased, reflected by the difference in the
F1-scores (Reader 1 improved from 0.13 to 0.32 and Reader 2 from 0.28 to 0.40). Figure 5a
shows that the increase in sensitivity was due mainly to added detectable seizures of
patients with ictal tachycardia, where the TP and FN numbers increased and decreased,
respectively, when compared with the first experiment. These findings substantiate the
usability of ECG data for focal seizure detection.

The presence of ictal tachycardia provides the basis for the decision of the readers
in cases where patients had an increase of more than 20 BPM. The bte-EEG data can be
corrupted with artifacts, causing uncertainty on the readers decision. In the example shown
in Figure 6, the readers appeared to weight their decisions on the presence of a sudden
increase in the patients’ heart rate, correcting their evaluation to a positive seizure detection.
In this particular case, the ictal heart rate increase is corrupted with an abrupt drop resulting
from artifacts on the ECG signal. Including the raw ECG allows readers to have more
information on possible noise segments when analyzing the heart rate and, thus, produce a
better decision during review. Both readers misclassified more seizures of patients without
tachycardia when the heart rate data were available for review. Seizures corrupted with
noise or muscle artifacts can be more dubious when visualizing wearable EEG data. When
the expected increase in heart rate is not present, the readers relied more on the second
modality, wrongfully discarding some of the detected seizures on the experimental setup
1. An example of a misclassified seizure segment due to an unclear seizure pattern on the
bte-EEG data and lack of ictal heart rate increase can be seen in Figure 7. The same negative
effect on the sensitivity can occur due to corrupted ECG data. The presence of interferences
in the cardiac signal can cause a wrong derivation of the R-R peak intervals and, thus, the
heart rate, causing difficulties to the readers in evaluating the detected seizure segments.
Other causes for false detections and revisions can be the presence of artifacts due to
increased physical effort, where the movement causes a rhythmic seizure-like activity on
the bte-EEG data accompanied with a heart rate increase, misleading both the algorithm
and readers to believe it is a seizure segment (Figure 8). Despite this, the agreement
between the readers increased significantly, represented in the Cohen’s kappa value. The
benefits in adding ECG and heart rate data to the review process were noted mainly in the
decreased false alarm rate. The reduction of positives occurs mainly in patients with ictal
tachycardia. The number of false detections also decreases in patients with unclear or no
tachycardia (Figure 5b). The absence of a heart rate increase presented in the visual setup
allows the readers to discard most of the bte-EEG false detections caused by artifacts or
other physiological events.

In clinical practice, in order to take advantage of the extra modality, it is essential
to identify beforehand whether patients have ictal tachycardia, determining whether the
use of ECG would benefit the detection performance. The dataset used in this study
contained a majority of patients who had ictal tachycardia (53%). Such incidence may
not be representative of the full population of epileptic patients. There are reports that
seizure type, duration, and conditions of activity affect the occurrence of ictal heart rate
changes, but it is often re-occurring in seizure episodes of the same patient [23]. In this
sense, it is possible to personalize the diagnostic and the automated algorithm, allowing for
further improvements in the automatic seizure detection and the visual review, potentially
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decreasing review time and increasing sensitivity and confidence within the readers. Using
the presented framework in a real-case setting outside of controlled environments and with
wearable devices still needs to be evaluated and will introduce more challenges related to
signal quality and presence of artifacts.

5. Conclusions

The need for automated seizure detection frameworks is of high relevance in clinical
practice. We presented a semi-automated multimodal seizure detection methodology based
on a two-channel EEG setup and ECG that outperforms standard methods. Due to the
high sensitivities achieved, the developed automatic seizure detection algorithms can
be used as supporting tools for visual review of focal seizures. The main drawbacks of
using such modalities are the difficulties in capturing ictal patterns and the susceptibility
to interferences and artifactual data, causing lower confidence in the detected seizure
segments and high inter-rater variability. Adding ECG and heart rate data to the bte-EEG
when reviewing the automated detections increases inter-rater agreement and reduces the
high number of false detections produced by the algorithm. The addition of heart rate data
for visual seizure detection is relevant in patients with ictal tachycardia.

Author Contributions: Conceptualization, K.V., W.V.P. and M.D.V.; methodology, M.B., K.V., L.S.
and J.M.; validation, M.B. and C.C.; data curation, L.S. and J.M.; writing—original draft preparation,
M.B.; writing—review and editing, K.V., L.S., J.M., C.C., M.D.V. and W.V.P.; visualization, M.B., L.S.
and J.M.; supervision, M.D.V. and W.V.P.; project administration, W.V.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by Bijzonder Onderzoeksfonds (BOF) KU Leuven: “Prevalence
of Epilepsy and Sleep Disturbances in Alzheimer Disease” (C24/18/097); EIT Health: SeizeIT2, “Dis-
creet Personalized Epileptic Seizure Detection Device” (19263); the Flanders AI Research Program;
Strategic basic research grant by Research Foundation Flanders (FWO) (for M. Bhagubai—1SB5922N);
Research Foundation Flanders (FWO) Research Project, “Deep, personalized epileptic seizure detec-
tion” (G0D8321N).

Institutional Review Board Statement: The study was approved by the Ethics Committee Research
UZ/KU Leuven (S59662), approved on 23 December 2016.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Epilepsy: A Public Health Imperative. Available online: https://apps.who.int/iris/bitstream/

handle/10665/325293/9789241515931-eng.pdf (accessed on 25 January 2023).
2. Goldenberg, M.M. Overview of Drugs Used for Epilepsy and Seizures: Etiology, Diagnosis, and Treatment. Pharm. Ther. 2010, 35,

392–415.
3. Laxer, K.D.; Trinka, E.; Hirsch, L.J.; Cendes, F.; Langfitt, J.; Delanty, N.; Resnick, T.; Benbadis, S.R. The Consequences of Refractory

Epilepsy and Its Treatment. Epilepsy Behav. 2014, 37, 59–70. [CrossRef]
4. Sveinsson, O.; Andersson, T.; Mattsson, P.; Carlsson, S.; Tomson, T. Clinical Risk Factors in SUDEP: A Nationwide Population-

Based Case-Control Study. Neurology 2020, 94, e419–e429. [CrossRef]
5. Salas-Puig, X.; Iniesta, M.; Abraira, L.; Puig, J.; QUIN-GTC study group Accidental Injuries in Patients with Generalized Tonic-

Clonic Seizures. A Multicenter, Observational, Cross-Sectional Study (QUIN-GTC Study). Epilepsy Behav. 2019, 92, 135–139.
[CrossRef] [PubMed]

6. Shih, J.J.; Fountain, N.B.; Herman, S.T.; Bagic, A.; Lado, F.; Arnold, S.; Zupanc, M.L.; Riker, E.; Labiner, D.M. Indications and
Methodology for Video-electroencephalographic Studies in the Epilepsy Monitoring Unit. Epilepsia 2018, 59, 27–36. [CrossRef]
[PubMed]

7. Fisher, R.S.; Blum, D.E.; DiVentura, B.; Vannest, J.; Hixson, J.D.; Moss, R.; Herman, S.T.; Fureman, B.E.; French, J.A. Seizure Diaries
for Clinical Research and Practice: Limitations and Future Prospects. Epilepsy Behav. 2012, 24, 304–310. [CrossRef]

8. Hoppe, C.; Poepel, A.; Elger, C.E. Epilepsy: Accuracy of Patient Seizure Counts. Arch. Neurol. 2007, 64, 1595–1599. [CrossRef]

https://apps.who.int/iris/bitstream/handle/10665/325293/9789241515931-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/325293/9789241515931-eng.pdf
https://doi.org/10.1016/j.yebeh.2014.05.031
https://doi.org/10.1212/WNL.0000000000008741
https://doi.org/10.1016/j.yebeh.2018.10.043
https://www.ncbi.nlm.nih.gov/pubmed/30658321
https://doi.org/10.1111/epi.13938
https://www.ncbi.nlm.nih.gov/pubmed/29124760
https://doi.org/10.1016/j.yebeh.2012.04.128
https://doi.org/10.1001/archneur.64.11.1595


Bioengineering 2023, 10, 491 15 of 16

9. Hubbard, I.; Beniczky, S.; Ryvlin, P. The Challenging Path to Developing a Mobile Health Device for Epilepsy: The Current
Landscape and Where We Go from Here. Front. Neurol. 2021, 12, 740743. [CrossRef]

10. Siddiqui, M.K.; Morales-Menendez, R.; Huang, X.; Hussain, N. A Review of Epileptic Seizure Detection Using Machine Learning
Classifiers. Brain Inform. 2020, 7, 5. [CrossRef]

11. Boonyakitanont, P.; Lek-uthai, A.; Chomtho, K.; Songsiri, J. A Review of Feature Extraction and Performance Evaluation in
Epileptic Seizure Detection Using EEG. Biomed. Signal Process. Control 2020, 57, 101702. [CrossRef]

12. Aayesha; Qureshi, M.B.; Afzaal, M.; Qureshi, M.S.; Fayaz, M. Machine Learning-Based EEG Signals Classification Model for
Epileptic Seizure Detection. Multimed. Tools Appl. 2021, 80, 17849–17877. [CrossRef]

13. Zarei, A.; Asl, B.M. Automatic Seizure Detection Using Orthogonal Matching Pursuit, Discrete Wavelet Transform, and Entropy
Based Features of EEG Signals. Comput. Biol. Med. 2021, 131, 104250. [CrossRef] [PubMed]

14. Fraiwan, M.A.; Alafeef, M. Multiclass Epilepsy Classification Using Wavelet Decomposition, Direct Quadrature, and Shannon
Entropy. J. Eng. Sci. Technol. 2022, 17, 781–797.

15. Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep Learning-Based Electroencephalography Analysis:
A Systematic Review. J. Neural Eng. 2019, 16, 051001. [CrossRef] [PubMed]

16. Zhou, M.; Tian, C.; Cao, R.; Wang, B.; Niu, Y.; Hu, T.; Guo, H.; Xiang, J. Epileptic Seizure Detection Based on EEG Signals and
CNN. Front. Neuroinform. 2018, 12, 95. [CrossRef] [PubMed]

17. Ullah, I.; Hussain, M.; Qazi, E.-U.-H.; Aboalsamh, H. An Automated System for Epilepsy Detection Using EEG Brain Signals
Based on Deep Learning Approach. Expert Syst. Appl. 2018, 107, 61–71. [CrossRef]

18. Yuan, Y.; Xun, G.; Jia, K.; Zhang, A. A Multi-View Deep Learning Method for Epileptic Seizure Detection Using Short-Time
Fourier Transform. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and
Health Informatics, Boston, MA, USA, 20 August 2017; ACM: New York, NY, USA, 2017.

19. Yuvaraj, R.; Thomas, J.; Kluge, T.; Dauwels, J. A Deep Learning Scheme for Automatic Seizure Detection from Long-Term Scalp
EEG. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31
October 2018.

20. Vandecasteele, K.; De Cooman, T.; Dan, J.; Cleeren, E.; Van Huffel, S.; Hunyadi, B.; Van Paesschen, W. Visual Seizure Annotation
and Automated Seizure Detection Using Behind-the-ear Electroencephalographic Channels. Epilepsia 2020, 61, 766–775. [CrossRef]

21. Vandecasteele, K.; De Cooman, T.; Chatzichristos, C.; Cleeren, E.; Swinnen, L.; Ortiz, J.M.; Van Huffel, S.; Dümpelmann, M.;
Schulze-Bonhage, A.; De Vos, M.; et al. The Power of ECG in Multimodal Patient-specific Seizure Monitoring: Added Value to an
EEG-based Detector Using Limited Channels. Epilepsia 2021, 62, 2333–2343. [CrossRef]

22. Sevcencu, C.; Struijk, J.J. Autonomic Alterations and Cardiac Changes in Epilepsy. Epilepsia 2010, 51, 725–737. [CrossRef]
23. Zijlmans, M.; Flanagan, D.; Gotman, J. Heart Rate Changes and ECG Abnormalities during Epileptic Seizures: Prevalence and

Definition of an Objective Clinical Sign. Epilepsia 2002, 43, 847–854. [CrossRef]
24. Cooman, T.D.; De Cooman, T.; Varon, C.; Hunyadi, B.; Van Paesschen, W.; Lagae, L.; Van Huffel, S. Online Automated Seizure

Detection in Temporal Lobe Epilepsy Patients Using Single-Lead ECG. Int. J. Neural Syst. 2017, 27, 1750022. [CrossRef] [PubMed]
25. Swinnen, L.; Chatzichristos, C.; Jansen, K.; Lagae, L.; Depondt, C.; Seynaeve, L.; Vancaester, E.; Van Dycke, A.; Macea,

J.; Vandecasteele, K.; et al. Accurate Detection of Typical Absence Seizures in Adults and Children Using a Two-channel
Electroencephalographic Wearable behind the Ears. Epilepsia 2021, 62, 2741–2752. [CrossRef]

26. Beniczky, S.; Ryvlin, P. Standards for Testing and Clinical Validation of Seizure Detection Devices. Epilepsia 2018, 59 (Suppl. S1),
9–13. [CrossRef] [PubMed]

27. Vandecasteele, K.; De Cooman, T.; Gu, Y.; Cleeren, E.; Claes, K.; Van Paesschen, W.; Van Huffel, S.; Hunyadi, B. Automated
Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment. Sensors 2017, 17, 2338. [CrossRef]

28. Li, C.; Zheng, C.; Tai, C. Detection of ECG Characteristic Points Using Wavelet Transforms. IEEE Trans. Biomed. Eng. 1995, 42,
21–28. [PubMed]

29. Varon, C.; Caicedo, A.; Testelmans, D.; Buyse, B.; Van Huffel, S. A Novel Algorithm for the Automatic Detection of Sleep Apnea
From Single-Lead ECG. IEEE Trans. Biomed. Eng. 2015, 62, 2269–2278. [CrossRef]

30. Varon, C.; Jansen, K.; Lagae, L.; Van Huffel, S. Can ECG Monitoring Identify Seizures? J. Electrocardiol. 2015, 48, 1069–1074.
[CrossRef]

31. Byteflies. Available online: https://byteflies.com/ (accessed on 25 May 2022).
32. Vertes, G. SeizeIT2. Available online: https://eithealth.eu/project/seizeit2/ (accessed on 25 May 2022).
33. Cohen, J. Weighted Kappa: Nominal Scale Agreement with Provision for Scaled Disagreement or Partial Credit. Psychol. Bull.

1968, 70, 213–220. [CrossRef]
34. Téllez-Zenteno, J.F.; Hernández-Ronquillo, L. A Review of the Epidemiology of Temporal Lobe Epilepsy. Epilepsy Res. Treat. 2012,

2012, 630853. [CrossRef]
35. Rubin, M.N.; Jeffery, O.J.; Fugate, J.E.; Britton, J.W.; Cascino, G.D.; Worrell, G.A.; Hocker, S.E.; Wijdicks, E.F.; Rabinstein, A.A.

Efficacy of a Reduced Electroencephalography Electrode Array for Detection of Seizures. Neurohospitalist 2014, 4, 6–8. [CrossRef]
36. Tacke, M.; Janson, K.; Vill, K.; Heinen, F.; Gerstl, L.; Reiter, K.; Borggraefe, I. Effects of a Reduction of the Number of Electrodes in

the EEG Montage on the Number of Identified Seizure Patterns. Sci. Rep. 2022, 12, 4621. [CrossRef] [PubMed]
37. de Curtis, M.; Avoli, M. Initiation, Propagation, and Termination of Partial (Focal) Seizures. Cold Spring Harb. Perspect. Med. 2015,

5, a022368. [CrossRef] [PubMed]

https://doi.org/10.3389/fneur.2021.740743
https://doi.org/10.1186/s40708-020-00105-1
https://doi.org/10.1016/j.bspc.2019.101702
https://doi.org/10.1007/s11042-021-10597-6
https://doi.org/10.1016/j.compbiomed.2021.104250
https://www.ncbi.nlm.nih.gov/pubmed/33578071
https://doi.org/10.1088/1741-2552/ab260c
https://www.ncbi.nlm.nih.gov/pubmed/31151119
https://doi.org/10.3389/fninf.2018.00095
https://www.ncbi.nlm.nih.gov/pubmed/30618700
https://doi.org/10.1016/j.eswa.2018.04.021
https://doi.org/10.1111/epi.16470
https://doi.org/10.1111/epi.16990
https://doi.org/10.1111/j.1528-1167.2009.02479.x
https://doi.org/10.1046/j.1528-1157.2002.37801.x
https://doi.org/10.1142/S0129065717500228
https://www.ncbi.nlm.nih.gov/pubmed/28359222
https://doi.org/10.1111/epi.17061
https://doi.org/10.1111/epi.14049
https://www.ncbi.nlm.nih.gov/pubmed/29873827
https://doi.org/10.3390/s17102338
https://www.ncbi.nlm.nih.gov/pubmed/7851927
https://doi.org/10.1109/TBME.2015.2422378
https://doi.org/10.1016/j.jelectrocard.2015.08.020
https://byteflies.com/
https://eithealth.eu/project/seizeit2/
https://doi.org/10.1037/h0026256
https://doi.org/10.1155/2012/630853
https://doi.org/10.1177/1941874413507930
https://doi.org/10.1038/s41598-022-08628-9
https://www.ncbi.nlm.nih.gov/pubmed/35301386
https://doi.org/10.1101/cshperspect.a022368
https://www.ncbi.nlm.nih.gov/pubmed/26134843


Bioengineering 2023, 10, 491 16 of 16

38. Gu, Y.; Cleeren, E.; Dan, J.; Claes, K.; Van Paesschen, W.; Van Huffel, S.; Hunyadi, B. Comparison between Scalp EEG and
Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy. Sensors 2017, 18,
29. [CrossRef] [PubMed]

39. McKenzie, E.D.; Lim, A.S.P.; Leung, E.C.W.; Cole, A.J.; Lam, A.D.; Eloyan, A.; Nirola, D.K.; Tshering, L.; Thibert, R.; Garcia,
R.Z.; et al. Validation of a Smartphone-Based EEG among People with Epilepsy: A Prospective Study. Sci. Rep. 2017, 7, 45567.
[CrossRef] [PubMed]

40. Epitel. Available online: https://www.epitel.com/ (accessed on 3 June 2022).
41. Zibrandtsen, I.C.; Kidmose, P.; Christensen, C.B.; Kjaer, T.W. Ear-EEG Detects Ictal and Interictal Abnormalities in Focal and

Generalized Epilepsy—A Comparison with Scalp EEG Monitoring. Clin. Neurophysiol. 2017, 128, 2454–2461. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s18010029
https://www.ncbi.nlm.nih.gov/pubmed/29295522
https://doi.org/10.1038/srep45567
https://www.ncbi.nlm.nih.gov/pubmed/28367974
https://www.epitel.com/
https://doi.org/10.1016/j.clinph.2017.09.115
https://www.ncbi.nlm.nih.gov/pubmed/29096220

	Introduction 
	Materials and Methods 
	Dataset 
	Automated Seizure Detection 
	Semi-Automated Seizure Detection 
	Data Preparation 
	Visual Experiment 
	Performance Evaluation 


	Results 
	Discussion 
	Conclusions 
	References

